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Auid flow and heat transfer to modified power law fluids in plane

Couette-Poiseuille laminar flow between parallel plates

by

Ganbat DAVAA*, Tom SHIGECHI**, Satoru MOMOKI** and Odgerel JAMBAL*

The fully developed laminar heat transfer to modified power-law fluids flowing between parallel plates with one

moving plate was analyzed taking into account the viscous dissipation of the flowing fluid. Applying the shear stress

described by the modified power-law model, the energy equation together with the fully developed velocity profile is

solved numerically for thermal boundary conditions of constant wall heat flux at one wall with the other insulated.The

effects of the flow index, relative velocity of the moving plate, dimensionless shear rate parameter and Brinkman

number on Nusselt numbers at the plate walls were discussed.

1. Introduction

Problems involving fluid flow and heat transfer with an

axially moving core of solid body or fluid in an annular

geometry can be found in many manufacturing processes,

such as extrusion, drawing and hot rolling, etc. In such

processes, a hot plate or cylindrical rod continuously

exchanges heat with the surrounding environment. For such

cases, the fluid involved may be Newtonian or non

Newtonian and the flow situations encountered can be

either laminar or turbulent.

In the previous study(1), fully developed laminar heat

transfer of a Newtonian fluid flowing between parallel

plates with one moving plate was analyzed taking into

account the viscous dissipation of the flowing fluid.

In the previous reportC2l
, an exact solution of the

momentum equation was obtained for fully developed

laminar flow of a non-Newtonian fluid flowing between

two parallel plates with one moving plate. The constitutive

equation (i.e., the shear stress-shear rate relation) for the

non-Newtonian fluid was described by the power-law

model most frequently used in non-Newtonian fluid flow

and heat transfer.

In the previous study(3), fully developed laminar heat

transfer of a non-Newtonian fluid flowing between parallel

plates with one moving plate was analyzed taking into

account the viscous dissipation of the flowing fluid.

Applying the velocity distribution obtained for the plane

Couette-Poiseuille laminar flow, the energy equation with

the viscous dissipation term was exactly solved for the

boundary conditions of constant wall heat flux at one wall
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with the other insulated.

In this report, fully developed laminar heat transfer of a

modified power-law fluid flowing between parallel plates

with one moving plate was analyzed taking into account the

viscous dissipation of the flowing fluid. Applying the shear

stress described by the modified power-law model
proposed by Capobianchi and Irvine(4), the energy equation

together with the fully developed velocity profile is solved

numerically for thermal boundary conditions of constant

wall heat flux at one wall with the other insulated.The

effects of the relative velocity of the moving plate, flow

index, fluid consistency. dimensionless shear rate

parameter and Brinkman number on Nusselt numbers at the

plate walls were discussed.

Nomenclature

A area normal to the flow direction

Br Brinkman number

cp specific heat at constant pressure

Db hydraulic diameter == 2 L

f friction factor

k thermal conductivity

L distance between the parallel plates

m consistency index

n flow index

Nu Nusselt number

P pressure

q wall heat flux

ReM modified Reynolds number

T temperature
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Fig.1 Schematic of parallel plates with one moving plate

Fixed plate

Average fluid velocity, urn' is defined as

(5)

(3)

(4)

(6)

for n < 1,

I z Modified power law ~
fluid flow '.,u L

• ..
Moving plate U .1

"'

1 fL
Urn = L 10 udy.

'10. = "i-n1+'10 du
m'tlii

{

u = 0 at 11 = 0
B.C.:

u = U at 11 = L.

Here 11a is the apparent viscosity defined by

'10

y

u axial velocity of the fluid

urn average velocity of the fluid

u* dimensionless velocity ;E. u I urn

U axial velocity of the moving plate

U* dimensionless relative velocity of the moving

plate == U I urn

V dimensionless parameter

y coordinate nonnal to the fixed plate

y* dimensionless coordinate == y I Dh

z axial coordinate

Greek Symbols

{j dimensionless shear rate parameter

11a apparent viscosity

11: dimensionless apparent viscosity == 11/11*
110 viscosity at zero shear rate

11* reference viscosity

p density

-r: shear stress

8 dimensionless temperature

The momentum equation and its boundary conditions are

reduced to

(8)

(7)

(9)

(12)

(11)

(10)

for n>l,

for n<l,

d ( dU*)- '1*- = -2J·ReMdy* .~ dy* ,

J - Db ( dP)= 2pu~ - dz ,

R - fJUmDb
eM =. '1*

Dimensionless apparent viscosity 11: is defined as

* _ '10. 1 +,8
'10. = '1* = Idu*1 1- n

1 +,8 tlii*

. Id *,·n-l
* _ f)o. {3 + .Cli-

o '10. = '1* = ,8 + 1 .

B.C. : { u' = 0 at y' = ..0
u* = u* at y* = ·l.

Friction factor, f, and modified Reynolds number, ReM are

defined as

2.1 Fluid Flow

The momentum equation together with the assumptions

described above is

2. Analysis

The physical model for the analysis is. shown in Fig. I.

The lower plate is axially moving at a constant velocity, U:

The assumptions used in the analysis are:

I. The flow is incompressible, steady-laminar, and fully

developed, hydrodynamically and thermally.

2. The fluid is non-Newtonian and the shear stress may

be described by the modified power-law model(4), and

physical properties are constant..

3. The body forces and axial heat conduction are

neglected.

Subscripts

B bulk

j j =L for Case A, j =0 for Case B

L m~)Ving plate

o fixed plate

dT dP
dy= dz

where du
T = '10. dy'

The boundary conditions are:

(1)

(2)

'1* ==~ for n< I,
1+,8

'1* = '10 (I + ~) for n > I,

( )

l-n
,8= .'10. Um

m Dtt .

(13)

(14)

(15)
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2.2 Heat transfer

The energy equation together with the assumptions

above is written as

where

(25)

The following two types of the thermal boundary

conditions are specified:

Case A (constant heat flux at the moving plate with the

fixed plate insulated):

tPT (dU) dTBk- + 7" - ={JCpu-
dtP dy dz .

at y = 0

at y = L,

(16)

(17)

and

{

1/2 2} 2
V = 2u* / * (dU*) d * ~ * (dU*)

'10 dy* y '10 dy* .
o

Nusselt number, Nu
j
, is defined as

NUj == [q;/(Tj - TB)]Dh = 1
k (Jj - (JB

where dimensionless bulk temperature, es' is defined as

(26)

(27)

Case B (constant heat flux at the fixed plate with the

moving plate insulated):

(28)

{
-k~ = qo

k~ = 0

at y = 0

at y = L

(18)

and (~ - es) is calculated as

1/2

8; - 8a = f u· (8; - 8) dy·.
o

(29)

dTS / dz in Eq.(16) is evaluated, from an energy balance, as

the energy equation and the boundary conditions may be

expressed in the dimensionless forms as

3. Results and discussion

In order to examine the reliability of the numerical

solutions obtained in this study, the solutions computed for

the momentum and energy equations together with

respective boundary conditions were compared with the

analytical solutions determined at the extremes at f3 - 0

and f3 - 00. Both solutions were in good agreement.

3.1 Fluid Flow

Parameter f3 defined by Eq.(15) represents dimensionless

average shear rate under the specified fluid flow condition.

For pseudoplastic fluids (n < I) the extreme at to f3 - 0

corresponds to a Newtonian fluid and that at f3 - 00 a

power law fluid. For dilatant fluids (n > l). the extreme at f3
- 00 corresponds to a Newtonian fluid and that at f3 - 0

to a power law fluid.

Figure 2 shows the effect of parameter fJ on friction

factor in terms ofjReM•

The values ofjReM at the extremes of f3 - 0 and f3 - 00

approach, respectively, to the values of Newtonian fluid

and power law fluid.

It is seen in Fig.2 that the values of jReM become greater

with a decrease in U*.
Figure 3 shows the effect of parameter f3 on velocity

profile across the channel for the nine combinations of n =

0.5, 1.0, 1.5 and U* = -I, 0, 1. For n = 0.5 and n = 1.5 the

velocity profiles are different depending on the magnitude

of f3 with a decrease in U*.

(19)

(22)

(20)

(21)

{
dB 0 at y* = 0"ili1" -
dB = 1 at y* = 1 (23)

"ili1" 2,

{
dB = -1 at y* -- 0"ili1"
dB 1

. (24)

"ili1" = 0 at y* = 2

11 . - ffA uTdA
B = ffA udA

CaseD:

Case A:

where the wall heat fluxes, qL and %' are taken as positive

into the fluid.

Bulk temperature is defined as

where j =L stands for Case A and j =0 for Case B.

Introducing dimensionless temperature, e, defined as
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Square of velocity gradient or parameter V given by

Eq.(26) controls the heat transfer through Eq.(22) for the

case with viscous dissipation. The magnitudes of them are

shown in Figs.4 and 5. It is seen that the values of square of

velocity gradient and V become larger near the walls with

an increase in f3 for U* =-I and U* =O. However they

remain small near the moving wall for U* =1.
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3.2 Beat traDsfer lor Case A

Temperature difference (8 - 8B) for Case A is shown in

Fig.6 for fJ =1. For U* =-1 and U* =0, (8 - 8B) increases

near the walls with an increase in BrA and has a minimum

value in the middle region of the channel. This is attributed

to the heat generated by viscous dissipation near the wall as

seen in Figs.4 and 5, and large axial heat convection in the

middle region as seen in Fig.3. For the case of U* = I. (8

9B) increases with an increase in BrA near the fixed wall.

This is also owing to the heat generated by viscous

dissipation near the fixed wall as seen in Figs.4 and 5.

Nusselt numbers for Case A, NUL' are shown in Fig.7.

NUL decreases with an increase in BrA for U* = -I and U* =
o and increases with an increase in BrA for U* =I. These

behaviors of Nusselt numbers NUL can be explained by the

viscous dissipation effect on temperature difference

(9 - 9B). as mentioned above.

4. Condusions

Fully developed Couette-Poiseuille laminar flow

between parallel plates was analyzed using the modified

power-law model proposed by Capobianchi and Irvine(4).

Furthermore. applying the fuUy developed velocity

distribution calculated numerically. the energy equation

together with the boundary conditions of constant wall heat

flux at one wall with the other insulated was solved

numerically taking into account viscous dissipation effect.

In the analyses of fluid flow and heat transfer of non

Newtonian fluids. the results calculated by adopting the

simple power-law fluid model do not predict correctly the

values of friction factor and Nusselt number in the region

of lower shear rate. In order to calculate the whole region

of shear rate from zero to infinity. the modified power-law

model as adopted in this study should be used.

In this report the heat transfer study results for Case A

only are discussed due to the limited space. The counterpart

for Case B will be shown in another report.

Reference

1. T.Shisechi. et aI., "Effect of viscous dissipation on fully

developed heat transfer of plane Couette-Poiseuille laminar
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U· - 1.0

BrA -0.05

BrA -0.01

BrA -0.00

18

16

14

20 .----..--r-.....--~---,...---rn-_-...1.-0--..::::::=::--.
n - 1. 1 -------
n-1.2·········
n-1.3··················
n - 1.4 -.-.- ..n - 1.5 -.-._._ ..

"

"
"
"

"
"

••"._._._._._._._._.-.-..... "
.....,. "

'\, \
\. \
\ \

............ '\ \.

:: ..~_.~_.~-_~.~_~:_~-_.~_~~_.~_.~_~~_~~_~-..,~~"=~~:-.~""'.~.-....~_~~_:~...;~\;;;i~...:~..:_.B_r.;.;A;..-_O_._1_0-t

~~~~:~~~~::~~:::~~~~~~~~~~~~~~.

CASE A

u" - 1.0

8

18

20 r--r--r---,r--r-..,..---,-"""""I:"-=:-""'---'-""

~ : S:3 ::=:.::..::.~
n-0.7··················n-O.B .
n - 0.9 -------.
n= 1.0 ---

10 ~B:..r;..:A;:..--.....;;O;.;._1...;0~_"-'"""~ --f

BrA" 0.05 ....~{~~~~~.~:~::~.~.~:~:~~~.~.-:~~~.~~::~~.~:~:~
BrA - 0.01 ~~-t:~;:::-;~~=~~:i:::::::::::~~~~0
BrA == 0.00 .-.-.-.-.-.

61.----L_...L-_L.----L_....L-_L.-........._....L----JL.--~

-5 -4 -3 -2 -1 0 1 2 3 4 5
logjJ

61.---I._........_ ........._ ......._1.--.l._-L.._...L-_.......--I

-5 -4 -3 -2 -1 0 1 2 3 4 5

log fJ

Fig.? Nusselt numbers for Case A


