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Elastoplastic Analysis of 3D Steel Frames with Semi-rigid Joints

by

Minoru SHUGYO*

A beam element for the analysis of elastoplastic large deformation of three-dimensional frames that have steel

members with semi-rigid joints is presented. A plastic hinge type formulation was employed combining the 'modified

incremental stiffness method', the updated Lagrangian formulation and numerical integration about the end sections of

the element. The end sections of the element are discretized into small areas to estimate the plastic deformation of the

element. The elastic and plastic deformations of the element are treated separately. The behavior of a semi-rigid joint is

modeled as the element·end compliance. Considering the assumptions of the method, a four-element approximation

for a member gives excellent results for a 3D analysis of semi-rigid and pin-connected steel frames as well as for rigid

frames.The adequacy of the method is verified by comparing the results with experimental ones obtained by the author.

Some examples are presented to demonstrate the accuracy and efficiency of the method.

KEYWORDS: 3D steel frame, elastoplastic analysis, large deformation, semi-rigid joint, plastic hinge method, section

warping

1 INTRODUCTION

The ultimate strength and the restoring force characteristics

under three-dimensional loadings are fundamental and the

most important performance characteristics of a building

frame. A large number of analysis methods to examine the

performance of beam-columns and frames have been

proposed (AI-Bermani and Kitipornchai 1990; Kouhia and

Tuomala 1993; Liew et al. 1993; Hall and Challa 1995;

Izzuddin and Smith 1995; Teh and Clarke 1999). Those

methods can be classified into two types: the plastic zone

and the plastic hinge type formulations. One of the merits

of the plastic hinge type formulation is the separate

treatment of elastic and plastic deformations. It means that

a geometrically nonlinear stiffness can be obtained by the

principle of stationary potential energy, and the 'modified

incremental stiffness method' (Stricklin 1971; Washizu

1975) can be used as the numerical procedure. This is

because the plastic strain energy is completely dissipated in

the zero-length plastic hinges and does not affect the

internal force vector of a structure. Hence, the plastic hinge

type formulation can provide good accuracy as well as

simplicity if the plastic deformation increment vector can

be obtained precisely. In addition, the use of the plastic
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hinge method is suitable for frames with semi-rigid joints

because a semi-rigid joint can be regarded as a kind of

plastic hinge.

This paper proposes a new type of accurate beam

element for the analysis of elastoplastic large deformation

of three-dimensional frames that have steel members with

semi-rigid joints. The element is of the plastic hinge type.

The end sections of the element are discretized into small

areas (fibers) to estimate the plastic deformation of the

element. The elastic and plastic deformations of the

element are treated separately. The elastic nonlinear

tangent stiffness matrix of the element is obtained by the

principle of stationary potential energy using the updated

Lagrangian formulation, while the plastic deformation

increments are estimated by the tangent coefficient matrix

obtained by numerical integration of the hardening moduli

of the fibers about the end sections.

In contrast, many other investigations concerned with

semi-rigid joints have been conducted (Lui and Chen 1986;

Lui and Chen 1987; AI-Bermani and Kitipornchai 1992;

King and Chen 1992; King and Chen 1994; Shugyo et al.

1996; Shakourzadeh et al. 1999). It seems to the author

that the node zero-length joint-element proposed by
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Shugyo et a1.(1996) and Shakourzaden et ~. (1999) is the

most simple and efficient method for modeling the 3D

behavior of semi-rigid joints. In this paper, the tangent

stiffness matrix for an element is obtained by introducing

the node zero length joint-element as the element-end

compliance. The 'modified incremental stiffness method'

(Stricklin 1971; Washizu 1975), together with the

displacement increment method (Ramm 1982), is employed

as the numerical procedure.

2 ASSUMPTIONS

3 GEOMETRICALLY NONLINEAR STIFFNESS

MATRIX

The initial element coordinate systems (x,y,z) and (x,y,E)

are shown in Fig. 2 for an element of a general open

section. The x-axis is perpendicular to the cross section and

passes through the centroid 0 of the end cross section; the

y- and z- axes are the principal axes of the cross section at

node i. A parallel set of axes x,y;Z pass through the shear

center S of the cross section at node i. The strain­

displacement relationship adopted here is

z
+
I

where u, v, andw are the displacements of an arbitrary

point in X-, y-, and z-direetion, respectively. These values

are related to the displacements Uo of the point on the x­

axis, vo, and wo, and the rotation angle tPo of the point on

the xaxis as

where CUs is the normalized warping function about the

shear center. Substituting (2) into (1) and utilizing the

'modified incremental stiffness method' (Stricklin 1971;

Washizu 1975), we obtain the following equation:

The following assumptions are made to form the

elastoplastic tangent stiffness matrix of the element:

1) Members have thin-walled closed or open sections.

2) Cross sections remain planar and do not distort in the

absence of cross-sectional warping.

3) Transverse shear deformation is negligible.

4) Deflection is large but elastic strain is small.

5) Axial stress and the shear stress due to St. Venant

torsion participate in the yielding of the fibers of

members with closed sections, while only axial stress

participates for the members with open sections.

6) Plastic deformation consists of only four components

that correspond to axial force, biaxial bending

moments, and torsional moment or bimoment.

7) There is no local buckling.

8) Although actual generalized plastic strain in a short

element is generally distributed nonlinearly (Fig. 1(a»,

the distribution is assumed to be linear with the values

at element nodes i and j (Fig. l(b».

9) Incremental plastic deformations in the two 1/2

portions occur concentrically in the plastic hinge of

zero length at element nodes i and j, where l is the

length of the element.

u = uo - Jldvo _ zdwo +w. dt/Jo )
dz d% d%

v = 110 - ft/Jo

w=tuo+m

dIJ + R = Kedqe

(I)

(2)

(3)

Fig.l Assumption of generalized plastic strain distiribution

in an element

in which r is the geometrically nonlhlear tangent stiffness

matrix, R is the out-of-balance force vector and Q and tf
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(7)

(8)

are the nodal force vector and the nodal elastic

displacement vector of an element, respectively. Q and q'

have the following components:

Q=[F,,; FIIi F.i M"i MIJ; M.i M",;

)
F"j FlJj F.j M"j MlJj M.j M.,j]T

(4)
q< ={u: v~ w~ 6~i 6;i 6~i 8~~• .

u~ v~ w~ 6~j 6;j 8~j 6~jfJ J J

where Fkl denotes the force in the k- direction at node I; Mki

denotes the bending or torsional moment about the k- axis

at node I ; and M OJI denotes the bimoment at node I.

Components of q' are the corresponding elastic

displacements. The rotation matrix for large rotation

(Crisfield 1997) was used to determine the successive

element coordinate system and the nodal total local

displacements. Therefore, some components of the total

nodal local displacements that are contained in r at the last

known state (reference configuration) are as follows if the

element is in the elastic range: u~ = v~ = w~ = vj = wj = 0 and

(J~; =- (} ~j' Cubic functions for vo, Wo and <Po and linear

function for Uoare adopted as displacement fields.

where a is a normal stress due to axial force, bending

moments, and bimoment, and E1 is the tangent modulus of

the uniaxial stress-strain relationship of a fiber.

4.2 PI_tic Tangent Coefficient Matrix for a Section

4.2.1 Thin-walled Closed Section

The components of the generalized stress vector and

generalized strain vector are shown in Fig. 2. From

assumptions (5) and (6), the components of the generalized

stress vector Ie and generalized strain vector eSc for a thin­

walled closed section can be written as:

Ie = [f" m" mlJ m;IT}
6e =[€o ~" ~IJ ~. ]

where Ix is an axial force, mx is a torsional moment, my and

mz are bending moments. The components of eSc are

corresponding generalized strains. The increments of the

generalized stresses are related to the fiber stress

increments by

d/:z = I do'dA dm" = I dThdA }

dm,l =Jdt7zdA dm. = - I do'ydA

whereas the fiber strain increments are related to the

increments of the generalized strains by

f DndA f Dl2hdA f DnzdA - f Dll!ldA

JD21 hclA I D22h2dA I D21hzdA - I V,lh,dA

dl.= d6.::.d6. (10)
I DllzdA I D12hzdA JDllZ2dA - JDU/lzdA

- JDll!ldA - JD12h/ldA - JDllllzdA JDurdA

where h is a section constant. If the wall thickness of a tube

is constant, h = r for a circular hollow section and h =
ab/(a+b) for a rectangular hollow section where r is the

mean radius, a is the mean width, and b is the mean depth

of the section (Teh and Clarke 1999).Substituting (5) and

(9) into (8), we obtain the incremental generalized stress­

generalized strain relationship:

4 ESTIMATION OF PLASTIC DEFORMATION

INCREMENTS

In the present fonnulation, a plastic deformation increment

of an element is estimated utilizing a tangent coefficient

matrix for a cross section. The tangent coefficient matrix is

obtained by numerical integration of the tangent stiffnesses

of the fibers that compose the element.

4.1 Incremental Stress-Strain Relationship of a Fiber

For a member with a thin-walled closed section, using the

von Mises yield condition, associated flow rule, and

Ziegler's hardening rule, we can obtain the following

equation (Armen et a1. 1970; Shugyo et a1. 1995) from

assumption (5):

{
dt7} [DU D12] {df } {dE} (5)
dT = D21 D22 d-y == D" d-y

dE = d€o + zd4,1 - 11d4. }

d-y = hd4>"
(9)

where a is a normal stress due to axial force and bending

moments, -ris a shear stress due to St. Venant torsion.

For a member with a thin-walled open section, the

incremental stress-strain relationship of a fiber is expressed

as:

(11)dt7 = EcdE (6)

where s is a tangent coefficient matrix. Let se denote an

elastic tangent coefficient matrix and let do/ and do/
denote the elastic and plastic components of doc,

respectively, then

die =.<d6e
e

}

d6e = d6e e + d6e•
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Substituting (10) into (11) yields

Me' = (.-1 - ••-1 )dle == "dIe

Minoru SHUGYO

(12)
(15)

where I' is a plastic tangent coefficient matrix.. The elastic

tangent coefficient matrix ,e is constant for any state of the

section.

4.2.2 Thin-waDed Open Section

We can obtain the plastic tangent coefficient matrix. s' for

an open section in the same way as described above using

(6) instead of (5) (Chen and Atsuta 1977).The components

of generalized stress vector fa and generalized strain vector

Do for a thin-walled open section are:

(13)

for an element with a thin-walled open section, which are

the deformation increments due to the generalized plastic

strain increments of an element. These plastic deformation

increments can be obtained as described below.

The generalized stresses at the element ends are obtained

by the nodal forces at the last known state with their

coordinate transformation. (Note that the i-node cross

section is the negative plane about the x- and x axes.) Using

these generalized stresses, we can obtain the plastic tangent

coefficient matrices s: and s~ utilizing the procedure

explained above. Representing the components of s: by

(%/);, a new square matrix. r; of the 7th order can be obtained

as follows:

6f = (S~l)i 0 0 (8;2)i (8;3); (8~.); 0

(S;l)i 0 0 (S;2)i (8;3); (8;.); 0

(S~'>i 0 0 (8~2)i (8~3); (S~.); 0

where mID is a bimoment and ¢JID is the corresponding

generalized strain.

For both closed and open sections the components of the

tangent coefficient matrix can be obtained by numerical

integration. Figure 3 shows the partitioning of a cross

section used in the analyses described later. The stress and

the tangent stiffness in each fiber are obtained as the

average values at its centroid. The 'tangent stiffness

method' (Chen and Atsuta 1977) can be used to determine

the matrix s.

o 0 0 0

o 0 0 0

000 0

for a closed section element and

o 0 0 0 0

o

o

o

o

o 0

o 0

o 0

o

(16)

(S;l)i 0 0 0 (S;2)i (S;3)i (S;.)i

(8;1)i 0 0 0 (S;2)i (8~3); (8~)i

(8~'>i 0 0 0 (8~2)i (8~3); (8~.);

z

....--.,..+---Il+y

(a) Hollow circular section

z

--7
0
..----+y

(b) H-section

6f=

o 0 0 0 0

o 0 0 0 0

o

o

o

o (17)

Fig.3 Partitioning of a cross section

4.3 Estimation of Plastic Defonnation Increments

Now, let us define the plastic deformation increments in the

plastic hinges dJJ! and dJJ! as

for an element with a thin-walled closed section and

for an open section element. Another new matrix r; that

corresponds to ~ can be similarly obtained. In the case of

uniaxial bending, the plastic curvature increment is

distributed as shown in Fig. 4 from assumption (8). Hence

the plastic rotation increment at the element end i can be

expressed as follows using a trapezoidal rule from

assumption (9):
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Fig. 4 Assumed plastic curvature distribution in an element

6 ELASTOPLASTIC TANGENT STIFFNESS

MATRIX

Assuming that the total displacement increment dq is the

sum of the elastic displacement increment dJI, the plastic

deformation increment dt/, and the deformation increment

in the zero length semi-rigid elements dt/ we obtain

The plastic deformation increments at the element end i can

be obtained by extending (18) considering that the i-node

section is a negative plane and expressed as

dqe =dq _ dq" _ dq'. (24)

(19)

From (3) the linearized relationship between dQ and dqe is

given as dQ = ICdqe , hence

Similarly, for the element end j (25)

(20) Substituting (21) and (23)into (25), we obtain

Rearranging (19) and (20), we obtain (26)

{dqf} I [3ef -~] {dQi }_=8 = ."dQ.
cUI; -ef 3~ dQj

(21) Rearranging (26) and again introducing the concept of

'modified incremental stiffness method', we can obtain the

following equation:

S DEFORMAnON INCREMENTS IN SEMI-RIGID

JOINTS

The matrix s" in (21) is a compliance matrix that relates the

nodal plastic deformation increment vector to the nodal

force increment vector. Almost the same expression can be

written for the deformation increment vector in a semi-rigid

joint at node i if the interaction effects are negligible

(Shugyo et aI. 1996, Shakourzaden et aI. 1999) as follows:

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

dq: = 0 0 0 (C«)i 0 0 0 dQi ;: Cjdqi' (22)

0 0 0 0 (ClIlI)i 0 0

0 0 0 0 0 (Cae)i 0

0 0 0 0 0 0 (C77 )i

where dq/ is the deformation increment vector in the zero

length semi-rigid element at nodes i. Similarly, we can

obtain the matrix c) for node j and hence

(23)

(27)

where 1 is the unit matrix, R is the out-of-balance force

vector,and F is the elastoplastic tangent stiffness matrix.

Numerical analysis can be conducted by Ramm's

displacement increment method (Ramm 1982) using

(27).The coordinate transformation matrix of an element is

updated, and the total nodal local displacements are

recomputed by separating the rigid body displacements in

each step by using the rotation matrix. R is obtained by the

explicit expressions using the elastic total nodal local

displacements, which can be obtained by subtracting the

sum of the plastic deformation increments and the

deformation increments in the semi-rigid elements from the

total nodal local displacements.

The use of the 'modified incremental stiffness method'

may cause a significant error if the size of the displacement

increment is not appropriate. Therefore, the author used

the following procedure to determine the size of the

displacement increment. (I )Examine the magnitude of the

generalized strain increments in the last step for all

elements and obtain the maximum value. (2)Determine the

size of the displacement increment of the next step using

the sizes of the displacement increment and maximum
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Fig. 6 Scheme of loading and measuring system
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Fig. 7 Load-deflection and load-torsional angle relationships

at the beam top (hollow circular section)

In the numerical analyses, the elastic shear moduli Ge =
Eel2.6, Gh = Eh 12.6 and strain hardening moduli in the

elastoplastic range Hr = Eel I00, Hh = Eh /100 were assumed

in addition to the above-mentioned material constants.

Considering assumption (8) of the method, the beam was

divided into two elements by the node at a point 1/5 of the

beam length. The relationships of load versus vertical

deflection and load versus torsional angle at the beam top

are shown in Figs. 7 and 8. Although some errors are

present, the figures show that this method gives an accurate

result for a beam member.

Figure 6 shows the scheme of loading and the measuring

system. The distance from point B to point C in the figure

is 73.0 em. The load P causes the shear force P, the

bending moment M, and the torsional moment T at the top

of the test specimen (A-A section), where M =3P and

T=73cos (JP. The H-beam was set so the weak axis of the

cross section was aligned with the direction of the shear

force. The warping of both end sections was restrained by

end plates 3.0 cm thick. The vertical deflection 8 and

torsional angle (J can be obtained from the outputs of two

displacement gauges ~ and ~ as follows:

6 = (61 + ~)/2 }

(J = tan-1 (cS2 - cS.)/ltJ)

(f Displacement gauges

Fig. 5 Test arrangement for cantilever beam

generalized strain increment in the last step so that the

maximum value of the generalized strain increment in the

next step is less than the prescribed standard value. As the

standard value for all the following examples, the author

used a value of 0.01, which is the nondimensionalized

value determined by the initial yield value of each element.

7 NUMERICAL EXAMPLES

7.1 Cantilever Beams subjected to Shear Force and

Torsional Moment

The adequacy of the present method on determining the

bending-torsional behavior of a beam is examined by

comparing the results with experimental results of

cantilever beams subjected to shear force and torsional

moment. Figure 5 shows the test arrangement. The test

specimens were two steel beams, one with a hollow circular

section and one with an H-section. Both specimens were

annealed at 630 degrees Celsius for one hour. The sizes and

mechanical properties of the specimens are as follows:

outside diameter of the cross section Dr = I 0.17 em,

thickness te =0.41 em, length L, =55.30 em, Young's

modulus Ee =207.8 GPa, yield stress G.vc =299.9 MPa for

the beam with the hollow circular section, and width of the

section Wh =10.10 em, depth D h =lO.OOcm, flange

thickness tf =0.77 em, web thickness tw =0.57 em,length L,

=51.40 em, Young's modulus Eh =205.8 GPa, yield stress

ayh=271.5 MPa for the beam with the H-section.
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Fig. 12 Moment-rotation curve for beam-column joint

Fig. 11 Semi-rigid rectangular frame SRFI (Liew at el.

1997)
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Fig. 10 Load-displacement curves for Harrison's (1964)

space frame

Column out-of-

=0.0008

7.3 Semi-rigid Rectangular Frame

Liew et al. (1997) carried out a series of tests on a variety

of semi-rigid rectangular frames. The test frames can be

used for a calibration of analysis method. Figure 11 shows

the dimensions of the SRFI frame. The sizes and

mechanical properties of the columns and the beam are as

follows: depth D=22.23 cm. width 8=20.88 cm, flange

thickness I, =2.05 cm. web thickness tw =1.30 cm. yield

stress C1v =318.0 MPa for the columns. and D=35.86 cm.

8=17.21 cm. lr 1.30 cm.tw=O.80 cm. U.V =303.0 MPa for the

beam. The moment-rotation relationships for the beam-to­

column connection and for the column base obtained by the

tests are shown in Figs. 12 and 13. The dotted lines in the

figures are approximate curves used in the present analysis.

- ..."'"
~ 'I
ll..2Ij·!~···, .. ·.:····: .... :····:····,· .. ·:···1

] if .
111··-~m-II' ........ Pn!oeDt ......yoia(2.1s)
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Columns: uy =30.6 ksi
Beams: Uy = 31.1 ksi

All members CHS
L=48 in
D = 1.682 in

H t =0.176 in
E =28800 ksi
G = 11520 ksi

'-

Fig. 9 Harrison's (1964) space frame
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Fig. 8 Load-deflection and load-torsional angle

relationships at the beam top (H-section)

7.2 Three-Dimensional Frame

The adequacy of the present method on the elastoplastic

behavior of a 3D frame is examined by using the equilateral

triangular space frame tested and analyzed by Harrison

(1964) and Teh and Clarke (1999) (Fig. 9). The properties

of the members are given in the figure. In the present

analysis, each member was modeled in the same manner as

Teh and Clarke. that is. each column was modeled with

four equal-length elements. while the beams were modeled

with two or six equal-length elements depending on the

loading condition. Strain hardening modulus H=FJ1OO was

assumed, whereas Teh and Clarke assumed H=O.

Figure 10 compares the relationship between the

horizontal load and the horizontal sway of the right eave.

The result of the present method agrees with the numerical

results of Teh and Clarke in the elastic range; the restoring

force in the elastoplastic range is slightly small in

comparison with the other two results. The increase in the

number of elements narrows the discrepancy between the

two results of Harrison and the present method. As is

obvious from assumption (8). the use of this method with

fewer modeling elements gives a solution that is more

conservative.
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modulus G=1.096GPa(l59.0 ksi). cross sectional area

A=3.187cm2 (0.494in 2
), torsional constant J=1.378cm4

(0.0331 in4
). and moments of inertia ly = II =0.832cm4

(0.02in2
). In the present analysis. each member was divided

into four elements of equal length.

0.10.080.02

. ---::I::::r:::T::::-;::::::t------ ---- ..
:--.:--[:::::-:=--~~~;=-J-~:;.~
...+---- Approximate curve

_____L .. _ (M = 135.0tan-1(5.W'·45»

200 .--~---.-.....-----..-.......--....-~--~...,

180

160
8 140
~
~12O
.c; 100

80

60
40

20
o L--....;....~_~---..:._-'------:...._-'----'-_~-'

o

In the numerical analyses. the elastic shear modulus

G=EI2.6 and strain hardening modulus H=EIIOO were

assumed. The beam was divided into three elements of

equal length. while the column was divided into four

elements by the nodes at points 1/10. 112. and 9/10 of the

column length.

In Fig.14. the horizontal load-lateral displacement curves

of the SRFI frame are compared with the analytical results

from the present method. Although the present method

underestimates the both experimental and numerical results

by Liew et aI.• the figure shows a reliability of the present

method for semi-rigid frames.

240

Fig. 15 Hexagonal frame

150 ...------:-~:------:----.
____ . __ x x x x Chan and Zhou, Liew et aI.

: -- Present analysis (rigid)

100 ------i-- ..... ----- Present analysis (semi-rigid)

----.l. _.-._ .. Present analysis (pin)

50

. , .
o ---------i-- .. ---.-i------.-:

Fig. 14 Comparison of load-displacement curves for

SRFla and SRFlb frames

-50 L-_~_ _"___ _'___ ___'___...,;,.:.::~~_ _____'___-'

o 1 2 3 4
Vertical displacement 6 (in)

Fig. 16 Load-vertical displacement curves of hexagonal

frame

Figure 16 compares the load-displacement curve for the

rigid frame with those obtained by Chan and Zhou (1994)

and Liew et al. (1999). The curve obtained by the present

method agrees closely with other results.

The dotted line and the dot-dashed line are the load­

displacement curves for the cases in which both ends of six

roof members have semi-rigid joints and pin joints.

respectively. The compliances of the semi-rigid joints were

assumed as 0 for axial force. shear force, and torsional

moment. and U(2Ely). U(2Ell ) for bending moments where

L is the member length.For the pin joints. the same

assumption was employed except that LI(10,sEl,,). and

LI(lO,sEl
l

) were used as the compliance for bending

moments. The dot-dashed line. which passes through points

(1.75.0) and (3.5.0). shows the adequacy ofthe method for

the analysis of a pin-connected frame.

(b)Elastoplastic analysis

The results of elastoplastic analyses of the same hexagonal

200

-------

40 80 120 160
Lateral displacement A(cm)

180
Z
~

~

] 120
-;

-=.~
~

80

-- Test(Liew et a1.)
......... PHINGE(Liew et a1.)
- - - Present analysis

7.4 Hexagonal Frame with Semi-rigid Joints

(a)Elastic analysis

The hexagonal frame shown in Fig. 15 has been analyzed

by many researchers to check the accuracy of the numerical

method for analyzing the elastic large deformation behavior

of space frames. The properties of the member are as

follows: Young's modulus E=3.032 GPa(439.8 ksi), shear
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frame with member properties different from the above

example are given in Fig. 17. The member was assumed to

be a steel pipe with a circular section having cross sectional

area A=3.187cm2
• The member properties are as follows:

diameter D=4.674cm, thickness t=0.228cm, Young's

modulus E=21O.OGPa, shear modulus G=80.77GPa, yield

stress G y =300.0MPa, and strain hardening modulus

H=E/IOO. Each member was modeled with four equal­

length elements. The dotted line and the dot-dashed line in

the figure indicate the results for the semi-rigid and the pin­

connected frames. The pin-connected frame did not yield.

The result for the rigid frame shows that the load after the

frame yielded does not vary acutely.

-- Rigid

------ Semi-rigid
_._.- Pin

: V:

: A';~~+,T:-f----'---rr.!A •••• ··
, ''i-.: ' /'

",~-~~x~~:~..~._ j./

20
o 2 4 6 8 10

Vertical displacement 6 (em)

Fig. 17 Load-vertical displacement curves of the steel pipe

hexagonnal frame

8 CONCLUSION

An advanced plastic hinge method for accurate analysis of

elastoplastic large deformation of three-dimensional steel

frames with semi-rigid joints was presented. The effect of

shear stress due to St. Venant torsion on the plastic

behavior of a member with a closed section is considered

using the von Mises yield criterion, the associated flow

rule, and Ziegler's hardening rule. The method can be used

for the analyses of frames that have open-section members,

which cause section warping. It was shown that the use of

the 'modified incremental stiffness method' (Stricklin

1971; Washizu 1975) and the updated Lagrangian

formulation, together with a precise estimation of the

plastic deformation of an element, can increase the

accuracy of plastic hinge method. The method does not

require a database of the yield surfaces of cross sections

and can be introduced in an existing FEM code. The

adequacy of the method was verified by comparing the

results with the author's experimental results. The accuracy

and efficiency of the method were examined through the

use of several examples. The results of those examinations

demonstrated that an approximation of four elements for a

member considering the method's assumptions gives

excellent results for the 3D analysis of semi-rigid and pin­

connected frames as well as for rigid frames.
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