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Heat transfer for modified power law fluids in concentric annuli

with heated moving cores

by

Ganbat DAVAA*, Toru SHIGECHI* * and Satoru MOMOKI* *

The fully developed laminar heat transfer of modified power-law fluids in a concentric annulus with

an axially moving core was analyzed taking into account the viscous dissipation of the flowing fluid. Ap

plying the shear stress described by the modified power-law model, the energy equation induding the vis

cous dissipation term is solved numerically for the thermal boundary conditions of constant heat flux at the

moving core with the fixed outer tube insulated. The effects of the radius ratio, the flow index, the relative

core velocity, dimensionless shear rate parameter and Brinkman number on the temperature distribution

and Nusselt numbers are discussed.

1 . Introduction

In the previous report (1), numerical solutions of the

momentum equation were obtained for fully developed

laminar flow of non-Newtonian fluids flowing in a con

centric annulus with an axially moving core. The shear

stress for non-Newtonian fluids was described by the

modified power law model.

In the this study, the fully developed laminar heat

transfer of non-Newtonian fluids in a concentric annu

lus with an axially moving core is studied. Applying

the shear stress described by the modified power-law

model and the fully developed velocity profile obtained

from the previous report< I) , the energy equation in

duding the viscous dissipation term is solved numeri

cally for the thermal boundary conditions of constant

heat flux at the moving core with the fixed tube insu

lated (Case A). The effects of the radius ratio, rela

tive velocity of the core, the flow index and dimension

less shear rate parameter on the velocity distribution

and friction factor are discussed.

Nomenclature

A area normal to the flow direction

Br Brinkman number

cp specific heat at constant pressure
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~ hydraulic diameter =2(Ro - R)

k thermal conductivity

m consistency index

n flow index

Nu Nusselt number

r radial coordinate

r* dimensionless radial coordinate =r/Dr,

R radius

q wall heat flux

T temperature

u axial velocity of the fluid

Urn average velocity of the fluid

U * dimensionless velocity =u/urn

U axial velocity of the moving core

U * dimensionless relative velocity of the moving

core = U/urn

V dimensionless parameter

z axial coordinate

Greek Symbols

a radius ratio =Ri IRo

f3 dimensionless shear rate parameter

TJa apparent viscosity

TJ: dimensionless apparent viscosity = TJa ITJ *
TJo viscosity at zero shear rate

TJ* reference viscosity
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Bulk temperature, Tb , is defined as
Ro

7' = ffA uTdA - 2 f T d
.L b- ffA udA - um(R~-Rn u r. r.

Ri

the energy equation and the boundary conditions may

be expressed in the dimensionless forms as

Fig. I Schematic of a concentric annulus with an

axially moving core

The average fluid velocity, Urn, is defined as
Ro

urn = rr (R{-Rn f u2rrrdr. (13)
R i

Introducing dimensionless temperature, 0, defined as

Dimensionless apparent viscosity, r;:, is defined as

f3 + I ~;: /n-I
r;a" = ----!2;- = ---'---='-------

1] f3+1
where

By integrating Eq.(l) with Eq.(2), dTb / dz is obtained

as:dTb = 2Ri qi [1+ i'rr(1;-)dr] (12)

dz pCpum (R~ - Rn Rj qj

(3)

(2)
at r = Ro

dimensionless temperature

transformed dimensionless radial

p density

r shear stress

o
e

r in Eq.(l) is the shear stress defined by

du
r = r;a-----;[;

where r;a is the apparent viscosity defined by

2. Analysis

The physical model for the analysis is shown in Fig.

1. The inner core tube is axially moving at a constant

velocity, U. The assumptions used in the analysis are:

I. The flow is incompressible, steady-laminar, and

fully developed, hydrodynamically and thermal

ly.

2. The fluid is non-Newtonian and the shear stress

may be described by the modified power-law

model (2), and physical properties are constant

except viscosity.

3. The body forces and axial heat conduction are

neglected.

Heat transfer

The energy equation together with the assumptions

above is written as

k ; ; [r ~; ] + r ( ~~ ) = pCp U drb . (1)

The velocity, u, and its gradient, ~; , have been ob

tained in the previous report(l).

The thermal boundary conditions:

Case A (constant heat flux at the moving core with

the fixed outer tube insulated):

coordinate = [2(1- a )r* - a] / (1- a)

Subscripts

b bulk

inner tube

o outer tube

_ !}o

r;a- I + ~I du II-n
m dr

for n< 1, (4)

Case A: {

AL =-1
dr"

AL= 0
dr"

at

at
(16)
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Nusselt number, NU;i, on the inner tube is calculated as

where dimensionless bulk temperature, th, is defined
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increases with an increase in Br; near the moving core,

but increases a little near the fixed tube. In the middle

section it decreases. For U* = 1.0, (() - Ob) in

creases with an increase in Br; near the fixed tube and

decreases near the moving core. It can be seen that

({) - ()b) decreases with an increase in U* near the

moving core. In this paper the typical results for

parameter Vand (() - ()b) have been illustrated for

a =0.5.

Nusselt numbers NUjj, are shown in Figs.4 (a), 4 (b)

and 4(c). NUjj decreases with an increase in Br; for

U* = -1.0 and U* = 0.0 and increases with an in

crease in Br; for U* = 1.0. These behaviors of Nusselt

numbers Nu;; can be explained by the viscous dissipa

tion effects on temperature difference ({) - ()b), as

mentioned above.

4. Conclusions

The fully developed laminar heat transfer of modi

fied power-law fluids in a concentric annulus with an

axially moving core was analyzed taking into account

the viscous dissipation of the flowing fluid. The effects

of the radius ratio, the flow index, the relative core

velocity, dimensionless shear rate parameter and

Brinkman number on the temperature distribution and

Nusselt numbers were studied.

In this report the heat transfer results for Case A

only are discussed. The counterpart for Case B will be

shown in another report.

(17)

(19)

(20)

1
2(1- a)

() = Tb k _ 8(1 - a) f *() *d *
b- D - 1+ U r rqi h a

V = { 80- a ) 2([f~ oj **(~) 2d *} *(1 + a) r 1ja dr* r u
~

- 7]: ( ~~= r· (18)

as

3. Results and discussion

The parameter V governs the heat transfer with vis

cous dissipation through Eq. (15). The behaviors of

parameter V are shown in Fig.2 for the nine combina

tions of n = 0.5, 1.0, 1.5 and U* = -1.0, 0.0, 1.0

respectively. Here V is shown as a function of trans

formed dimensionless radial coordinate ~ with f3 as a

parameter. e = 0 is the surface of moving inner core.

~ = 1 is the surface of fixed outer tube. For pseu

doplastic fluids (n < l) the extreme at f3 -0 cor

responds to a Newtonian fluid and that at f3 -= to a

power law fluid. For dilatant fluids (n> l) the ex

treme at f3 -= corresponds to a Newtonian fluid and

that at f3 -0 to a power law fluid. n = 1 is a Newtonian

fluid. The absolute values of V become larger near the

moving core with an increases n. However it become

smaller near the both tubes with an increase U*.

Temperature difference (() - Ob) for Case A is

shown in Fig.3 for f3 = 1.0. ~ = 0 corresponds to the

heated inner tube and ~ = 1 the insulated outer tube.

The temperature difference (0 - Db) increases with

an increase in Brj near the walls. But it decreases in the

middle section. This is attributed to that near the walls

the absolute values parameter V is large (see Fig.2)

and that the viscous dissipation effect is large. The

heat transfered axially by convection is large in the

middle section. For U* = - 1.0, (0 - Ob) greatly
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FigA (c) Nusselt numbers for U* = 1.0 (Case A)


