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Heat transfer for modified power law fluids in a concentric annulus
with a heated fixed outer tube

Ganbat DAVAA*, Toru SHIGECHI** and Satoru MOMOKI**

The present paper is an extension of the previous study on fully developed laminar heat transfer of
modified power-law fluids in a concentric annulus with an axially moving core and deals with the case
for the boundary conditions of constant heat flux at the fixed outer tube with the moving core insulated.
Applying the shear stress described by the modified power-law model, the energy equation including
the viscous dissipation term is solved numerically. The numerical results are presented graphically
for temperature profiles and Nusselt number at the outer tube with a number of parameters such as
viscous dissipation effect, rheological properties and the boundary conditions. The effects of radius
ratio, the flow index, the relative core velocity, the dimensionless shear rate parameter and Brinkman
number on the temperature distribution and Nusselt number are discussed.

1. Introduction

In the previous report(!), the numerical solu-
tions of the momentum equation were presented
for fully developed laminar flow of non-Newtonian
fluids flowing in a concentric annulus with an
axially moving core. The shear stress for non-
Newtonian fluids was described by the modified
power law model.

The problem of fully developed heat transfer to
non-Newtonian fluids in a concentric annulus with
an axially moving core has been studied numeri-
cally for the thermal boundary conditions of con-
stant heat flux at the moving core with the fixed
outer tube insulated(?). This case was referred to
as Case A.

In the present paper the results for the thermal
boundary conditions of constant heat flux at the
fixed outer tube with the moving core insulated
are reported. Applying the shear stress described
by the modified power-law model and the fully
developed velocity profile reported in the previ-
ous report(!), the energy equation including the
viscous dissipation term is solved numerically.
The effects of radius ratio, relative velocity of
the core, flow index and dimensionless shear
rate parameter and Brinkman number on the
temperature distribution and Nusselt number are
discussed.

Nomenclature

A area normal to the flow direction
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Br Brinkman number
¢p  specific heat at constant pressure
D, hydraulic diameter = 2(R, — R;)

k thermal conductivity
m  consistency index
n flow index

Nu  Nusselt number
radial coordinate
*  dimensionless radial coordinate = r/Dy,
R radius
q wall heat flux
T temperature
U axial velocity of the fluid
um average velocity of the fluid
u*  dimensionless velocity = u/um
U  axial velocity of the moving core
U* dimensionless relative velocity of the
moving core = U/up,
V' dimensionless parameter
z axial coordinate

Greek Symbols

o radius ratio = R;/R,

B dimensionless shear rate parameter

7.  apparent viscosity

n:  dimensionless apparent viscosity = 7n,/n*

7o  viscosity at zero shear rate

n*  reference viscosity

p density

T shear stress

6 dimensionless temperature

13 transformed dimensionless radial
coordinate = [2(1 — a)r* — a]/(1 — @)
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Subscripts

b  bulk

i inner tube

o outer tube

oo constant heat flux at the outer wall with
the inner insulated

2. Analysis

The physical model for the analysis is shown
in Fig.1. The inner core tube moves axially at a
constant velocity, U. The assumptions used in the
analysis are:

1. The flow is incompressible, steady-laminar,
and fully developed, hydrodynamically and
thermally.

2. The fluid is non-Newtonian and the shear
stress may be described by the modified
power-law model®, and the physical prop-
erties are constant except viscosity.

3. The body forces and axial heat conduction
are neglected.

Heat transfer

The energy equation together with the assump-
tions above is written as

1d [ dT du\ _ dT,

The thermal boundary conditions:
Case B (constant heat flux at the fixed outer tube

with the moving core insulated):
—k-‘zFT =0 at r = R;
k?—FT =gqg at r = R,

()

The velocity, u, and its gradient, d;, have been

evaluated and reported in the previous paper()).
7 in Eq.(1) is the shear stress defined by

du
T= "lad—r (3)
where 17, is the apparent viscosity defined as
N = nod i for n<1, (4)
14|
m |du|*!
= 14+ —|— 1. 5
T 770(+n0 I ) for n> (5)
Dimensionless apparent viscosity, 7, is defined as
1 .
n;;—"—::—ié—l_—n for n<1, (6)
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Fig.1 Schematic of a concentric annulus with an
axially moving core

. |n—1
T B+ %‘_"
nZE—n—;= A+ 1 for n>1, (7)
where
1;*=1T,B for n<1, (8)
. 1
n =n 1+E for n>1, (9)
ﬂ—@(u‘“)l—n (10)
- m Dh )

Bulk temperature, T}, is defined as

Ro
_ ffyuTdA _ 2
= ffAudA = (R?,—R?)}!uTrdr' (11)

By integrating Eq.(1) together with Eq.(2),
dT;,/dz is obtained as:

T;

dTy 2Rsq0 ;
—_— = 1+ ——5——| (12
The average fluid velocity, up,, is defined as
1 Ro
Un = ——5——5< | u2mrdr. (13)

Introducing a dimensionless temperature, 6, de-
fined as

6="T/laDn/K, (14)

the energy equation and the boundary conditions
may be expressed in the dimensionless forms as

1 d do 4
— * = —u" - V. 1
r* dr* (r dr*) (1+a)u +Bro-V. (1)
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_gro__=0 at 7 = sty
dé * 1 (16)
& =1 at ™ = 555
where Br, is Brinkman number defined as
_ nrud
BT = 17
o Dhqo ( )
and
1
=)
v )sa-e T *("“*)er* -
) (1+0) Ma \ dr*
Moa)
du* 2
- m (%) (18)

Nusselt number, Nu,,, on the outer wall is calcu-
lated as

[‘Io/(To — Tb)]Dh 1
= 1
where the dimensionless bulk temperature, 6y, is
defined as
_ Tk 8(1-a)

Nugo =

e
u* 6 r*dr*  (20)
peen]

3. Results and discussion

The effect of viscous dissipation on temperature
difference across the channel is demonstrated in
Figs.2(a), 2(b) and 2(c) for three different values
of U*. & = 0 corresponds to the insulated inner
tube and £ = 1 the heated outer tube. It is seen
that the results on Newtonian (n = 1.0) and non-
Newtonian fluids are similar qualitatively. The
temperature difference (@ — 6,) increases with an
increase in Br, near the walls at U* = - 1.0 and
U* = 0.0. But it decreases in the middle section.
This is attributed to that since the parameter V is
large near the walls, the effect of viscous dissipa-
tion is the strongest there. The heat transferred
axially by convection is large in the middle sec-
tion. For U* = - 1.0, (6 — 6,) greatly increases
with an increase in Br, near the moving core, but
increases slightly near the fixed tube. For U* =
1.0, (8 —6) increases with an increase in Br, near
the fixed tube and decreases near the moving core.
It can be seen that (6 — 6,) decreases with an in-
crease in U* near the moving core.

Nusselt numbers Nu,,, are shown in Figs.3(a),
3(b) and 3(c). Nue, decreases with an increase in

Br, for U* =-1.0, U* =0.0and U* = 1.0. These
behaviors of Nusselt number can be explained by
the viscous dissipation effects on temperature dif-
ference (6 — 6y,), as mentioned above. For the case
of U* = -1.0, it is seen that the relationship be-
tween Nuy, and B is not similar for the small
values of Brinkman number (Br, = 0 ~ 0.01)
for both fluids with n < 1 and » > 1. It may
be explained by how Br, influences on Nuy, and
the explanation has been reported in the previous
report(2).

4. Conclusions

The fully developed laminar heat transfer of
modified power-law fluids in a concentric annulus
with an axially moving core was analyzed taking
into account the viscous dissipation of the flow-
ing fluid. In this paper, the numerical solutions
for the thermal boundary condition of constant
heat flux at the fixed outer tube with the moving
core insulated have been reported. The effects of
radius ratio, flow index, relative core velocity, di-
mensionless shear rate parameter and Brinkman
number on the temperature distribution and Nus-
selt numbers have been studied.
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Fig.2(a) Dimensionless temperature difference for Case B (U* = - 1.0, 8 = 1.0)
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Fig.2(c) Dimensionless temperature difference for Case B (U* = 1.0, 8 = 1.0)
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Fig.3(a) Nusselt numbers for U* = - 1.0 (Case B)
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Fig.3(b) Nusselt numbers for U* = 0.0 (Case B)
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Fig.3(c) Nusselt numbers for U* = 1.0 (Case B)




