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Consideration is given to the effects of viscous dissipation and fluid axial heat conduction on the heat
transfer in the thermal entrance region of a laminar plane Couette-Poiseuille flow. The temperature
distribution of the fluid for -00 < Z < 00 is determined by solving the energy equation including
the viscous dissipation term and the fluid axial heat conduction term subject to the constant wall
temperature boundary condition. The results indicate that viscous heating has a strong effect where
velocity gradient is large and, because of the heat conducted upstream, transverse variation in fluid
temperature exists in the region z ::; 0 and the temperature profile at z = 0 is greatly affected by
fluid axial heat conduction. The effects of relative velocity, Brinkman number and Peclet number on
developing temperature distribution and Nusselt number at the walls are discussed.

1. Introduction

The problem of entrance region heat transfer
for non-Newtonian fluids in parallel plates with
a moving boundary has been studied numerically.
In this paper the results of the study on the devel
oping heat transfer subject to the thermal bound
ary condition of constant wall temperature are
presented and the attention has been focused on
the effects of viscous dissipation of the flowing
fluid and fluid axial heat conduction.

Without the fluid axial heat conduction term,
the familiar Graetz problem of laminar heat
transfer in a conduit is simplified from an elliptic
type problem to a parabolic one. The relative
importance of fluid axial heat conduction in
heat transfer depends on the magnitute of Peclet
number. The contribution of fluid axial heat
conduction plays a significant role in the analysis
and design of heat transfer equipment using
low Peclet number condition or low Prandtl
number fluids. Low Prandtl number fluid im
plies a fluid with a high thermal conductivity
(liquid metal fluids). For moderate values of
Prandtl number (gases) the development of
the velocity profile and the temperature profile
are similar. For very low Prandtl numbers
the temperature development is much faster
than that of the velocity profile. In this study
the flow is assumed to be fully developed hy
drodynamically and the conduit is considered
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in two semi-infinite regions -00 < z < 0 and
o ::; z < 00. The two semi-infinite regions are
necessary to be considered for the investigation
on the fluid axial heat conduction because in
reality the temperature profile of the fluid at
z = 0 (where heating at the wall commences)
is affected by fluid axial heat conduction from
downstream.

The problem is controlled by the magnitudes of:
Peclet number, Pe, which characterizes the ratio
of axial heat convection to axial heat conduction,
Brinkman number, Br, which represents the
ratio of overall dissipation to heat conduction,
dimensionless relative velocity of the moving
plate, U*, which is the ratio of the moving plate
velocity to the average velocity of the fluid and
rheological parameters such as flow index nand
dimensionless shear rate parameter f3.

Nomenclature

Br modified Brinkman number
cp specific heat at constant pressure,

[Jj (kg· K)]
Dh hydraulic diameter, Dh = 2£ [m]
E constant of the axial transformation
f friction factor
k thermal conductivity, [W j (m· K)]
L distance between the parallel plates, [m]
n flow index
NuNusselt number
Pe Peclet number
ReM modified Reynolds number
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modified Prandtl number
temperature, [K]
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U m == t Jo
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Te (0,0) Te Fixed wall

Z

Hydrodynamically Thermal
Te = const fully developed entrance L

flow region

Te Tlw= const Moving wall

y

Fig.l Geometrical configuration

tions above is written as

(I)

in 0 ~ y ~ L, and -00 ~ z ~ 00

(2)

(4)

(7)

(8)

(5)

(6)* z za
z =--=--2

PeDh urnDh

(J= T-Te

llw - Te

Urn

u
u* =

T=Te at y=O, O~z

T=7i.w at y=L, O~z

T=Te at y=O, z<O

T=Te at y=L, z<O

lim T=Te , O<y<L
z~-oo

lim T=Tfd' 0< Y < L.
Z~+OO

Nu == h~h

-k~1
huw = y=o

Tuw - Tb

From the solutions of Eq.{l) with Eq.(2), bulk
temperature and Nusselt number are obtained as

Tb = Jo
L

uTdy (3)
- JoLudy

Heat transfer coefficients are:

Where

The following dimensionless variables are intro
duced

Greek Symbols

f3 dimensionless shear rate parameter
"'a apparent viscosity, [kg/{m· s)]
.,,: dimensionless apparent viscosity == "'a/"'*
"'0 viscosity at zero shear rate, [kg/{m· s)]
.,,* reference viscosity, [kg/{m· s)]
p density, [kg/m3]

r shear stress, [N/m2]

e dimensionless temperature

Subscripts

I the first kind of the boundary condition
b bulk
e entrance or inlet
Jd fully developed
lw lower plate
uw upper plate

2. Analysis

The physical model for the analysis is shown in
Fig. I. The lower plate moves axially at a constant
velocity, U. The assumptions and conditions used
in the analysis are:

• The flow is incompressible, steady-laminar,
and fully developed hydrodynamically.

• The fluid is non-Newtonian and the shear
stress may be described by the modified
power-law model, and physical properties are
constant except viscosity.

• The body forces are neglected.

• The entering fluid temperature, Te , is uni
form at upstream infinity (z ---t -00) and the
upper wall temperature is equal to Te every
where. The lower plate is kept at a constant
temperature Te < l1w for 0 ~ z, whereas for
z < 0 the temperature is equal to Te •

The energy equation together with the assump- (9)



Effects of viscous dissipation and fluid axial heat conduction on entrance-region heat transfer in parallel plates 61

(10) employed by Verhoff and Fisher(l) as follows:

(11) (19)

(20)

* 1o$ y $ 2 and -0.5 $ Zt $ 0.5in

z* = E tan 1rZt or
1 z*

Zt = - arctan -
1r E

By introducing the transformed coordinate Zt, the
energy equation and the boundary conditions be
come

where

2
B * Urn

r/ = '" k(71w - Te )

With the substitution of the above quantities into
the dimensional formulation, the dimensionless
energy equation and boundary conditions are ob
tained as

80 820 1 820 (dU*) 2
U* 8z* = 8y*2 + Pe2 8z*2 + Brr"': dy* (12)

in 0 $ y* $ land - 00 $ z* $ 00

3. Numerical calculation

In order to convert the upstream and down
stream infinities, the dimensionless axial coordi
nate z* is transformed according to the relation

For infinitely large values of the axial distance
(z* ~ 00), the terms 882~ and ~ vanish. Thenz* oz~

the dimensionless temperature 0fd corresponding
to the boundary condition of constant wall tem
perature is the particular solution of the following
equation:

(22)

(23)

B = _1_ (cos2 nt )'
Pe2 1rE

0=0 at y* = 0, OS Zt S 0.5

0=1 at y* = 1/2, OS Zt $ 0.5

0=0 at y* = 0, -0.5 S Zt < 0

0=0 at y* = 1/2, -0.5 S Zt < 0

lim 0=0, 0< y* < 1/2
Zt-+-O.5

lim 0= Old, 0< y* < 1/2.
Zt-++O.5

Eqs.(14) and (20) along with the associated
boundary conditions have been solved numeri
cally. The solution zone was laid in the range of
o S y* S 0.5 and -0.5 S Zt S +0.5. The numer
ical approach employed for the system equations
was based on Gauss-Seidel method. An irregu
lar mesh system consisting of denser grids near
Zt = 0 was applied to allow more accurate repre
sentation of the fluid axial heat conduction effect.
The finest mesh was used next to Zt = 0 and as the
location of the node goes farther from the origin
mesh size is increased with a ratio t1zn / AZn -l.

Along the vertical axis the solution zone was di
vided evenly. The calculation has been carried
out with two steps in order to get the results with
high accuracy. First, the temperature at every
node within the whole calculation zone has been
calculated. Then by using the calculation results
of the temperature at z* = 0.0 and z* = 1.001,
more accurately calculated temperature profiles
at the thermally developing region have been ob
tained. In the first step the finest mesh spacing
was t1z = 1.059.10-7 and, mesh size was changed
with the ratio t1zn - 1 / AZn = 1.33 for Zt S 0 and

A = COS21rZt (u* + 1 Sin21rZt ) (21)
1rE Pe2 E

(14)

(16)

(18)

(17)1 80 I
(Ouw - Ob) By* y*=O

1 80 I
NUlw = (Olw - Ob) By* y*=1/2

Nuuw =

0=0 at y*=O, 0$ z*

0=1 at y*=1/2, o$ z*

0=0 at y*=O, z* < 0

0=0 at y*=1/2, z* < 0
(13)

lim 0=0, 0< y* < 1/2
z*-+-oo

lim O=Ofd' 0< y* < 1/2.
z*-++oo

{
0 = 1 at y* = 1/2,
o = 0 at y* = 0 (15)

The bulk temperature in the dimensionless form

[1/2
Ot> == 2 Jo u*Ody*

Then Nu at the walls are
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ti.zn / ti.zn - 1 = 1.33 for 0 ~ Zt. In the second step,
the finest mesh spacing was ti.z = 4.93.10-7 and
the ratio was ti.zn / ti.zn - 1 = 1.02. Constant of the
axial transformation, E, was chosen as 4.62 in the
both calculation steps.

4. Results and discussion

The temperature distribution of the fluid for
-00 < Z < 00 in parallel plates was calculated
for the boundary condition of constant wall tem
perature. The calculation has been carried out by
using the finite difference method. The range of
parameters considered are:

The relative velocity: U* = 0 and U* = 1
Brinkman number: 0.0, 0.05 and 0.1
Peclet number: 00, 100, 50, 20, 10, 5, 1.
The case with Br = 0.0 and Pe -+ 00 is the lim

iting case of neglected viscous dissipation and ax
ial heat conduction. It is worthwhile, to compare
the results for this particular case with those re
ported by Shah and London{3} whose predictions
were for st~tionary wall boundaries (U* = 0) and
by Shigechi and Araki(4) for the moving boundary
(U* = 1.0) case, respectively. Even at small val
ues of z*, it can be seen in Figs.2 and 3 that the
agreement is excellent.

It is also seen that Nu remains almost con
stant throughout the thermal entrance region if
Pe is small. The same trend was observed for
Newtonian and non-Newtonian fluid flows. This
behaviour is attributed to that the fluid temper
ature increases due to axial heat conduction (at
Z ~ 0) before the fluid enters into the heated wall
region. This effect of fluid axial heat conduction
is shown obviously in Figs.4 and 5 which illustrate
respectively developing temperature profiles of a
pseudoplastic fluid (n = 0.5 and f3 = 1) for the
cases of stationary walls and moving lower wall.

For Pe = 10 the fluid temperature increase is
occured at negative values of z*. For Pe -+ 00

even at z* = 0, where the step change in wall tem
perature, the dimensionless temperature of the
fluid is zero except the cases with considerable
viscous dissipation. This indicates the vanishing
influence of axial heat conduction in the fluid for
z* ~ 0 with an increasing Peclet number.

For Br = 0.0 fluid is considered as it experi
ences no gain of heat due to viscous dissipation.
For larger values of Br, it can be seen that the
dimensionless temperature of the fluid at z* ~ 0
deviates significantly from zero. This increase is
due to the contribution of viscous dissipation to
the flowing fluid.

Since the highest shear rate occurs near the sta
tionary wall, the effect of viscous dissipation is
most significant near the fixed wall and it is seen
that the temperature increase due to viscous dis
sipation is greater for U* = O.

For the case of the stationary walls, the increase
of temperature of the fluid caused by the effect of
fluid axial heat conduction and viscous dissipation
is higher than in the case of moving boundary. As
soon as z* becomes positive the fluid temperature
profile undergoes rather rapid change causing a
decrease in N u.

Figs. 6a through 8b present the combined ef
fects of viscous dissipation and fluid axial heat
conduction on bulk temperature ()b and Nu at the
walls for a pseudoplastic fluid whose n = 0.5 and
f3 = 1 for U* = 0 and U* = 1 respectively. With
increasing values of Peclet number, the values of
the bulk temperature and the Nusselt number ap
proach to those of the parabolic problem. The
figures indicate that Pe does not effect on Nu
at a location farther downstream and, Nu at the
walls remains fairly uniform throughout the ther
mal entrance region for smaller values of Pe. It
also can be explained that, the fluid temperature
increases due to fluid axial heat conduction.

With the neglected viscous dissipation N u at
the walls increases with a decrease in Pe num
ber. In comparing Nusselt number at the lower
plate ((),w = 1) in Figs. 6a, 6b, 7a, 7b, 8a
and 8b, it is observed that the differences among
the three different degrees of viscous dissipation
(Brl = 0.0;0.05 and 0.1) are negligible in the
thermal entrance region for both U* = 0 and 1
while N Ulw decreases with an increase in BrI in
the fully developed region for U*=O. For Nusselt
number at the upper wall ((),w = 0) this behav
ior is complicated. The curves for N U uw do not
change monotonically along the axial distance in
the thermal entrance region.

5. Conclusions

The problem of Couette-Poiseuille laminar flow
in the thermal entrance region including viscous
dissipation of the flowing fluid and fluid axial heat
conduction with constant wall temperature con
dition is analyzed by considering an infinite axial
domain.

The results are presented graphically in dimen
sionless form and the effects of moving boundary,
fluid axial heat conduction and viscous dissipation
are mainly demonstrated.

An inspection of the temperature profile deve-
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lopment reveals that the fluid temperature in
creases at z ~ 0 due to fluid axial heat conduc
tion and viscous heating. Including the effect of
fluid axial heat conduction in the analyses results
in higher values for the Nusselt number at the
heated wall in the thermal region than in the case
without axial heat conduction for a given z.

It may be concluded that the effect of fluid axial
heat conduction is negligible only at high Pe. For
moderate values of Pe number, fluid axial heat
conduction is important in the thermal entrance
region. The effect of Br is stronger on Nusselt
number at the unheated, fixed wall.

For thermally developing flow when Br =1= 0, it
is shown that the viscous dissipation effect is dif
ferent depending on U·. N Ulw at the the moving
heated wall (fJ,w = 1) is little sensitive to Br. It
was found that the curves for N Uuw at the upper
wall (fJuw = 0) do not change monotonically along
the axial distance particularly in the thermally de
veloping region.

The counterpart for the second kind of the
boundary condition will be given in the next re
port.
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