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Effects of viscous dissipation and fluid axial heat conduction on
entrance-region heat transfer in parallel plates

(Part I: The thermal boundary condition of the first kind)

by

Odgerel JAMBAL*, Toru SHIGECHI**, Satoru MOMOKI** and Ganbat DAVAA*

Consideration is given to the effects of viscous dissipation and fluid axial heat conduction on the heat
transfer in the thermal entrance region of a laminar plane Couette-Poiseuille flow. The temperature
distribution of the fluid for —co < z < oo is determined by solving the energy equation including
the viscous dissipation term and the fluid axial heat conduction term subject to the constant wall
temperature boundary condition. The results indicate that viscous heating has a strong effect where
velocity gradient is large and, because of the heat conducted upstream, transverse variation in fluid
temperature exists in the region z < 0 and the temperature profile at z = 0 is greatly affected by
fluid axial heat conduction. The effects of relative velocity, Brinkman number and Peclet number on
developing temperature distribution and Nusselt number at the walls are discussed.

1. Introduction

The problem of entrance region heat transfer
for non-Newtonian fluids in parallel plates with
a moving boundary has been studied numerically.
In this paper the results of the study on the devel-
oping heat transfer subject to the thermal bound-
ary condition of constant wall temperature are
presented and the attention has been focused on
the effects of viscous dissipation of the flowing
fluid and fluid axial heat conduction.

Without the fluid axial heat conduction term,
the familiar Graetz problem of laminar heat
transfer in a conduit is simplified from an elliptic
type problem to a parabolic one. The relative
importance of fluid axial heat conduction in
heat transfer depends on the magnitute of Peclet
number. The contribution of fluid axial heat
conduction plays a significant role in the analysis
and design of heat transfer equipment using
low Peclet number condition or low Prandtl
number fluids. Low Prandtl number fluid im-
plies a fluid with a high thermal conductivity
(iquid metal fluids). For moderate values of
Prandt] number (gases) the development of
the velocity profile and the temperature profile
are similar. For very low Prandtl numbers
the temperature development is much faster
than that of the velocity profile. In this study
the flow is assumed to be fully developed hy-
drodynamically and the conduit is considered
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in two semi-infinite regions —o0o < z < 0 and
0 < z < 0o. The two semi-infinite regions are
necessary to be considered for the investigation
on the fluid axial heat conduction because in
reality the temperature profile of the fluid at
z = 0 (where heating at the wall commences)
is affected by fluid axial heat conduction from
downstream.

The problem is controlled by the magnitudes of:
Peclet number, Pe, which characterizes the ratio
of axial heat convection to axial heat conduction,
Brinkman number, Br, which represents the
ratio of overall dissipation to heat conduction,
dimensionless relative velocity of the moving
plate, U™, which is the ratio of the moving plate
velocity to the average velocity of the fluid and
rheological parameters such as flow index n and
dimensionless shear rate parameter 3.

Nomenclature
Br modified Brinkman number
cp specific heat at constant pressure,
[3/ (ks K)]
Dy  hydraulic diameter, Dy = 2L [m]
E constant of the axial transformation
f friction factor
k thermal conductivity, [W / (m-:K)]
L distance between the parallel plates, [m]
n flow index
Nu  Nusselt number
Pe Peclet number
Reys modified Reynolds number
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Pry modified Prandt]l number
T temperature, [K]
u fully developed velocity profile, [m/s]
um  average velocity of the fluid

Um = £ [y udy [m/s]
u* dimensionless velocity = u/um
U axial velocity of the moving plate, [m/s]
U dimensionless relative velocity of the
moving plate = U/up,

y coordinate normal to the fixed plate, [m]
y*  dimensionless coordinate
z axial coordinate, [m]
z* dimensionless axial coordinate
2 transformed axial coordinate
Greek Symbols
B dimensionless shear rate parameter
Na apparent viscosity, [kg/(m-s)]
Ta dimensionless apparent viscosity = n,/n*
7o viscosity at zero shear rate, [kg/(m- s)]
n* reference viscosity, [kg/(m- s)]
p  density, [kg/m’]
T shear stress, [N/m?]
6 dimensionless temperature
Subscripts
I the first kind of the boundary condition
b bulk

e entrance or inlet
fd fully developed
lw - lower plate

uw upper plate

2. Analysis

The physical model for the analysis is shown in
Fig.1. The lower plate moves axially at a constant
velocity, U. The assumptions and conditions used
in the analysis are:

o The flow is incompressible, steady-laminar,
and fully developed hydrodynamically.

e The fluid is non-Newtonian and the shear
stress may be described by the modified
power-law model, and physical properties are
constant except viscosity.

e The body forces are neglected.

e The entering fluid temperature, T, is uni-
form at upstream infinity (2 & —o00) and the
upper wall temperature is equal to 7, every-
where. The lower plate is kept at a constant
temperature T, < T}, for 0 < 2, whereas for
z < 0 the temperature is equal to 7.

The energy equation together with the assump-
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y

Fig.1 Geometrical configuration

tions above is written as

oT [a?z* a?z*] a[d_ur

pc,,u,-a;:k 53—174-'5'; dy (1)

in 0<y<L,and —oo <2< 00

[ T=T, at y=0, 0<z2
T=T,, at y=L, 0<z2
T=T, at y=0, z2<0
\ | (2)
T=T, at y=L, 2<0
. Bx_noo T=T.,, 0<y<lL
‘ zggloo T=Tyq4, 0<y<L.

From the solutions of Eq.(1) with Eq.(2), bulk
temperature and Nusselt number are obtained as

L
7y = di T @
fo udy
Nu= hDn (4)

k
Heat transfer coefficients are:

ar ar
—kay ksy

uw _—Tuw — Tb hlw Tl_w — Tb (5)

The following dimensionless variables are intro-
duced

. _ Y s__%2 _ 2
v = Dh # PeDh umD,% (6)
l1-n

L = M0 (Um

= Um b m (Dh) (7)
T-T,
0=—"-° 8
Tiw — T & ®
Where
U D

Pe = Rey - Pry = 9)

[0 3
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pum Dy

= %N
7]* PTM A

(10)

RCM

U,

BTI = k(le “Te)

(11)
With the substitution of the above quantities into
the dimensional formulation, the dimensionless
energy equation and boundary conditions are ob-
tained as

00 9% 1 9%

du* 2
* e—
Yo T Oy*? + Pe2 92*2 +Bring (dy*) (12)

in Ogy*géand—oogz*goo

[ 6=0 at y*=0, 02
=1 at y*=1/2, o<z
0=0 at y*=0, 2*<0

3 . (13)
6=0 at y*=1/2, 2* <0
lim 0=0, 0<y*<1/2
z*——00
| z‘gr-?oo 0=0sq4, 0<y*<1/2.

For infinitely large values of the axial distance
(2* — 00), the terms 5‘9;2% and 3‘9}. vanish. Then
the dimensionless temperature 674 corresponding
to the boundary condition of constant wall tem-
perature is the particular solution of the following

equation:

8% . [du*\?

5'!'/'*_2 = ’Brlna (dy*) (14)
0 =1 at y* = 1/2,
{0=0aty"’=0 (15)

The bulk temperature in the dimensionless form

1/2
0, = 2 / u*0dy* (16)
0

Then Nu at the walls are

1 00
Nuuw T (ou.w - Bb) 55: y*=0 (17)
1 00
Nupy = ——F—~— 18
lw (olw - 0()) ay* y*=1/2 ( )

3. Numerical calculation

In order to convert the upstream and down-
stream infinities, the dimensionless axial coordi-
nate 2* is transformed according to the relation

employed by Verhoff and Fisher(!) as follows:

1 z*
7= - arctan 5 (19)

Zz* = FEtanmz or
By introducing the transformed coordinate 2;, the
energy equation and the boundary conditions be-
come

9 3% 9% du*\ 2
= —+ Ba—zg + T]aB’I'I (E:;j—;) (20)

9z oy*’
. « 1
in 0<y Séand~0.5§zt$0.5
where
cos? mz, . 1 sin2wz
= () @
2
1 [cos?nz
B= Pe? ( «FE ) (22)
(0=0 at y*=0, 0<2%<05
0=1 at y*=1/2, 0<2<05
=0 at y*=0, -05<%<0
] 0=0 at y*=1/2, -05<z<0 (23)
. _ *
ztgglo.s 0=0, 0<y*<1/2
{ zc—l-}l-fI-IO.S 0= 0,4, O<y*< 1/2.

Egs.(14) and (20) along with the associated
boundary conditions have been solved numeri-
cally. The solution zone was laid in the range of
0<y*<0.5and -0.5 < z < 4+0.5. The numer-
ical approach employed for the system equations
was based on Gauss-Seidel method. An irregu-
lar mesh system consisting of denser grids near
z¢ = 0 was applied to allow more accurate repre-
sentation of the fluid axial heat conduction effect.
The finest mesh was used next to z; = 0 and as the
location of the node goes farther from the origin
mesh size is increased with a ratio Az,/Az,_;.
Along the vertical axis the solution zone was di-
vided evenly. The calculation has been carried
out with two steps in order to get the results with
high accuracy. First, the temperature at every
node within the whole calculation zone has been
calculated. Then by using the calculation results
of the temperature at 2* = 0.0 and 2* = 1.001,
more accurately calculated temperature profiles
at the thermally developing region have been ob-
tained. In the first step the finest mesh spacing
was Az = 1.059-10~7 and, mesh size was changed
with the ratio Az,_1/Az, = 1.33 for 2, < 0 and
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Azp/Azy1 = 1.33 for 0 < 2. In the second step,
the finest mesh spacing was Az = 4.93-10~7 and
the ratio was Az, /Az,—; = 1.02. Constant of the
axial transformation, F, was chosen as 4.62 in the
both calculation steps.

4. Results and discussion

The temperature distribution of the fluid for
—00 < z < oo in parallel plates was calculated
for the boundary condition of constant wall tem-
perature. The calculation has been carried out by
using the finite difference method. The range of
parameters considered are:

The relative velocity: U* =0and U* =1

Brinkman number: 0.0, 0.05 and 0.1

Peclet number: oo, 100, 50, 20, 10, 5, 1.

The case with Br = 0.0 and Pe — oo is the lim-
iting case of neglected viscous dissipation and ax-
ial heat conduction. It is worthwhile, to compare
the results for this particular case with those re-
ported by Shah and London(® whose predictions
were for stationary wall boundaries (U* = 0) and
by Shigechi and Araki(¥) for the moving boundary
(U* = 1.0) case, respectively. Even at small val-
ues of z*, it can be seen in Figs.2 and 3 that the
agreement is excellent.

It is also seen that Nu remains almost con-
stant throughout the thermal entrance region if
Pe is small. The same trend was observed for
Newtonian and non-Newtonian fluid flows. This
behaviour is attributed to that the fluid temper-
ature increases due to axial heat conduction (at
z < 0) before the fluid enters into the heated wall
region. This effect of fluid axial heat conduction
is shown obviously in Figs.4 and 5 which illustrate
respectively developing temperature profiles of a
pseudoplastic fluid (n = 0.5 and 8 = 1) for the
cases of stationary walls and moving lower wall.

For Pe = 10 the fluid temperature increase is
occured at negative values of z*. For Pe — oo
even at 2* = 0, where the step change in wall tem-
perature, the dimensionless temperature of the
fluid is zero except the cases with considerable
viscous dissipation. This indicates the vanishing
influence of axial heat conduction in the fluid for
z* < 0 with an increasing Peclet number.

For Br = 0.0 fluid is considered as it experi-
ences no gain of heat due to viscous dissipation.
For larger values of Br, it can be seen that the
dimensionless temperature of the fluid at 2* < 0
deviates significantly from zero. This increase is
due to the contribution of viscous dissipation to
the flowing fluid.

Since the highest shear rate occurs near the sta-
tionary wall, the effect of viscous dissipation is
most significant near the fixed wall and it is seen
that the temperature increase due to viscous dis-
sipation is greater for U* = 0.

For the case of the stationary walls, the increase
of temperature of the fluid caused by the effect of
fluid axial heat conduction and viscous dissipation
is higher than in the case of moving boundary. As
soon as z* becomes positive the fluid temperature
profile undergoes rather rapid change causing a
decrease in Nu.

Figs. 6a through 8b present the combined ef-
fects of viscous dissipation and fluid axial heat
conduction on bulk temperature 8, and Nu at the
walls for a pseudoplastic fluid whose n = 0.5 and
B =1for U* =0 and U* = 1 respectively. With
increasing values of Peclet number, the values of
the bulk temperature and the Nusselt number ap-
proach to those of the parabolic problem. The
figures indicate that Pe does not effect on Nu
at a location farther downstream and, Nu at the
walls remains fairly uniform throughout the ther-
mal entrance region for smaller values of Pe. It
also can be explained that, the fluid temperature
increases due to fluid axial heat conduction.

With the neglected viscous dissipation Nu at
the walls increases with a decrease in Pe num-
ber. In comparing Nusselt number at the lower
plate (6, = 1) in Figs. 6a, 6b, 7a, 7b, 8a
and 8b, it is observed that the differences among
the three different degrees of viscous dissipation
(Brr = 0.0;0.05 and 0.1) are negligible in the
thermal entrance region for both U* = 0 and 1
while Nuy, decreases with an increase in Br; in
the fully developed region for U*=0. For Nusselt
number at the upper wall (6, = 0) this behav-
ior is complicated. The curves for Nuy, do not
change monotonically along the axial distance in
the thermal entrance region.

5. Conclusions

The problem of Couette-Poiseuille laminar flow
in the thermal entrance region including viscous
dissipation of the flowing fluid and fluid axial heat
conduction with constant wall temperature con-
dition is analyzed by considering an infinite axial
domain.

The results are presented graphically in dimen-
sionless form and the effects of moving boundary,
fluid axial heat conduction and viscous dissipation
are mainly demonstrated.

An inspection of the temperature profile deve-
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lopment reveals that the fluid temperature in-
creases at z < 0 due to fluid axial heat conduc-
tion and viscous heating. Including the effect of
fluid axial heat conduction in the analyses results
in higher values for the Nusselt number at the
heated wall in the thermal region than in the case
without axial heat conduction for a given z.

It may be concluded that the effect of fluid axial
heat conduction is negligible only at high Pe. For
moderate values of Pe number, fluid axial heat
conduction is important in the thermal entrance
region. The effect of Br is stronger on Nusselt
number at the unheated, fixed wall.

For thermally developing flow when Br # 0, it
is shown that the viscous dissipation effect is dif-
ferent depending on U*. Nuy, at the the moving
heated wall (6;,, = 1) is little sensitive to Br. It
was found that the curves for Nu,,, at the upper
wall (64w = 0) do not change monotonically along
the axial distance particularly in the thermally de-
veloping region.

The counterpart for the second kind of the
boundary condition will be given in the next re-
port.

Fig.8b 8, and Nu (U* = 1)
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