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Laminar heat transfer in concentric annuli with viscous dissipation
and fluid axial heat conduction
(Part I: Thermal boundary condition of the first kind)

by

Ganbat DAVAA*, Toru SHIGECHI**, Satoru MOMOKI** and Odgerel JAMBAL*

The present numerical study investigates the influence of fluid axial heat conduction, viscous dissi-
pation, relative velocity of the core and radius ratio on laminar heat transfer in a concentric annular
duct with a moving boundary. The solution is based on coordinate transformation of the elliptic energy
equation. The temperature distributions of non-Newtonian fluids for infinite extend (—o0o < 2z < ©0)
were determined by solving the energy equation including the viscous dissipation term and the fluid
axial heat conduction term subject to the constant wall temperature boundary condition. The effects
of radius ratio, relative core velocity, flow index, dimensionless shear rate parameter, Brinkman num-
ber and Peclet number on the developing temperature distribution and Nusselt number at the walls

are discussed.

1. Introduction

We consider thermally developing and hy-
drodynamically developed laminar flow of non-
Newtonian fluids flowing in annuli with axially
moving cores. The emphasis in this study is on in-
vestigating the effects of viscous dissipation, fluid
axial heat conduction, relative velocity of the mov-
ing core, flow index and the radius ratio of the
annuli on the developing heat transfer.

In the previous study, the developing heat
transfer problem was analyzed by neglecting fluid
axial heat conduction effects. Without the fluid
axial heat conduction term, the familiar Graetz
problem of laminar heat transfer in a conduit
is simplified from an elliptic type problem to
a parabolic one. In the previous work(”, the
parabolic energy equation including the viscous
dissipation term was solved numerically for the
first and second kinds of thermal boundary condi-
tions by applying velocity profiles presented in the
previous report(® for modified power-law fluids.

It is the aim of this work to clarify the com-
bined effects of viscous dissipation, fluid axial
heat conduction, relative velocity of the core, flow
index and radius ratio on the developing thermal
entrance heat transfer of non-Newtonian fluids.
In this paper the results of the study on the
developing heat transfer subject to the thermal
boundary condition of constant wall temperature
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are presented. The effect of viscous dissipation is
estimated by the magnitude of Brinkman number.
Peclet number is introduced to serve as a control-
ling index that indicates the effect of fluid axial
heat conduction. Therefore the problem is con-
trolled by the magnitudes of Brinkman number,
which represents the ratio of overall dissipation to
wall heat transfer, Peclet number, which charac-
terizes the ratio of axial heat convection to axial
heat conduction, dimensionless relative velocity of
the moving core, which is the ratio of the moving
core velocity to the average velocity of the fluid,
radius ratio and rheological parameters such as
flow index and dimensionless shear rate parame-
ter.

In this study, the conduit is considered in two
semi-infinite regions —oco < z < 0 and 0 < z < 0.
The two semi-infinite regions are necessary to be
considered for the investigation on the fluid ax-
ial heat conduction because in reality the temper-
ature profile of the fluid at z = 0 (where wall
heating commences) is affected by fluid axial heat
conduction from downstream.

Nomenclature
Br Brinkman number
cp specific heat at constant pressure,
[J/(kg- K)]
Dy, hydraulic diameter = 2(R, — R;), [m]
F constant of the axial transformation
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heat transfer coefficient, [W/(m?K)]
thermal conductivity, [W/(m- K)]
consistency index, [N -s"/m?|

flow index

Nusselt number

Peclet number

modified Prandtl number

radial coordinate, [m]

dimensionless radial coordinate = r/Dy,
radius, [m]

modified Reynolds number
temperature, [K]

velocity of the fluid, [m/s]

average velocity of the fluid, [m/s]
dimensionless velocity = u/um

axial velocity of the moving core, [m/s]
dimensionless relative velocity of the
moving core = U/up,

axial coordinate, [m]

dimensionless axial coordinate

= z/(PeDy)

transformed axial coordinate

Greek Symbols

o radius ratio = R;/R,

¢, dimensionless shear rate parameter

Na apparent viscosity, [kg/(m-s)]

m dimensionless apparent viscosity = 7,/n*

o viscosity at zero shear rate, [kg/(m-s)]

n* reference viscosity, [kg/(m-s)]

p density, [kg/m?3]

0 dimensionless temperature

¢ transformed dimensionless radial

coordinate = [2(1 — a)r* — a]/(1 — a)

Subscripts

b bulk.

e entrance

fd fully developed

i inner tube or core

0 outer tube
2. Analysis

The physical model for the analysis is shown in
Fig.1. The core tube moves axially at a constant
velocity, U. The assumptions and conditions used
in the analysis are:

o The flow is incompressible, steady-laminar,
and fully developed hydrodynamically.

e The fluid is non-Newtonian and the shear
stress may be described by the modified
power-law model® | and physical properties
are constant except viscosity.

Te Te Fixed tube
4
T" Thermal
L ‘f]%mnlan entrance Tea=Hr.2)
uid flow region l
e | s
T. =const ¢y L o
_______ ’ Tz $50

Fig.1 Schematic of a concentric annulus with an

axially moving core

e The body forces are neglected.

e The entering fluid temperature, T,
form at upstream infinity (z — —00)

1S uni-
and the

outer tube wall temperature is equal to T,
everywhere. The core is kept at a constant

temperature T, < T for 0 < z, whe
z < 0 the temperature is equal to 7.

reas for

The energy equation together with the assump-

tions above is written as

k _]1_8_< Q_I:>+__af_j: + (d_u)g— ?_7_1 (1)
ror \' or 02 | T\ Gr ) T PG,

in RBj<r<R, and —-o0<z<
T=T, at r=R; 0<z
T=1T, at r= R, 0<z2
T=T, at r = R; z2<0
T=T, at r= R, 2 <0
I'=T, at R <r<R, z-—-—
T=T;q at Ri<r<R, z2—+

o0

(2)

o0

o

The velocity, u, and its gradient, %%, have been

obtained in the previous report 2).
Bulk temperature and Nusselt number are

Heat transfer coefficients are:

oT oT
—kor kor
r=R; r=R,
PRl § h. = ————0
M= I

defined

(3)
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The following dimensionless variables are intro-
duced

e — * = 6
"= Dn “ = PeDy (6)
L g=1 (l’&)ln (7)
“= Uy T m \ Dy
R; T-T,
o = R—O 0= 7.1 —Te (8)
where
Pe = Rey - Pry 9)
Rey = PumDn Pry = 21 (10)
n* k
2
u
Br=np"—2-_ 11
TE@-1) (1)

With the substitution of the above quantities into
the dimensional formulation, the dimensionless
energy equation and boundary conditions are ob-
tained as

li(*80)+ 1 0% + Br *(du*)Z
o \" o) " Pe? 927 Mo\ ar+
Rl
= u* 12
v oz* (12)

=1 at r*:zl‘ia) 0<2*
=0 at T*:ﬂ11—_a7 0<2*
=0 at Tt = 5t z2* <0 13)
=0 at r*=211_a z* <0
=0 at Q(I‘ia)gr*sz(l_@ 2t =—00

{ 0 =07 at 2(1‘_"_0‘)57“*52(11_(1) Z¥ =400

For infinitely large values of the axial distance
(z* — o0), the terms ;;92 and 3‘1—9. vanish. Then
the dimensionless temperature 6, corresponding
to the boundary condition of constant wall tem-
perature is the particular solution of the following

equation:

1 0 *Bﬁdf _ * du* 2
F@w(Tﬁﬁ)“‘B”%(mJ 14

=0 at r = i=a

Bulk temperature in the dimensionless form:

8(1 T
Oy = (T-EE@ u*or* dr* (16)

a
2(1—a)

Then Nu at the walls are

1 00
Nuyj= -
Yo an
2(1—a)
1 00
Nuyy= ——-v— 18
(6o — Bp) Or*| (18)
2(1—a)

3. Numerical calculation

In order to convert the upstream and down-
stream infinities, the dimensionless axial coordi-
nate 2* is transformed according to the relation
employed by Verhoff and Fisher® as follows:

*

2* = Etan(ﬂ'zt) or z= ; arctan E (19)

By introducing the transformed coordinate z;, the
energy equation and the boundary conditions be-
come

2 2 x 2
0°0 0°0 169+B-Z(du> A89

o T Baz Y g i) = 4o
(20)
' @ e ! d
n —  <7r*<_—_ an
T I Te g
-0.5 S Zt S 0.5
where
cos?(mz) 1 sin(27z)
A= ———— |u" + ————=
nE [“ P2 E } (21)
po L [eor)]” (22)
~ Pe? wE
=1 at ™ = 5at, 0<2%<05
=0 at r*:le_a), 0<% <05
0=0 at ™ =g, —05<z<0

6=0 at T*:Xl—l_—ay, —05S2t<0

=0 at 2(1‘3‘_a) <r*< 2(11_a) z* = -0.5

| 0 =10 at 2(1‘1@ <r*< 2(1£a) z*=0.5
(23)
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Equations (14) and (20) along with the associ-
ated boundary conditions have been solved nu-
merically. The solution zone was laid in the range
of a/[2(1 — a)] < r* < 1/[2(1 — )] and —0.5 <
2z < +0.5. The numerical approach employed for
the system equations was based on Gauss-Seidel
method. An irregular mesh system consisting of
denser grids near z; = 0 was applied to allow more
accurate representation of the fluid axial heat con-
duction effect. The finest mesh was used next to
2z = 0 and as the location of the node goes far-
ther from the origin, mesh size is increased with a
ratio Az, /Az,—;. Along the radial axis the solu-
tion zone was divided evenly. The calculation has
been carried out with two steps in order to get the
results with a high accuracy. First, the temper-
ature at every node within the whole calculation
zone in which z* ranges in between —oo to 400
has been calculated. Then by using the calcula-
tion results of the temperature at z* = 0.0 and
z* = 1.001, more accurately calculated temper-
ature profiles at the thermally developing region
have been obtained. In the first step the finest
mesh spacing was Az = 1.059-1077 and, mesh size
was changed with the ratio Az, _;/Az, = 1.33 for
2z < 0 and Az,/Az,—1 = 1.33 for 0 < 2. In the
second step, the finest mesh spacing was Az =
4.93-10~7 and the ratio was Az, /Az,; = 1.02.
Constant of the axial transformation, E, was cho-
sen as 4.62 in the both calculation steps.

4. Results and discussion

Temperature distributions of non-Newtonian
fluids for —co < z < oo in concentric annuli with
moving cores were calculated for the boundary
condition of constant wall temperature. The cal-
culation has been carried out by using the finite
difference method. The following range of param-
eters are considered for Newtonian (n = 1), pseu-
doplastic (n = 0.5, 3 = 1) and dilatant (n = 1.5, 3
= 1) fluids in order to study the effects of viscous
dissipation, fluid axial heat conduction, geometry
of the annuli, and moving boundary:

Brinkman number: 0.0, 0.01, 0.05 and 0.1

Peclet number: oo, 100, 50, 20, 10, 5 and 1

Radius ratio: 0.2, 0.5 and 0.8

The relative velocity: 0 and 1.

The case with Br = 0.0 and Pe — oo is the
limiting case of neglected viscous dissipation and
axial heat conduction. It is worthwhile, to com-
pare the results of Newtonian fluids whose predic-
tions were for stationary wall boundaries®) (U*
= 0) and by Shigechi and Araki(® for the mov-

ing boundary (U* = 1.0) case, respectively. It can
be seen in Fig.2 even at small values of z*, the
agreement is excellent.

It is also seen that, the change in Nu at the
thermal entrance region (for small z*) becomes
rather not rapid if Pe is small. The same trend
was observed for Newtonian and non-Newtonian
fluid flows. This behavior is attributed to that
the fluid temperature increases due to axial heat
conduction (at z < 0) before the fluid enters into
the heated wall region. This effect of fluid axial
heat conduction is shown obviously in Figs.3 and
4 which illustrate respectively developing temper-
ature profiles of a pseudoplastic fluid (o = 0.5, n
= 0.5 and § = 1) for cases of the stationary core
and the moving core.

For Pe = 10 the fluid temperature increase is
occurred at negative values of z*. For Pe — oo
even at z* = 0, where the step change in wall tem-
perature, the dimensionless temperature of the
fluid is zero except the cases with considerable
viscous dissipation. This indicates the vanishing
influence of axial heat conduction in the fluid for
z* < 0 with an increasing Peclet number.

For Br = 0.0 fluid is considered as it experi-
ences no gain of heat due to viscous dissipation.
For larger values of Br, it can be seen that the
dimensionless temperature of the fluid at z* < 0
deviates significantly from zero. This increase is
due to the contribution of viscous dissipation to
the flowing fluid.

Since the highest shear rate occurs near the sta-
tionary tube, the effect of viscous dissipation is
most significant near the fixed tube and it is seen
that the temperature increase due to viscous dis-
sipation is greater for U* = 0.

For the case of the stationary core, the increase
of temperature of the fluid due to fluid axial heat
conduction and viscous dissipation is higher than
in the case of moving boundary. It is seen as soon
as z* becomes positive the fluid temperature pro-
file undergoes rather rapid change causing a de-
crease in Nu at the core.

Figures 5 and 6 compare the profiles of bulk
temperature and Nusselt numbers at the tubes for
the cases of the stationary core and the moving
core. The presented profiles are the calculation
results for various Peclet number with Br = 0.1.
The fluids under consideration are a pseudoplas-
tic fluid and a dilatant fluid respectively in these
figures. The radius ratio of the annulus under
consideration is 0.5. It can be observed that the
asymptotic Nusselt number profiles are identical
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Fig.2 6y and Nu for a Newtonian fluid, Br = 0.0 (U* = 0 and U* = 1)

for all Pe values. The figures indicate that Pe
does not effect on Nu at a location farther down-
stream and, Nu at the tubes remains fairly uni-
form throughout the thermal entrance region spe-
cially for small 2* if Pe is moderate. It also can
be explained that, the fluid temperature increases
due to fluid axial heat conduction. Including fluid
axial heat conduction causes an increase in Nus-
selt number at the core tube whose temperature
is higher than the entering fluid temperature. For
a specified axial position Nusselt number at the

moving core (U* = 1) is larger than the corre-
sponding Nusselt number at the fixed core (U* =
0) with the given Brinkman number and Peclet
number if the fluid is a pseudoplastic fluid.

In view of combined effects of viscous dissipa-
tion, fluid axial heat conduction, radius ratio, flow
index and the relative velocity of the moving core
on the developing heat transfer, it is desirable to
present the heat transfer results for the case of the
stationary core and the moving core with the var-
ious corresponding parameters. From Figs.7 and
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Fig.5 0, and Nu for a pseudoplastic fluid, Br = 0.1 (U* = 0 and U* = 1)

8, one can see the effects of Br and Pe on Nusselt
number for a pseudoplastic fluid and a dilatant
fluid respectively. From these figures it is seen,
the effect of fluid axial heat conduction accounts
for the change in the curve shape in the thermal
entrance region. For the stationary core case, Br
has a strong effect on Nu in the fully developed
region. But Nusselt curves at the core are almost
identical for the equal Pe values for the different
values of Brinkman number if U* = 1. For U* =
0, Nusselt number at the core decreases with an

increase in Brinkman number in the fully devel-
oped region.

In order to study the radius ratio effects, heat
transfer results are shown in Fig.9. The general
behavior was quite similar for different fluids and
for various Pe. Therefore as an example, the cal-
culation results for a pseudoplastic fluid are shown
for Pe = 10. The results indicate that the radius
ratio a = 0.2 is superior to o = 0.5 and o = 0.8
from the view point of heat transfer at the core
under the same conditions.
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Fig.6 6, and Nu for a dilatant fluid, Br = 0.1 (U* = 0 and U* = 1)

5. Conclusions

The problem of laminar heat transfer in the
thermal entrance region including viscous dissi-
pation of the flowing non-Newtonian fluids and
fluid axial heat conduction is analyzed by consid-
ering an infinite axial domain with constant wall
temperature condition. The results are presented
graphically in dimensionless form and the effects
of moving boundary, fluid axial heat conduction,
viscous dissipation, flow index and radius ratio are
mainly demonstrated.

An inspection of the temperature profile de-
velopment reveals that the fluid temperature in-
creases at z < 0 due to fluid axial heat conduction
and viscous heating. Including the effect of fluid
axial heat conduction in the analyses results in
higher values for the Nusselt number at the heated
core in the thermal region than in the case with
neglected axial heat conduction for a given z.

It may be concluded that the effect of fluid axial
heat conduction is negligible only at high Pe. For
moderate values of Pe number, fluid axial heat
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Fig.9 Nu for different o (U* = 0 and 1)

conduction is important at the thermal entrance
region. The effect of Br is stronger on Nusselt
number at the unheated, fixed tube.

For thermally developing flow when Br # 0, it
is shown that the viscous dissipation effect is dif-
ferent depending on U*. Nu; at the the moving
heated core (6; = 1) is little sensitive to Br. It was
found that the curves for Nu, at the outer tube
(6, = 0) do not change monotonically along the
axial distance particularly in the thermally devel-
oping region.

The counterpart for the second kind of the
boundary condition will be given in the next re-
port.
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