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Laminar heat transfer in concentric annuli with viscous dissipation
and fluid axial heat conduction

(Part II: Thermal boundary condition of the second kind)

by

Ganbat DAVAA*, Toru SHIGECHI**, Satoru MOMOKI** and Odgerel JAMBAL*

The present paper which is an extension of the previous study(l) on the combined effects of viscous
dissipation, fluid axial heat conduction, relative velocity of the core and radius ratio on thermally
developing laminar flow heat transfer, deals with the thermal boundary condition of constant heat
flux. The solution is based on coordinate transformation of the elliptic energy equation. The present
numerical solutions were compared with the relevant data(2)-(7) by the previous researchers and the
authors, and the agreement was very well.

1. Introduction

The numerical study of the thermally develop
ing heat transfer in concentric annuli has been pre
sented in the previous report (1) for the boundary
condition of constant wall temperature and this is
an extension of the previous work to the boundary
condition of constant heat flux at the tube walls.

The aim of this paper is to clarify the com
bined effects of viscous dissipation, fluid axial heat
conduction, relative velocity of the core and ra
dius ratio on the thermally developing heat trans
fer between the annuli and laminar flow of non
Newtonian fluids.

Heat transfer in annuli with axially moving
cores subject to the boundary condition of con
stant heat flux at the walls has been considered
by the authors and the results are presented in the
previous reports(2)-(4). The effects of viscous dis
sipation and relative velocity of the moving core
on the fully developed laminar heat transfer had
been studied analytically by solving the energy
equation exactly for Newtonian fluids in(2). Fully
developed laminar heat transfer of non-Newtonian
fluids was studied in (3) by investigating the ef
fects of viscous dissipation and relative velocity
of the moving core. In the previously presented
work(4) thermal entrance region heat transfer of
non-Newtonian fluids in concentric annuli with
moving cores was investigated by neglecting fluid
axial heat conduction.

In this study the energy equation including
the viscous dissipation term and the fluid axial
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heat conduction term has been solved numerically
with the finite difference method by applying the
fully developed velocity profiles of non-Newtonian
fluids presented in the previous report (8) .

Nomenclature

Br Brinkman number
cp specific heat at constant pressure,

[Jj(kg· K)]
D h hydraulic diameter == 2(Ro - R i ), [m]
E constant of the axial transformation
h heat transfer coefficient, [Wj(m~ K)]
k thermal conductivity, [WI(m· K)]
m consistency index [N . sn1m2]

n flow index
NuNusselt number
P e Peclet number
PrM modified Prandtl number
r radial coordinate, [m]
r* dimensionless radial coordinate == r IDh
R radius, [m]
ReM modified Reynolds number
T temperature, [K]
u velocity of the fluid, [m/s]
'Urn average velocity of the fluid, [m/s]
u* dimensionless velocity == ulu rn

U axial velocity of the moving core, [m/s]
U* dimensionless relative velocity of the

moving core == UIUrn

Z axial coordinate, [m]
z* dimensionless axial coordinate

== zl(PeDh)
Zt transformed axial coordinate
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Bulk temperature and Nusselt number are de
fined as

Fig.l Schematic of a concentric annulus with an
axially moving core

z=oMavin core

q = 0 q = 0 Fixed tube

_'L :~~~_~_~_an""'l_r-_+-~_:_;_:n_~ .!!_.~...:ill_"~ f',,'

Greek Symbols

0: radius ratio == Ri/Ro

{3 dimensionless shear rate parameter
rIa apparent viscosity, [kg/ (m· s)]
TJ~ dimensionless apparent viscosity == TJa/TJ*
TJo viscosity at zero shear rate, [kg/(m· s)]
TJ* reference viscosity, [kg/(m· s)]
P density, [kg/m3

]

e dimensionless temperature
~ transformed dimensionless radial

coordinate == [2(1 - 0:)'1'* - 0:]/(1 - 0:)

Subscripts

The following dimensionless variables are intro-
duced

'1'*
T * z (6)z =--

Dh PeDh

u*
U (3 = TJo (Urn) I-n (7)Urn m Dh

Ri e=
k(T - Te )

(8)0: -
Ro qiDh

where

Pe = ReM' PrM (9)

ReM
purnDh _ CpTJ*

(10)
TJ*

PTM =--
k

b bulk
e entrance
fd fully developed

inner tube
0 outer tube

2. Analysis

The physical model for the analysis is shown in
Fig.1. The core tube moves axially at a constant
velocity, U. The assumptions and conditions used
in the analysis are:

e The flow is incompressible, steady-laminar,
and fully developed hydrodynamically.

e The fluid is non-Newtonian and the shear
stress may be described by the modified
power-law model(9), and physical properties
are constant except viscosity.

e The body forces are neglected.

e The entering fluid temperature, Te , is uni
form at upstream infinity (z ---.. - (0) and
the outer tube wall is insulated. Constant
heat flux at the inner moving core for 0 :s; z,
whereas for z < 0 the inner tube is insulated.

The energy equation together with the assump
tions above is written as

[
1 a (aT) a

2
T] (du)2 aT

k -:; ar' T ar + az2 +TJa dr = pCpU az (1)

1Il Ri:S; 'I' :s; R o , and -00:S; z :s; 00

NUi == hiDh
k

Heat transfer coefficient is:

(3)

(4)

(5)

(11)

aT at r=Ri O:S;z-k ar = qi With the substitution of the above quantities into

k~~ = 0 at 'I' = R o O:S;z the dimensional formulation, the dimensionless

k~~ = 0
energy equation and boundary conditions are ob-

at r=Ri z<O tained as
(2)

k~~ = 0 at r = R o z<O 1 a (* ae ) 1 a
2
e (dU*) 2

r* ar* r ar* + Pe2 az*2
+ Br'TJ* -

T=Te Ri :s; 'I' :s; Ro
a dr*

at z ---"-00

T = T fd at Ri:S; T:S; Ro z ---.. +00
* ae (12)=u-

az*
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in 2(1r:.a ):::; r* :::; 2(1~a) and -00:::; z* :::; 00 in the previous report(1). It can be derived as fol
lows. To seek the expression for 0fd, for example,
a solution of the form:

where

(19)

(21 )

(20)

(22)

at r*

at r*

-1

o

Ofd = Cz* + 'l/J(r*)

is assumed on the fact that in the thermally fully
developed region, the temperature solution is a
linear function of z*. Substitution of Eq.(19) into
Eqs.(12), (13) yields

d
2

'l/J 1 d'l/J *
--2 +-- = Cu - V
dr* r* dr*

{

.1::t
dr*

.1::t
dr*

(
dU*) 2V = Br·rl* -

'Ia dr*

On the other hand, in the thermally developed
region

1 z*
or Zt = -; arctan E (14)

~--1 at r* - _a_ o:::; z*dr* - - 2(1-a)

~-O at r* - _1_ o:::; z*dr* - - 2(1-a)

~=O at r* = 2(1r:.a ) z* < 0dr*
(13)

~=O * 1
dr* at r = 2(1-a) z* < 0

0=0 at _a_<r*<_l_ z* =-002(1-a) - - 2(1-a)

0= Ofd at _a_<r*<_l_ z* = +002(1-a) - - 2(1-a)

In order to convert the upstream and downstream
infinities, the dimensionless axial coordinate z* is
transformed according to the relation employed by
Verhoff and Fisher(10) as follows:

By introducing the transformed coordinate, Zt,

the energy equation and the boundary conditions
become

(24)

fO r 'TJa (~~ ) 2 dr
1 + _R_i _

Rjqj

{

_k8~:d = qj at

k8~:d = 0 at

dTb

dz

k!~ (r aTfd ) + rla (dU)2 = pc UdTb
r ar ar 'I dr P dz (23)

dTb/dz in Eq.(23) is evaluated, from an energy
balance, as

(16)

-00 :::; z* :::; 00a < r* < 1 nd2(1-a) - - 2(1-a) aIII

{PO {PO 1 ao (du*)2 ao
--2 +B-+--+Br·r/ - =A-
ar* azl r* ar* a dr* aZt

(15)

where

(17)

(25)

Substitution of the above balance into Eq.(23)
gives,

~--1 at r* - a 0:::; Zt :::; 0.5dr* - - 2(1-a) '

~=O at r* - 1 0:::; Zt :::; 0.5dr* - 2(1-a) ,

~-O at r* - a -0.5:::; Zt < 0dr* - - 2(1-a) '

~-O at r* - 1 -0.5:::; Zt < 0dr* - - 2(1-a) '

0=0 at _a_<r*<_l_ z* = -0.52(1-a) - - 2(1-a)

0= Ofd at a <r* < 1 Z* = 0.52(1-a) - - 2(1-a)
(18)

For infinitely large values of the axial distance
(z* ----t (0), thermally fully developed region is
reached. Since the definition of dimensionless
temperature is different in this uniform heat flux
boundary condition case, the fully developed tem
perature profile is calculated differently from that

k!~ (r aTfd ) + 'TJa (du)2
r ar ar dr

By introducing the relevant dimensionless quanti
ties the above equation becomes

a20fd 1 aOfd--+---
dr*2 r* dr*

{ I}2(1-<»

= (1~*a) a + 2(1- a)IV'r*dr* - V (27)

2(1-<»
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The coefficient C was found by comparing
Eqs.(20) and (29) as

{ l}2(1-a)

(1~'a) a + 2(1 - a) [ V -r'dr' - V (29)

2(1-a)

for various Pe number in Fig.2 for U* = 0.0 and
1.0, respectively. It is shown the Nusselt number
and the temperature at the walls corresponding to
Pe ---t 00 agree excellently with those obtained by
Shah and London(5), and Shigechi and Araki(6),
who analyzed the corresponding problem by as
suming negligible axial fluid heat conduction and
viscous dissipation. From these figures demon
strating the effect of fluid axial heat conduction
on N 1L for a Newtonian fluid, it is seen the ef
fect of fluid axial heat conduction is considerable
for small values of Pe and in the fully developed
region there is no fluid axial heat conduction.

Figure 3 illustrates the variation of local fluid
temperature profiles for the cases of U* = 0.0
and 1.0, respectively. These results, which are
shown for Br = 0.0, 0.05, 0.1 and, for Pe = 10
and Pe ---t 00 show the combined effects of vis
cous dissipation and fluid axial heat conduction
on the developing temperature profiles with re
gard to relative velocity, U*. In the adiabatic tube
wall region (z* < 0) the fluid temperature is seen
to be sufficiently large for large Br or small Pe.
In fact, it can be seen that the fluid temperature
increases significantly before the fluid reaches the
heated wall because of the heat generated by vis
cous dissipation and the heat conducted upstream
into the adiabatic wall region. This is main rea
son why N1L remains almost constant throughout
the thermal entrance region for small Pe and large
Br.

That is not the case for Pe ---t 00 and Br =

0.0. The fluid temperature does not increase in
z* < O. As soon as z* becomes positive, the fluid
temperature profile undergoes rather rapid change
because of the wall heat flux, causing a relatively
abrupt decrease of N 1L at the wall as it is seen in
N1L curves.

It is also seen if the channel is infinitely long,
there may be generated a significant amount of
heat due to viscous shear heating (Br > 0) if the
walls are insulated. Thus the value of the fluid
temperature increases sufficiently.

From the developing temperature profiles it is
seen for the second kind of boundary condition,
the wall-to-fluid temperature difference is small,
where&s the effect of viscous dissipation on heat
transfer is more significant.

Figure 4 presents the calculation results for N 1L,

defined with respect to the temperature difference
of bulk to wall temperature for a pseudoplastic
fluid whose n = 0.5, (3 = 1 and Br = 0.0, 0.01,
0.05, 0.1. These curves clearly exhibit the trend of

(28)

(30)

(31)

Oefd
or*

and
fj2efd
or*2

According to Eq.(19)

Thus

3. Results and discussion

The work presented previously for laminar heat
transfer to non-Newtonian fluids in concentric an
nuli under conditions of constant wall tempera
ture has been extended to the case of constant
wall heat flux. The results are discussed in terms
of temperature profiles and Nusselt numbers for
the different values of relative velocity of the core,
Brinkman number, Peclet number and radius ra
tio. The calculation procedure to compute the
heat transfer problem in this study has already
been described in the previous report(1).

The results are presented graphically in dimen
sionless fonn and the effects of moving boundary,
viscous dissipation, fluid axial heat conduction,
rheological properties and radius ratio are demon
strated.

The range of parameters considered and the cal
culation technique are the same as in the coun
terpart reported in the previous report (1). In or
der to verify the accuracy of the present calcu
lation, the results are compared for the special
cases and shown in Fig.2. Temperature of a New
tonian fluid at the outer and inner tubes and N 1L

at the heated core are shown for Br = 0.0 and

{

2(1~a)}
C - (1 : a) a +2(1- :;,tr'dr'

'IjJ(r*) was calculated from Eq.(20) with Eq.(21) by
the finite difference method. efd was calculated
from Eq.(19) and used as a boundary condition
to solve the problem.
Nusselt number at the heated core is
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N u in the thermal entrance region by comparison
them with the relative velocity U*. The circles in
Fig.4 correspond to the calculation results for the
fully developed Nusselt number values presented
in the previous report (3) .

It can be observed that, from the N u curves
(Figs.2 and 4) for Br = 0.0, Nu tends to decrease
near z* = 0.0 as Pe reduces below 100. This ten-

dency is exactly identical to the results by Hsu (7)

on heat transfer with neglected viscous dissipation
in a concentric annuli. The Nusselt curves for var
ious Pe numbers, however, cross each other and
reverse their orders of magnitude before reaching
the fully developed values. It can also be noted
that, for a fixed value of z*, N u at the moving
core is larger than the corresponding N u at the
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stationary core. It is seen that N u remains almost
constant throughout the thermal entrance region
if P e is small.

Fig.5 presents the combined effects of viscous
dissipation and fluid axial heat conduction on N u
at the tubes of the annuli (0: = 0.2, 0.5 and 0.8)
for a pseudoplastic fluid whose n = 0.5, (3 = 1 for

U* = a and U* = 1, respectively. The present nu
merical solutions for the fully developed N u agree
very well with the previous study(3). From these
figures it is seen the effect of fluid axial heat con
duction accounts for the change in the curve shape
in the thermal entrance region. Br has a strong
effect on N u in both thermally developing and de-
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Fig.5 Nusselt number for Pe = 00 and 10 (U* = a and U* 1)
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Fig.6 Nusselt number for (X = 0.2, 0.5, 0.8 (U* = a and U* = 1)

veloped regions. For U* = 0, Nusselt number at
the core decreases with an increase in Brinkman
number in the fully developed region. For U* = 1
these are opposite.

In order to study the radius ratio effects, heat
transfer results are shown in Fig.6 for Pe ---> 00

and Pe = 10, respectively. It seen the general
behavior is quite similar for different values of Pe
and the results show that the radius ratio (X = 0.2
is superior to (X = 0.5 and (X = 0.8 from the view
point of heat transfer at the core under the same
conditions.

4. Conclusions

The problem of laminar heat transfer in the
thermal entrance region including viscous dissipa
tion of the flowing fluid and fluid axial heat con
duction with the boundary condition of constant
heat flux is analyzed by considering an infinite ax
ial domain.

The sample results to demonstrate the combi-

ned effects of moving boundary, viscous dissipa
tion and axial fluid heat conduction are presented
graphically in dimensionless form. The tempera
ture solutions corresponding to the limiting cases
Pe ---> 00, and Br = 0.0 show excellent agreement
with those reported in (5) for U* = 0.0 and in (6) for
U* = 1.0, who analyzed the entrance region heat
transfer by neglecting viscous dissipation and ax
ial fluid heat conduction for Newtonian fluids.

Viscous dissipation effect on N u is different de
pending on U* in both thermally developing and
fully developed flows. From the developing tem
perature profiles it is seen for the second kind
of boundary condition, the tube-to-fluid tempera
ture difference is small, whereas the effect of vis
cous dissipation on heat transfer is more signifi
cant.

A comparison of developing temperature pro
files for the different boundary conditions reveals
that the increase in fluid temperature due to vis
cous heating for the second kind of boundary con-
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dition is much higher than for the first kind of
boundary condition.

For constant heat flux boundary condition,
when viscous dissipation is negligible, including
the effect of fluid axial heat conduction in the
analyses results in lesser values of the N u near
z* = 0 (where the wall heat flux commences) com
pare to the case without axial heat conduction.

It may also be concluded that the moving
boundary may make less increase in the fluid tem
perature compare to the stationary core boundary
case and in turn it results higher values of N u
number at the wall as U* increases.

References

1. Ganbat Davaa, Toru Shigechi, Satoru
Momoki and Odgerel Jambal, "Laminar Heat
Transfer in Concentric Annuli with Viscous
Dissipation and Fluid Axial Heat Conduc
tion" (Part 1: Thermal boundary condition
of the first kind),
Reports of the Faculty of Engineering, Na
gasaki University, vo1.33, No.60, (2003).

2. Ganbat Davaa, Toru Shigechi and Satoru
Momoki, "Effect of Moving Core Velocity and
Viscous Dissipation on Fully Developed Lam
inar Heat Transfer in Concentric Annuli" ,
Reports of the Faculty of Engineering, Na

gasaki University, vo1.31, No.56, 13-22,
(2001).

3. Ganbat Davaa, Toru Shigechi and Satoru
Momoki, "Heat Transfer for Modified Power
Law Fluids in Concentric Annuli with Heated
Moving Cores" ,
Reports of the Faculty of Engineering, Na

gasaki University, vo1.32, No.58, 91-98,
(2002).

4. Ganbat Davaa, Toru Shigechi and Satoru
Momoki, "Laminar Heat Transfer in the
Thermal Entrance Region of Concentric An
nuli with Moving Heated Cores" (Part I: the
first and second kinds of thermal boundary
conditions) ,
Reports of the Faculty of Engineering, Na
gasaki University, vol.32 , No.59, 41-50,
(2002) .

.5. R.K.Shah and A.L.London, "Laminar Flow
Forced Convection in Ducts" ,
Advances in Heat Transfer, Supplement 1,
Academic Press, (1970).

6. K.Araki, "Laminar Heat Transfer in Annuli" ,
Department of Mechanical Engineering, Na
gasaki Univers'ity, Master Thesis, (1991) (in
Japanese).

7. C.J.Hsu, "Theoretical Solutions for Low
Peclet-number Thermal-entry-region Heat
Transfer in Laminar Flow Through Concen
tric Annuli" ,
Int.J. Heat Mass Transfer, vo1.13, No.12,
1907-1924, (1970).

8. Ganbat Davaa, Toru Shigechi and Satoru
Momoki, "Fluid Flow for Modified Power
Law Fluids in Concentric Annuli with Axi
ally Moving Cores" ,
Reports of the Faculty of Engineering, Na

gasaki University, vo1.32, No.58, 83-90,
(2002).

9. S.Kakac, R.K.Shah and W.Aung (eds.),
"Handbook of Single-Phase Convective Heat
Transfer" ,
Wiley, New York, 20.2-20.32, (1987).

10. F.H.Verhoff and D.P.Fisher, "A Numerical
Solution of the Graetz Problem with Axial
Conduction Included" ,
Journal of Heat Transfer, Trans. ASME,

vo1.95, No.1, 132-134, (1973).


