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Abstract 

Recent studies have shown the contribution of genetic determinants to athletes’ physical 

ability. However, despite the fact that cognitive abilities like self-control and stress-tolerance 

influence athletes’ competitive performance, few studies to date have investigated the 

association between genetic polymorphism, which is linked to cognitive ability and athletic 

performance. The present study investigated the link between single-nucleotide 

polymorphisms (SNPs), which are known to exert influences on dopaminergic neural function 

and competitive performance of swimmers. The results have revealed superior competitive 

performance in competitive swimmers with Met allele of catechol-O-methyltransferase 

Val158Met polymorphism than those with Val/Val genotype. The investigated SNPs of 

DRD2 and DRD3 were not associated with swimmer’s competitive performance. This finding 

indicates that genetic polymorphism linked to cognitive ability influences the athletes’ 

performance. 
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1. Introduction 

Research on biomechanics and physiology has greatly contributed to elucidating the 

determinants of athletes’ competitive performance. For example, biomechanical studies on 

swimming have revealed the influence of starting motions and drag resistance on swimming 

speed (Craig & Pendergast, 1979; Toussaint & Beek, 1992). On the basis of these empirical 

findings, the previous studies on swimming have revealed effective training methods, like the 

improvement of swimming speed by high-resistance training and tapering (Inigo, Jean, 

Thierry, Andre, Frederc, & Lucien 1995; Joseph, Houmard, & Anderson 1994). 

With regard to the factors that determine the competitive performance of individual 

athletes, recent studies have revealed association between the physiological characteristics of 

individual athletes and specific genetic polymorphisms. A well-known genetic polymorphism 

affecting physical ability is that in the ACTN3 gene, which encodes α-actinin-3, a protein 

found in the muscle that affects muscular contraction speed and endurance. Yang et al (2003). 

reported that among athletes, those with the explosive power-type polymorphism of ACTN3 

showed significantly higher physical performance in several sports, including swimming, 

water polo, and wrestling.  

Existing literatures in the field of sports psychology have identified cognitive 

abilities, such as motivation, stress tolerance and self-regulation, as the most important 

determinants of athletes’ competitive performance (Tod, Thatcher, & Rahman, 2010; Orlick 

& Partington, 1988). Furthermore, recent studies have revealed genetic polymorphisms that 

determine individual differences in cognitive ability (Doi, Nishitani, & Shinohara, 2016; 

Savitz, Solms, & Ramesar, 2006; Surguladze et al., 2012). Taking these into consideration, it 

seems possible that genetic polymorphisms linked to individual differences in cognitive 



 

 

ability may also exert influences on the competitive performance of competitive athletes. 

However, there are few studies on the link between athletes’ competitive performance and 

genetic polymorphisms associated with cognitive ability. 

One of intracerebral neurotransmitters affecting cognitive ability is dopamine. 

Dopamine belongs to the class of catecholamines including adrenaline and noradrenaline 

essential for the function of the reward system and the prefrontal region, which play pivotal 

roles in motivation and executive-control (Schultz, 1998). Among the components of the 

dopamine system, single nucleotide polymorphisms (SNPs) have been identified in the genes 

encoding catechol-O-methyltransferase (COMT) (Opmeer et al., 2013; Zhang et al., 2013), 

dopamine receptor D2 (DRD2) (Ernest, 2000; Tompson et al., 1997), and dopamine receptor 

D3 (DRD3) (Savitz et al., 2013). 

COMT regulates the activities of the dopamine system by degrading dopamine 

(Axelrod, Senoh, & Witkop, 1958). A SNP resulting in substitution of the amino acid encoded 

at codon 158 of the COMT gene from valine to methionine (COMT Val158Met) has been 

shown to reduce the activity of the enzyme by one third to one fourth of that of the 

valine-type COMT (Savitz et al., 2006), thereby increasing the extracellular level of 

dopamine. It has been suggested that the COMT Val158Met polymorphism may be associated 

with individual differences in emotional response, motivation and executive-control ability 

(Drabant et al., 2006; Jaspar et al., 2014; Lancaste, Linden, & Heerey, 2012). 

DRD2 gene located on chromosome 11 at q22-q23 has been associated with several 

genetic polymorphisms (Ernest, 2000). Among them, the TaqIA polymorphism has been 

shown to reduce the amount of DRD2 in the striate bodies of the basal ganglia (Thompson et 

al., 1997). Consequently, it has been suggested the DRD2 TaqIA polymorphism may be 



 

 

associated with individual differences in dependence and impulsivity (Ernest, 2000; 

Thompson et al., 1997). 

Finally, DRD3 is an autoreceptor that inhibits the release of dopamine from 

dopaminergic neurons, which are mainly expressed in the nucleus accumbens (Bouthenet et 

al., 1991; Diaz et al., 2000; Savitz et al., 2013). A SNP in the DRD3 gene resulting in 

substitution of the amino acid encoded by codon 9 from serine to glycine (DRD3 Ser9Gly) 

has been associated with depression (Schosser et al., 2011), as well as with motivation and 

emotional response (Savitz et al., 2013). 

On the basis of these, the present study examined the association of COMT 

Val158Met , DRD2 TaqIA, DRD3 Ser9Gly polymorphisms with the levels of competitive 

performance in competitive swimmers to gain further insight into the genetic basis affecting 

athletes’ competitive performance . In the present study, we recruited only male swimmers in 

order to avoid the possible influences of sex-difference in the phenotypic expression of 

genetic polymorphisms; several studies have found sex-difference in the effects of COMT 

Val158Met polymorphism on neural function (White et al, 2014) and behavior (De 

Castro-Catala et al, 2015).   

 

2. Methods 

2.1. Participants 

The participants were 57 Japanese male competitive swimmers (mean age, 19.14 , 

SD=0.89 years). Their levels of competitiveness ranged from a class ineligible for the 

Japanese national championship to a class that qualified for the national team (dispatch 

standard, a world ranking of 16th or above). They participated in the present study after 

giving written informed-consent according to the declarations of Helsinki. The breakdown of 



 

 

participants according to swimming style was as follows; 23 freestyle swimmers, 5 

backstroke swimmers, 10 breaststroke swimmers, 11 butterfly swimmers, and 8 individual 

medley swimmers. The procedure of this study had been approved by the ethical committee 

of Nagasaki University.  

 

2.2 Indicator of Competitive Performance 

In competitive swimming, swimmers compete in 5 different styles (i.e., freestyle, 

backstroke, breaststroke, butterfly, and individual medley) for various distances. In this study, 

the point scoring system devised by the Federation International de Natation Amateur (FINA) 

was used to compare the competitive performance of the participants regardless of the 

different styles and distances. FINA scale provides a measure of competitive performance 

derived from the comparison between personal records and the world records in 

corresponding style and distance. The point is calculated from eq (1) (FINA Points formula 

available at: http://www.fina.org/H2O/docs/FINApoints/FINA_Points_Table_20150205.pdf. 

Accessed 6 August 2015) with the world record in each style given 1000 points: 

 

FINA point =1000 x (world record [sec]/personal record [sec])3     eq (1) 

 

Because the world records change regularly, the competitive performance of the 

participants in this study was calculated with respect to their personal records and the world 

records at the time of buccal swab sample collection for DNA sampling. 

 

2.3. Extraction of DNA and Analysis of Genetic Polymorphisms 



 

 

DNA was extracted from the samples of the buccal mucosa from the participants 

using the QIAamp DNA mini extraction kit (Qiagen, Inc.). SNPs were analyzed by real-time 

polymerase chain reaction with Light Cycler (Light Cycle 480, Roche, Inc.) using TaqMan 

probes corresponding to the COMT Val158Met (rs4680), DRD2 TaqIA (rs1800497), and 

DRD3 Ser9Gly (rs6280) polymorphisms.  

 

3. Results 

The number of participants in each genotype of COMT Val158Met , DRD2 TaqIA, 

DRD3 Ser9Gly polymorphisms are summarized in Table 1.  

 

****Table 1 near here**** 

 

3.1 COMT Val158Met polymorphism 

The chi-squared test was performed to examine whether the allelic distribution of 

each genotype of COMT Val158Met polymorphism agreed with Hardy-Weinberg equilibrium, 

and no significant deviation was observed (χ22, = 0.25, p > .10).  

According to COMT Val158Met genotype, the participants were divided into those 

with the valine homozygous genotype (Val/Val) and the methionine carrier (Met carriers). 

Several previous studies on the association between this SNP and neural or behavioral 

functions have adapted this grouping method (Colzato, van den Wildenberg & Hommel, 

2014; He et al., 2012). Figure 1(a) shows the mean FINA points of each group. Comparison 

between the groups revealed that the mean FINA point of the Met carrier group was 

significantly higher than that of the Val/Val group (t55 = 2.16, p = .036, d = 0.57, M = 48.7, 

95% Cl [10.7, 86.6]), indicating that competitive performance was higher in the Met carrier 



 

 

group. Age was significantly different between the groups (t55 = 2.11, p = .04), with the 

averaged age of Met carrier group being significantly higher than that of Val/Val group. 

Therefore, analysis of covariance was performed with age as a covariate. As a result, the 

effect of the genetic polymorphism was still found to be significant even after adjustment for 

the effects of age (F1,54=5.25, p =.026). 

 

****Figure 1 near here**** 

 

 

3.2 DRD2 TaqIA polymorphism 

The chi-squared test was performed to examine whether the allelic distribution of 

each genotype of DRD2 TaqIA polymorphism agreed with Hardy-Weinberg equilibrium, and 

no significant deviation was observed (χ22 = 0.24, p > .10). 

According to DRD2 TaqIA genotype, the participants were divided into the A1 

carriers (A1 carrier) and the A2 homozygous genotype (A2/A2). Several previous studies on 

the association between this SNP and behavioral functions have adapted this grouping 

method (Esposito-Smythers, Spirito, Rizzo, Mcgeary, & Knopik, 2009; Sieminska, 

Buczkowski, Jassem, Niedoszytko, & Tkacz, 2009). Figure 1(b) shows the mean FINA points 

of each group. There was no significant difference in the FINA points between these groups 

(t55 = 0.17, p > .10 d = 0.05, M = 4.09, 95% Cl [-37.3, 45.4]). There was no significant 

difference in age between the groups (t55 = 0.06, p > .10). 

 

3.3 DRD3 Ser9Gly polymorphism 



 

 

Data from one participant was discarded from the analysis of DRD3 Ser9Gly 

polymorphism, due to the failure in genotyping. The chi-squared test was performed to 

examine whether the allelic distribution of DRD3 Ser9Gly polymorphism agreed with 

Hardy-Weinberg equilibrium, and no significant deviation was observed (χ2 2 = 5.65, p > .05). 

According to DRD3 Ser/Gly genotype, the participants were divided into those with 

the serine homozygous genotype (Ser/Ser) and the heterozygous genotype (Ser/Gly) , because 

there was no participant with the glycine homozygous genotype. Figure 1(c) shows the mean 

FINA points of each group. There was no significant difference in FINA points between these 

groups (t54 = 0.07, p > .10, D = 0.02, M = 1.7, 95% Cl [-41.9, 38.4]). There was no significant 

difference in age between the groups (t54 = 0.96, p > .10). 

 

 

4. Discussion 

The present study investigated the association between genetic polymorphisms 

influencing dopaminergic functions and competitiveness of swimmers. The results showed 

that the mean value of FINA point, which indicates the competitiveness of competitive 

swimmers, was significantly higher in the Met carrier group than in the Val/Val group 

regarding COMT Val158Met polymorphism. On the other hand, no effect of either DRD2 

TaqIA or DRD3 Ser9Gly polymorphism on FINA point was observed. These results suggest 

that the function of COMT is likely to affect the competition results of competitive 

swimmers. 

In Met carriers with COMT Val158Met polymorphism, reduced COMT enzymatic 

activities lead to an increased amount of extracellular dopamine in the brain (Savitz et al., 

2006), and consequently enhance the function of the prefrontal cortex (PFC), where 



 

 

dopaminergic neurons are abundantly distributed (Drabant et al., 2006; Jaspar et al., 2014) 

The PFC governs emotional- and self-regulation as the seat of executive-control, possibly 

through functional connectivity with subcortical regions (Drabant et al., 2006). On the basis 

of these, we tentatively think that the emotional- and self-regulation ability enhanced by an 

increased amount of dopamine in the PFC might improve the competitive performance of the 

Met carriers. In relation to this interpretation, Stroth et al (2010) have revealed that adults 

with Val/Val genotype showed larger improvement in their executive-control ability after 

aerobic exercise training than Met-carriers. On the basis of this, if the above interpretation is 

correct, it might be possible to improve the athletic performance of swimmers with Val/Val 

genotype by intensitive training to increase their aerobic capacity.  

In contrast to COMT, DRD2 and DRD3 are mainly distributed in the subcortical 

regions, predominantly in the basal ganglia and nucleus accumbens (Bouthenet et al., 1991; 

Diaz et al., 2000; Thompson et al., 1997). The lack of association between polymorphisms of 

the DRD2/DRD3 genes and competition results is likely due to the fact that these 

polymorphisms do not play prominent roles in the dopaminergic neuronal activities in the 

PFC. 

The participants in this study included 7 world-class athletes who had reached the 

podium as members of the Japanese national team and in Japanese national championships. 

Regarding COMT Val158Met polymorphism, these 7 participants consisted of 6 Met carriers. 

Thus, the Met carrier group included more elite athletes than the Val/Val group. Unlike 

ordinary athletic events that record official times, the motivation and pressure for obtaining a 

higher-ranking position in selection races for the national team is extremely high. Taking 

these into consideration, it is assumed that one reason for superior performance in swimmers 



 

 

with the Met-allele might be the ability to achieve their best under high-pressure thanks to 

their superior executive-control. 

The present study has shown significant association between COMT Val158Met 

polymorphism and competitive performance in swimmers. However, this study has the 

following limitations. First, the present results alone do not tell us the mechanism through 

which COMT genotype influences swimmer’s competitive performance . If COMT is 

somehow linked to emotional-regulation of stress reaction in competition as mentioned above, 

it is possible that the level of stress hormone just before actual competition should differ 

according to COMT genotype. To examine such possibilities, future studies need to compare 

stress hormone release just before competitions across groups with different COMT 

Val158Met polymorphism genotypes. Secondly, the results of this study suggest the 

possibility that individual differences in executive-control ability, which is greatly affected by 

COMT Val158Met polymorphism (Drabant et al., 2006; Jaspar et al., 2014), may influence 

competition results. However, executive-control ability was not directly assessed with any 

objective indicators in this study. Thus, in future studies, the executive-control ability and the 

PFC activation need to be assessed by behavioral indicators (Vestberg, Gustafson, Maurex, 

Ingnar, & Pertovic, 2012) or with non-invasive measurements of neural function. The third 

limitation is the recruitment of only male swimmers. The previous studies have shown 

sex-difference in the dopamine metabolism (Laakso et al, 2002; Munro et al, 2006), the 

affinity of D2 receptor to dopamine (Pohjalainen, Rinne, Någren, Syvälahti, & Hietala 1998), 

and the influences of COMT Val158Met polymorphism on neural function and behavior (De 

Castro-Catala et al., 2015; White et al., 2014). On the basis of these, it is highly conceivable 

that genetic polymorphisms linked to dopaminergic neural functions exert differential 

influences on competitive performance in female competitive swimmers.  



 

 

 

5. Conclusions 

This study evaluated the effects of COMT Val158Met , DRD2 TaqIA, DRD3 

Ser9Gly polymorphisms on the competitive performance of competitive swimmers. The 

results revealed that competitive performance was significantly higher in the Met carrier 

group than in the Val/Val group regarding COMT Val158Met polymorphism. This finding 

indicates that genetic polymorphism linked to cognitive ability influences the athletes’ 

competitive performance. To further elucidate the effects of COMT on athletes’ performance, 

it would be important to examine whether similar influence of COMT Val158Met 

polymorphism is observed in athletic events other than competitive swimming.  
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Table 1. Allelic distribution of each SNP.  

    

SNP Genotype N Age 
COMT Val158Met Val/Val 28 18.9 (0.82)
 Val/Met 25 19.4 (0.89)
 Met/Met 4 19.5 (0.87)
    
DRD2 TaqIA A1/A1 8 19.3 (0.99)
 A1/A2 29 19.1 (0.80)
 A2/A2 20 19.2 (0.96)
    
DRD3 Ser9Gly Ser/Ser 29 19.0 (0.87)
 Ser/Gly 27 19.2 (0.83)
 Gly/Gly 0  

In the parenthesis are standard deviations of age. 



 

 

 

Figure legends 

 

Figure 1. The averaged FINA point in each genotype of a) COMT Val158Met, b) DRD2 

 TaqIA, and c) DRD3 Ser9Gly polymorphisms. The error bar indicates standard error. 

 *p < 0.05 for the group difference.  


