
COMMUNICATION          

 
 
 
 

Structural Revision and Biomimetic Synthesis of Goupiolone B 
Yosuke Matsuo*, Ayane Yoshida, Yoshinori Saito, and Takashi Tanaka* 

 

Abstract: Goupiolones A and B are unique phenolic compounds 
with significant DNA-damaging activity. In this study, the structure of 
goupiolone B was revised on the basis of DFT calculations of the 13C 
NMR chemical shifts and biosynthetic considerations. The 
dibenzobicyclo[3.2.2]nonane skeleton of the revised structure 
suggested that goupiolone B was produced by oxidative coupling 
between catechol and goupiolone A, which was strongly supported 
by this biomimetic synthesis. Furthermore, the racemization of 
goupiolone B was observed during the examination for the chiral 
separation of its racemic mixture. A plausible racemization 
mechanism involving α-ketol rearrangement was also proposed. 

Goupiolones A (1) and B (2) are unique phenolic 
compounds isolated from the leaves of Goupia glabra 
(Goupiaceae), and reported to show significant toxicity against a 
panel of DNA damage-checkpoint defective yeast mutants 
(Figure 1).[1] Since 1 and 2 behave as genotoxins that are 
stronger than the antineoplastic agent doxorubicin, they are 
candidates for anticancer drugs.[1] Goupiolone A (1) is a 
benzotropolone derivative[1,2] and presumed to be produced from 
catechol (3) and ethyl gallate (4) by oxidative coupling via a 
benzobicyclo[3.2.1]octane-type intermediate (Scheme 1). Other 
benzotropolone derivatives from natural sources, such as 
purpurogallin glycosides,[3] theaflavins,[4] fomentariol,[5] 
aurantricholone,[6] and crocipodin,[7] are also produced by the 
coupling between catechol and pyrogallol derivatives.[8] On the 
other hand, goupiolone B (2) was reported as a Diels–Alder 
adduct between a tropolone and a naphthalene derivative.[1] 
However, the proposed precursor, that is 1,2,3,4-
naphthalenetetraol, has not yet been found in nature. In addition, 

the reported spectroscopic data of 2 include several problems. 
For example, the 13C NMR signal of the β-position in the α,β-
unsaturated carbonyl is normally observed lower field, such as 
at 150.9 ppm for 2-cyclohexen-1-one.[9] However, the signal at 
118.1 ppm was assigned as the β-position (C-6) of 2.[1] 
Moreover, the assignment of the 13C NMR chemical shifts of the 
1,2,3,4-tetrahydroxybenzene moiety in 2 were inappropriate (C-
5'': δ 145.1; C-6'': δ 152.5; C-7'': δ 142.7; C-8'': δ 140.5; C-9'': δ 
144.0; C-10'': δ 137.0). In this study, we reinvestigated the 
structure of goupiolone B using computational calculations and 
biosynthetic considerations and proposed the revised structure 5. 
Furthermore, the structure was confirmed via biomimetic 
synthesis.  

We speculated that goupiolone B is biosynthetically 
derived from goupiolone A (1) and reinvestigated its structure 
on the basis of the reported 1H and 13C NMR data along with 
biosynthetic considerations. As a result, we constructed the 
more reasonable structure 5 with a dibenzobicyclo[3.2.2]nonane 
skeleton (Figure 1). The biosynthesis of 5 could be explained as 
follows: Goupiolone A (1) is apparently produced by the 
oxidative condensation between catechol-quinone (3a) derived 
from catechol (3) and ethyl gallate (4) through a 
benzobicyclo[3.2.1]octane-type intermediate. Then, a series of 
intermolecular 1,4- and intramolecular 1,2-additions between 3a 

[a] Dr. Y. Matsuo, A. Yoshida, Dr. Y. Saito, Prof. Dr. T. Tanaka 
Graduate School of Biomedical Sciences 
Nagasaki University 
1-14 Bunkyo-machi, Nagasaki 852-8521 (Japan) 
E-mail: y-matsuo@nagasaki-u.ac.jp 

  t-tanaka@nagasaki-u.ac.jp 

 Supporting information for this article is given via a link at the end of 
the document. 

Figure 2. Correlation plots of experimental 13C NMR chemical shifts 
versus the corresponding calculated data of 2 (a) or 5 (b). 
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Figure 1. Structures of goupiolone A (1) and goupiolone B (2: formerly 
proposed[1]; 5: revised). 
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and 1 and the subsequent reduction of o-quinone affords 5 
(Scheme 1). Furthermore, the experimental NMR data of 
goupiolone B was very similar to those of the 
dibenzobicyclo[3.2.2]nonane unit of 6, which is an oxidative 
condensation product of theaflavin (7) and epicatechin (8) 
(Scheme 2).[11] The structural similarity strongly supported the 
biosynthetic mechanism of 5.[11] The validity of structure 5 was 
confirmed by DFT calculations for the 13C NMR chemical shifts 
of 2 and 5,[10] followed by comparison with the reported data. As 
shown in Figure 2, the correlation between experimental and 
calculated data for 2 was very low (R2 = 0.8318), whereas the 
calculated data for 5 was in good agreement with the 
experimental data (R2 = 0.9980). On the basis of these 
considerations, we performed the biomimetic synthesis of 5 from 
3 and 4 via 1. 

Firstly, we synthesized goupiolone A (1). Thus far, there 
have been two reports for the total synthesis of 1; however, 
these methods required many steps [19 steps (2012),[2] 9 steps 
(2017)[12]]. In this study, the non-enzymatic biomimetic method 
developed for theaflavins, black tea pigments with a 
benzotropolone moiety,[13] was applied to the synthesis of 1. 
Catechol (3) was oxidized with the 2,2-diphenyl-1-picrylhydrazyl 
(DPPH) radical in acetone to afford o-quinone (3a); then, ethyl 
gallate (4) was added to give a benzobicyclo[3.2.1]octane-type 
intermediate. Finally, the addition of water to the reaction 
mixture caused ring cleavage, followed by spontaneous 
oxidation and decarboxylation to afford goupiolone A (1) (34% 
from 4) along with a small amount of 5 (1.1% from 4) (Scheme 
3a). The spectroscopic data of synthesized 1 were in full 

agreement with those of natural 1.[1,2] In addition, the 1H and 13C 
NMR data of synthesized 5 were completely consistent with 
those of the natural goupiolone B, except for the 13C NMR 
chemical shift of C-2' (∆δC = 5.7 ppm) (Table 1).[1] The 
previously reported value of C-2' is presumably a typographical 
error. 1H-1H COSY, HSQC, and HMBC spectra of synthesized 5 
were also measured, and the results strongly supported this 
structure. However, several HMBC correlations of the 
synthesized 5 were inconsistent with the reported data for 
goupiolone B (Table 1). This was probably caused by incorrect 
interpretations based on the incorrect structure (2) in the original 
report.[14] There are several steps during the production of 1 from 
3 and 4. (Scheme 1). In this process, 3a derived from 3 can also 
act as an oxidant along with DPPH. In the final step of the 
synthesis of 5, the o-quinone form of 5 is reduced to 5 (Scheme 
1). This reduction process is considered to be coupled with the 
oxidation of 3 or the oxidation steps during the synthesis of 1. 

Enzymatic methods for the synthesis of benzotropolone 
derivatives using polyphenol oxidase or peroxidase are 
known;[7,15] therefore, we also performed the enzymatic 
synthesis of goupiolone A (1). An aqueous solution of catechol 
(3) and ethyl gallate (4) was treated with a Japanese pear 
(Pyrus pyrifolia) fruit homogenate, which has strong polyphenol 
oxidase activity,[15d,16] to afford goupiolone A (1) (71%) along 
with 5 (0.24%) (Scheme 3b). This relatively high yield of 1 is 

Scheme 2. Production of 6 from theaflavin (7) and epicatechin (8) using 
polyphenol oxidase.[11] 

O

OH

HO

OH

OH

OH

epicatechin (8)
OH

O

OH

OH

OH

O

OH

OHO

OH
OH

HO

theaflavin (7)

6

OH

OH

OH

OH

OH

OH

O

HO

OH

O

HO

OH

O

H

OH

O

H

H

OH

OH

HO

polyphenol oxidase
(Japanese pear fruit homogenate)

Scheme 1. Proposed biosynthetic pathway of goupiolone B (5) from catechol (3) and ethyl gallate (4) via goupiolone A (1). 

Scheme 3. Synthesis of goupiolones A (1) and B (5) from 3 and 4 using 
DPPH radical (a) or a Japanese pear fruit homogenate (b). 
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considered to be attributed to the substrate specificity of 
polyphenol oxidase for 3.  
  To confirm that goupiolone B (5) was produced by 
oxidative coupling between goupiolone A (1) and catechol (3), 
next we examined direct reactions of 1 with 3. Addition of 1 to 
the mixture containing 3a yielded 5 in 7.2% (Scheme 4a). To 
improve the yield, various oxidants were examined. After 
screening with multiple oxidants, (NH4)2Ce(NO3)6 and 
K3[Fe(CN)6] were found to afford 5 from 1 and 3. The addition of 
(NH4)2Ce(NO3)6 to a solution containing 1 and 3 in CH3CN–H2O 
(4:1) afforded 5 in 22% yield (Scheme 4b). Under similar 

conditions, oxidation using K3[Fe(CN)6] afforded 5 in 11% yield. 
The reason for the low yield for 5 is considered to be the other 
oxidation reaction of 1 and further oxidation of 5. These results 
confirmed that 5 was produced from 1 and 3. Therefore, we 
concluded that the correct structure of goupiolone B is 5.  

In this study, goupiolone B (5) was synthesized as a 
racemic mixture. However, natural 5 was optically active ([α]20

D 
−40).[1] To determine the absolute structure of natural 5, an 
attempt was made to separate two enantiomers of synthesized 5 
using chiral HPLC. Several conditions were found for the chiral 
separation of racemic 5 in reversed phase and normal phase 
conditions, which afforded two separated peaks (Figures S1, S2). 
However, separated 5 showed no optical rotation and Cotton 
effect in the ECD spectra. In addition, the reanalysis of 
separated 5 using chiral column exhibited two peaks, indicating 
that the racemization of 5 occurs easily. To comprehensively 
investigate the condition, chiral separation was performed at 
three different temperatures (40 °C, 25 °C, and 5 °C) using 
Chiralpak IB N-5 (n-hexane–2-PrOH–TFA; 55:45:0.1) (Figure 
S3). Two peaks were completely separated at a temperature of 
5 °C; however, a saddle-shaped curve was observed between 
two peaks at 40 °C. The experimental results strongly indicated 
the occurrence of racemization of 5 during chiral separation at 
40 °C. A reasonable mechanism for the racemization of 5 
involves α-ketol rearrangement shown in Scheme 5.[17,18] This 
rearrangement had been observed in several natural 
products.[19] Natural 5 may also be a racemic mixture, and its 
optical activity may be attributable to its impurity. However, no 
evidence is currently available. 

In summary, we proposed the correct structure of 
goupiolone B (5), which was assisted by biosynthetic 
considerations. DFT calculations of the 13C NMR chemical shifts 
strongly supported this structure. The biomimetic synthesis of 5 
from catechol (3) and ethyl gallate (4) via goupiolone A (1) 
confirmed the revised structure. Furthermore, the racemization 
of 5 was observed during its chiral separation, indicating that 
natural 5 may also be a racemic mixture. A plausible 
racemization mechanism involving α-ketol rearrangement was 

position
synthesizeda naturalb,e synthesizedc naturald,e synthesizeda naturalb,e

1 194.1 194.1
2 84.3 84.5
3 7.26f 7.26f 143.6 143.6 1, 2, 4, 5, 11 (4J ), 1', 3'' 1, 5, 3''
4 140.5 140.5
5 5.10 (br s) 5.03 (d, 1.3) 49.8 49.8 3, 4, 6, 10, 11, 1', 3'', 4'', 5'' 10, 11, 1', 4'', 5''
6 6.84 (d, 8.1) 6.84 (d, 8.0) 118.2 118.1 1, 5, 8, 10 1, 10
7 6.98 (d, 8.1) 6.97 (d, 8.0) 121.0 121.0 6, 8, 9, 11 8, 9, 11, 6''
8 145.1 145.1
9 152.5 152.5

10 110.6 110.6
11 137.0 137.0
1' 163.9 163.9
2' 4.24 (m) 4.23 (m) 61.5 67.2 1', 3' 1', 3'
3' 1.30 (t, 7.1) 1.30 (t, 7.0) 14.2 14.1 2' 2'
1'' 144.0 144.0
2'' 142.6 142.7
3'' 117.6 117.6
4'' 131.4 131.4
5'' 6.82 (d, 8.1) 6.82 (d, 8.0) 117.4 117.3 2 (4J ), 5, 1'', 3'' 5
6'' 6.77 (d, 8.1) 6.77 (d, 8.0) 114.3 114.3 1'', 2'', 4'' 7, 11, 4''

9-OH 11.72 (s) 8, 9, 10
a  500 MHz, b 300 MHz[1] , c 125 MHz, d 75 MHz[1] , e reassigned based on the structure of 5 ,  f overlapped with
solvent signal

Table 1. 1H and 13C NMR data for goupiolone B (5) (in CDCl3, δ in ppm, J  in Hz)

HMBC (H to C)13C1H

Scheme 4. Synthesis of goupiolone B (5) from 1 and 3. 
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proposed. These results indicated that the biosynthetic 
consideration combined with the theoretical calculation of NMR 
data is helpful to accurately elucidate the complicated structure 
of natural products.[20] 
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Which one is real? Goupiolones A and B are unique phenolic compounds with 
significant DNA-damaging activity. In this study, the structure of goupiolone B was revised 
on the basis of DFT calculations of the 13C NMR chemical shifts and biosynthetic 
considerations. The dibenzobicyclo[3.2.2]nonane skeleton of the revised structure 
suggested that goupiolone B is produced by an oxidative coupling between catechol and 
goupiolone A. This revised structure and proposed biosynthetic pathway was strongly 
supported by the biomimetic synthesis.  


