
LETTER • OPEN ACCESS

Spatial variation in household consumption-based carbon emission
inventories for 1200 Japanese cities
To cite this article: Keiichiro Kanemoto et al 2020 Environ. Res. Lett. 15 114053

 

View the article online for updates and enhancements.

This content was downloaded from IP address 133.45.80.221 on 03/12/2020 at 06:04

https://doi.org/10.1088/1748-9326/abc045


Environ. Res. Lett. 15 (2020) 114053 https://doi.org/10.1088/1748-9326/abc045

Environmental Research Letters

OPEN ACCESS

RECEIVED

8 July 2020

REVISED

24 September 2020

ACCEPTED FOR PUBLICATION

12 October 2020

PUBLISHED

20 November 2020

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

Spatial variation in household consumption-based carbon
emission inventories for 1200 Japanese cities
Keiichiro Kanemoto1, Yosuke Shigetomi2, Nguyen Tien Hoang1, Keijiro Okuoka3 and Daniel Moran4

1 Research Institute for Humanity and Nature, Kyoto, Japan
2 Nagasaki University, Nagasaki, Japan
3 Gifu University, Gifu, Japan
4 Norwegian University of Science and Technology, Trondheim, Norway

E-mail: keiichiro.kanemoto@gmail.com

Keywords: city, carbon footprint, consumption-based emission

Supplementary material for this article is available online

Abstract
Given that national pledges are likely insufficient to meet Paris greenhouse gas (GHG) reduction
targets (Fawcett et al 2015 Science 350), increasingly actors at the city and state level are looking for
options on how local government can contribute to reducing GHG emissions. For a typical city
only one third to half of their carbon footprint (CF) is emitted within the jurisdiction, while the
majority is embodied in goods and services flowing into the city. To support well-informed
mitigation efforts, administrators need robust inventories of both direct emissions as well as the
supply chain emissions. Here we construct household CF inventories for 1172 Japanese cities using
detailed consumer expenditure data and a Japanese domestic multi-regional input-output (MRIO)
model. We identify the consumption activities which city policymakers can target to reduce CF. We
observe a strong concentration of household CF in a few cities in Japan: 40% of the total Japanese
CF is driven by 143 cities. Understanding a city’s consumption-based CF of households in addition
to its direct emissions exposes additional policy options for each citizen to contribute to achieving
national goals.

1. Introduction

Cities are the heart of economic development, and
those in cities depend on supply chains bringing
goods and services into cities. Inmodern society there
is often a substantial spatial distance between produc-
tion and consumption places.

While greenhouse gas (GHG) emissions associ-
ated with production are directly emitted by pro-
ducers, consumers share responsibility for emissions
given that it is their demand which induces those
emissions. Responsibility for emissions is attribut-
able to both producers and consumers [2–4]. Emis-
sions accounts which attribute emissions to pro-
ducers are called production-based accounts (PBA)
emissions, and accounts which follow those embod-
ied emissions through trade and transformations
stages to attribute them to final consumers are called
consumption-based accounts (CBA), or carbon foot-
print (CF) accounts.Many studies have preparedCBA
accounts of national [5–9], regional [10–13], and city

carbon emissions [14]. Most of these studies focus
on national level footprints because of insufficient
data of input-output (IO) tables, which calculate the
embodied emissions in various good and services,
and consumption statistics at regional and city scale.

Cities are emerging as leading actors in climate
change mitigation. According to the Carbon Dis-
closure Project, 1106 cities have set emission reduc-
tion targets [15]. Many of these targets consider only
direct emissions (PBA) within the city’s immediate
area. Thus there is a risk that cities may appear to
achieve their targets simply replacing products made
in the city with products made elsewhere. This phe-
nomenon occurs at the national level. Many coun-
tries have made progress toward targets when using
conventional PBA accounting, but after including
embodied emissions in net trade, their CBA footprint
reveals their emissions footprint to be merely dis-
placed, not reduced [5–8, 16].

Larger cities are beginning to evaluate their
full CBA emissions footprint. A recent C40 report
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estimated the consumption-based carbon emissions
of 79 large cities [17]. Yet conducting a rigorous CBA
account for a city remains a laborious and data intens-
ive exercise. Many smaller and midsize cities lack any
CF accounts and thus have no effective way to meas-
ure the climate impacts their consumption drives.

While local authorities clearly can more easily
govern the emissions which arise from directly within
their jurisdiction (direct emissions), understanding
their induced emissions footprint beyond their strict
jurisdictional scope can expose newpolicy options for
reducing their total footprint. Put another way, con-
sidering CBA-based emissions exposes more oppor-
tunities to effect GHG emissions reductions than are
available when looking at PBA (also called Scope 1)
interventions alone. Local governments can reduce
their CF through measures [18] such as:

• not encouraging air travel
• encouraging plant-based diets, e.g. supporting
farmers markets, vegetarian-first layouts at public
canteens, or promoting meatless Mondays

• requiring certified renewable electricity
• promoting electrical or hydrogen refill stations and
fleets, and restricting fossil fuel and energy ineffi-
cient vehicles

• requiring environmental product declarations in
building materials

• adopting green procurement

Four of the authors of this paper live in cities
where municipal solid waste is sent away to an incin-
erator outside the core city jurisdiction: implement-
ing carbon capture at that facility would offer a sub-
stantial GHG emissions reduction yet this reduction
opportunity might not be visible in simple within-
city-limits direct emissions. Existing studies estimat-
ing city CFs predominantly use one of two methods:
top-down estimates which using city-level purchasing
power and population data to decompose national
or state level estimates into constituent cities in the
region [19] or bottom-up methods which build on
consumer expenditure data [20–27]. The bottom-up
approaches tend to be more accurate but are far more
data intensive and require consumer expenditure data
at the city or household level. Top-down approaches
seek to estimate CFs for many cities in an area at
once and use estimation where city-level emissions
and expenditure data is inconsistent or missing. Yet
top-down studies most often do not use city-level
detailed consumption categories and thus are not as
accurate as those built using a bottom-up approach.
As a hybrid between the two there are several stud-
ies which use city-level IO tables [28–31], detailing
economic flows, production, and consumption at the
city level. However, statistical agencies do not usually
compile city-level IO tables. One project, the Indus-
trial Ecology Virtual Laboratory (IELab) estimates

city-level IO tables to construct a city-level multi-
regional input-output (MRIO) model [32]. A IELab
version for Japan has recently been announced [33].

In this study we integrate a 47 prefecture MRIO
model of Japan with microdata from 60 000 house-
holds itemizing consumption expenditure and estim-
ate consumption-based emission of 1172 Japanese
cities. We also explore the relationship between per
capita city-level CF and population density and
expect a positive slope. This hypothesis is based on the
fact that in Japan the more densely populated places
have higher incomes. Using this, we identify which
consumption activities policymakers should target to
reduce consumption-based emissions.

2. Data andmethods

We estimate the consumption-based carbon emis-
sions of 60 000 households using an MRIO
model which covers Japan’s 47 prefectures and
includes trade. The MRIO table is from Hasegawa
et al [10]. We collected direct carbon emis-
sions from each prefecture, itemized by industry,
by contacting each prefecture’s official environ-
mental division (see table S1, available online at
https://stacks.iop.org/ERL/15/114053/mmedia) and
using prefecture-level energy balance tables [34].
The energy balance tables contain energy use by fuel
types and industries, carbon intensities by fuel, and
detailed carbon emissions by industries but lack the
emissions from most transport industries. To cor-
rect these emission datasets, we use official carbon
emissions (broken down into five sectors: industries,
commercial, residential, transport, and energy con-
version) totals as scale and itemized carbon emissions
from energy balance tables (31 sectors) to disaggreg-
ate official total carbon emissions amongst all indus-
tries. Therefore, we consider the energy carrier dif-
ference by prefectures and the fuel mix. We contact
and collect prefecture-level official carbon emissions
from environmental division of each prefecture (see
table S1 and figure S4). The energy balance tables
lack most of transport industry (only private house-
hold transport is available) and therefore we com-
plement it with officially compiled emissions by pre-
fecture. In this study, we only consider carbon emis-
sions and does not include other GHG emissions.
To inform the structure and level of consumption
data we use the original micro-consumption data
from the 2004 National Survey of Family Income
and Expenditure (NSFIE) conducted by the Statistics
Bureau of Japan. The survey provides the aggreg-
ated version of household consumption data in their
website. For this study, we used the household-level
microdata results from ~60 000 households with
321 consumption items, obtained by special per-
mission. The data sampling and collection of house-
hold expenditure survey was carried out by the Stat-
istics Bureau of Japan with stratified sampling (see
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www.stat.go.jp/data/zensho/2004/cgaiyo.html#5). In
this analysis we focused on household emissions and
do not include consumption by non-profit organiz-
ations, government consumption and capital form-
ation. Although our analysis does not cover whole
city’s CF, CF from household consumption is domin-
ant for the total CF on the globe [35], and the Japanese
household CF consists of 60% of the total [36]. Note
we needed to use 2004 NSFIE dataset because there is
no publicly available newer version of 47 prefecture-
level MRIO after Hasegawa et al [10]. MRIO and
emissions data are for 2005.

The consumption-based carbon emission of
household h in city k attributed to prefecture s is
defined as [4, 37]:

Fkjh =
∑
i,r,s

friL
rs
ij y

k,NSFIE
jh (1)

where f refers to factor inputs, i.e. GHG emissions
per unit of production, L is the Leontief inverse (see
[38] for more information about the use of the Leon-
tief demand-pull model for calculating CFs), yk,NSFIEh

is consumption expenditure of each of the 60 000
households in city k reporting in the NSFIE, i and j
are sector of origin and destination, and r and s are the
exporting and importing prefectures, respectively.We
converted the consumption expenditure data from
purchasers’ price into producers’ price using mar-
gin and producers’ price final demand of national IO
table.

Based on these footprints as estimated for each of
the 60 000 individual households we estimate the city
household footprints as follows.

Because consumption data for a whole city is not
available for each city, we estimate the consumption-
based carbon emission of cities by CF per cap-
ita × population. Each city reports the number of
residents living in single-person, two-person, and 3+
person households. We assume that all persons in a
city in a single-person household follow the mean
consumption pattern (i.e. expenditure per category)
of single-person sample homes in that city; all per-
sons in a city in a two-person household follow the
mean consumption pattern of two-person sample
homes in that city; and so on. All samples are given
the same weight, as there is no information avail-
able which would suggest that one sample represents
more households than another sample. In the cases
where we have <5 samples for that household type
in that city, we assume the households of that type
in that city follow the prefecture-average consump-
tion pattern. This is admittedly a simplistic assump-
tion, but so far no studies estimate consumption-
based city emissions by expenditure category, so this
approach represents a first step, albeit with higher
uncertainty. Formally, we use following method
to estimate consumption-based carbon emission of

city k:

Fkj =
∑
t

Fk,tj (2)

Fk,tj =


mk,t∑
h=1

Fk,tjh /
mk∑
h=1

nhPk,t
(
mk,t ⩾ 5

)
NA(otherwise)

(3)

where t= {one - person, two - person,more than three
- person} is family type, nh is the family size of house-
hold h,mk,t is the number of households for each city
k and family type t, P is the city population, and − is
sample mean. NSFIE database also provide the num-
ber of persons for each household and therefore we
can also get household-level CF for each family type,
Fk,th . If data are available for just one home type, we use
equation (4) to estimate consumption-based emis-
sion of other family types for absolute volume and just
use available household type for per capita.

Fk,tjIO = FsjIO/P
sPk,t =

∑
i,j,r

friL
rs
ij y

s
jIO/P

sPk,t (4)

where IO refers that the source is from MRIO. Cities
with insufficient data (<5 microdata entries for every
family type) are shown in grey in maps and repor-
ted as insufficient data in our results. We can estim-
ate all (2300) city-level household CF with insuffi-
cient data using equation (4) and show in figure S1
but do not mention in main text because of much
higher uncertainty. Thus, the number of cities with
household CF shown in the main text is 1172. We get
the number of persons in each family type in each
city from a national census in 2004. The city polygon-
s/boundaries are retrieved from Kirimura et al [39]
(http://tkirimura.com/mmm/) and used for figures 1,
4–6, S1, S2, and the website. Because NSFIE’s and
IO table’s classification is different, we apply the con-
cordance table (see the supporting information: SI)
to match the classification from 321 items to 80 com-
modity sectors and provide the results at 11 aggregate
sectors.

In figures 4–6 and table 1, we estimated relative
deviation from the mean of per capita consumption-
based emission for Japanese households as follow:

Dk
j =

Fkj /P
k

Fj/P
− 1 (5)

where the denominator shows the Japanese average
per capita CF and the numerator shows the city-level
average per capita CF.

Uncertainty is introduced into the results from
two sources. First, the MRIO model used to calculate
CBA accounts for regions and individual products
is not perfectly reliable. Second, the city-level res-
ults may be subject to sampling error, i.e. that the
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Figure 1.Mapping the household CF of 1172 Japanese cities in absolute (top) and per capita terms (bottom). Urban small cities
and special wards have high CFs while rural town and villages have low CFs. Similarly, urban cities and special wards have high
per capita CFs, though there are not strong differences in per capita emissions between urban and rural areas. Grey areas indicate
insufficient data and may be assumed to follow national-average consumption. See more detailed city-level results on table 1 and
https://city.spatialfootprint.com/#japan.

households surveyed are not perfectly representat-
ive. Households may misreport their spending on
the consumer expenditure survey, and the house-
holds sampled may not be perfectly representative.
Regarding the first source of uncertainty, since Japan-
ese MRIO models do not report any standard error
information it is not possible to precisely quantify the
reliability of the MRIO results. However, based on
previous work on reliability and cross-agreement of
MRIO databases [40–42] we opted to assume 20%
relative standard error (S.E.) and normally distrib-
uted error for each data points. Theoretically, uni-
form relative S.E. is unfavorable, and MRIO tables
and emission data should show non-uniform S.E.
[40, 43] like the Eora MRIO table. Other studies

have investigated the reliability of MRIO results at
the international level and found that independent
models agree to within ±5% for developed econom-
ies and ±20%–40% for smaller economies [41, 42,
44]. The other source of uncertainty, arising from
potential sampling error, can also be estimated quant-
itatively. We estimated the uncertainty of CF of cit-
ies associated with sample size using a bootstrap
method. We used following procedures to estimate
the uncertainties. First, we performed a bootstrap
sampling using 1000 iterations. Second, we chose
the size of the sample and use all samples for each
city. Finally, we estimated CF of cities from each
sample and computed the standard error of CF of
cities.
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3. Results

We showhouseholdCF of 1172 Japanese cities in both
absolute and per capita terms in figure 1. Household
CF of cities range from 0.007 to 6.733 Mt CO2, or
from 2.4–7.5 tCO2/cap. The top decile of highest-
emitting cities (117 of 1172 cities) drive 34.5% of
Japan’s total CO2 footprint. The top 30% of highest-
emitting cities (352 of 1172) drive 64.5% of CO2

emissions in Japan.
Japan has ~2000 cities in total and this study cov-

ers only 1172 cities. We did not analyze the remaining
cities since they have either no data or an unusably
small sample size (<5 responses). These towns tend to
be bedroom communities or small-scale agricultural
communities with small direct emissions but stand-
ard levels of embodied emissions from consumption.

Before presenting results the reader should know
that several large well-known cities in Japan includ-
ing Tokyo and Osaka are, formally, not single cities
but are composed of several ‘special wards’. We chose
to follow these formal jurisdictions as these align with
most of the source data available. In order to be use-
ful to policymakers the results too should follow these
formal jurisdictions. For these special wards we note
in parentheses the well-known name of the urban
area they are part of.

The top 5 cities with the largest CF are Setagaya
(Tokyo), Ota (Tokyo), Sakai (Osaka), Hamamatsu
(Shizuoka), and Niigata (Niigata). These are con-
centrated in urban areas. The top ten cities by CF
per capita are Nishi (Hokkaido), Musashino (Tokyo),
Sukumo (Kochi), Shinagawa (Tokyo), Chuo (Tokyo),
Kokubunji (Tokyo), Nakano (Tokyo), Setagaya
(Tokyo), Nishi (Saitama), and Bunkyo (Tokyo). We
observe some unusual results like high per-capita
CBA in the small city of Sukumo (population: 24
000 people, number of household samples: 25) and
Minowamachi (population: 26 000 people, num-
ber of household samples: 27). As the sample size
per city becomes smaller, the probability that the
smaller sample correctly represents the entire city
decreases. Thus, results for smaller cities are less reli-
able than results for larger cities. Several figures with
further information on dataset and city-level res-
ult reliability are presented in the supplementary
information.

Japanese cities tend to have more similar CBA
emissions but a larger variation in their PBA-based
emissions (figure 2). Figure S2 shows city carbon
emissions in PBA. Cities with large imports of
embodied emissions (CBA exceeding PBA) tend to
have high population densities. This is a consequence
of the fact that that urban residents rely on power
plants, factories, and agriculture located in less dense
areas.

Larger cities tend to have higher per-capita CFs.
CF per capita grows positively with city size until
a size of c. 400 000 (figure 3(a)). We hypothesized

that more dense areas would also have higher CF
per capita, but the results show that CF per cap-
ita is relatively invariant to density (figure 3(b)).
The detailed commodity-level results are differ-
ent from the overall trends. As population dens-
ity increases, transport CF per capita decreased
(figure S9).

In Japan small and large cities have relatively
similar CF per capita, though large cities tend to
have slightly higher CF per capita than smaller ones
except for >400 000 population cities. Interestingly,
this is the opposite of what is observed in Norway.
Larsen and Hertwich report that smaller municipal-
ities have a larger consumption-based carbon emis-
sions per capita [46]. This may come from the dif-
ferences between Norwegian and Japanese lifestyle.
Our results for Japan show a large variation in CF/cap
for smaller (<200 000 ppl.) cities, with some of these
smaller cities being rural and having low income and
low levels of consumption.

Figures 4–6 illustrate how various cities differ
from the mean pattern of consumption-based emis-
sion in Japan. The differences in city-level CBA results
means each city will have a slightly different ranked
priority order of areas where to work to reduce their
footprint.

In figure 4 (top panel) the cities in red have high
private vehicle emissions relative to the national aver-
age. Metro areas, in blue, tend to have low private
vehicle use. Policymakers in cities with high emis-
sion from private vehicle use can prioritize policies
to address vehicle emissions. The lower panel of fig-
ure 4, showing public transport including air trans-
portation emissions relative to the national aver-
age, reveals that those same cities with high private
vehicle use also under-utilize public transport relat-
ive to the national average. (This latter result would
also be observed if public transport in rural areas
had a lower carbon intensity than public transport in
Tokyo, however it is more likely lower level of pub-
lic transport activity [47, 48], rather than a lower
carbon intensity of that activity, which explains this
result.) Urban residents use air travel and emit a
large CF (figure S6). When public and private trans-
portation are combined, the CF of transportation
is relatively greater for residents of suburban areas
(figure S7).

Figure 5 highlights cities with above- and below-
average per capita consumption-based emission of
electricity (top panel) and other energy (mainly ker-
osene for heating) (lower panel). Note that these
energy items are only accounted for the home-related
energy and that the CF associated with energy/fuel
for private vehicle is considered in private transport
sector. For cities with above-average CFs from elec-
tricity, the cities in western Japan shown in red in
figure 5 top panel, demand-reduction measures and
securing low-carbon electricity will be high priorit-
ies. For cities with above-average fuel oil footprints,
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Figure 2. Cities with higher population density (larger dots correspond to higher population density, measured as persons per
km2) have higher household CF (visible in absolute terms in panel a and in per capita terms in panel b). We also observe carbon
emission transfer from low population density cities, where production-based emissions are higher, to high population density
cities where CBA is higher than PBA, i.e. who are net importers (b). In both figures, cities lying above the 45-degree line are net
importers of embodied emissions, and cities lying below are net exporters. Urban regions (Kanto and Kansai regions; the larger
orange and green cities) have higher household CF than production-based emissions. We estimate the production-based
emissions of cities from a 1 km resolution direct emissions map [45] (figure S2). Each corresponds to one city and the circle size
corresponds to population. There are dozens of cities which have higher PBA than CBA and these cities have large power plants or
similar large scale factories.

Figure 3. Scatter plot of the household CF of 1172 Japanese cities. Population (a) and log scale population density (b) are on
x-axis the CF per capita is on y-axis. A nonparametric regression curve is added as a black line. Each dot shows each city and the
size of dots show absolute value of the city CF.

which are shown in red in figure 5 lower panel, redu-
cing non-electricity energy emissions will be more
important. (As a reminder, in the MRIO modeling
used in this study, direct emissions from building fuel
oil emissions will be correctly attributed to the city in
both PBA and CBA accounts.). According to the total
CF related to all energies (electricity, gas, and other
energy), cities in the north, which consumemore ker-
osene for heating, emit more CF than other regions
(figure S8). The results also reveal that city residents
have higher CFs from durable goods (e.g. personal

computers, TVs, or cars) and food consumption com-
pared to rural areas (figure 6).

Looking selected individual cities, it is clear
that individual cities vary in tangible ways com-
pared to national averages. Table 1 presents res-
ults from several cities. The cities shown in table 1
were hand-selected to show a range of geographic
and demographic variety. Full results for all cit-
ies will be made available from the project website
https://city.spatialfootprint.com/#japan. In the res-
ults we can see for example that in the Setagaya

7
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Figure 4. Relative deviation from the mean of Japanese per capita consumption-based emission of transport consumption.
Private transport consumption in Tokyo, Osaka, and Fukuoka area induce low household CF compared to the national average
(top). On the other hand, public transport consumption in those area induce high household CF (bottom).

ward of Tokyo, Matsuyama, and Kagoshima electri-
city usage is higher than the national average. Sus-
tainability practitioners working at the city level can
use this result to look into more detail why these cit-
ies have above-average electricity usage. Setagaya also
has an exceptionally high public transport footprint
(240% above the national average). There, efforts to
realize low-carbon public transport can have a very
large effect in reducing its city household CF. City
managers can look more closely into specific cat-
egories to learn about relevant policy options. For
example, Hakata in Fukuoka has a much below-
average CF from education. Authorities there can
investigate whether this is due to less education activ-
ity in general, or whether the level of activity is nor-
mal but the carbon intensity of that activity is advant-
ageously low. The reliability information, based on
the uncertainty associated with the sample size, is

shown in figure 7. For example, Higashi, Sapporo,
(Hokkaido) emit 1.33 Mt CO2 (2.5–97.5 percentile:
1.16–1.54 Mt CO2 or 87.7%–116% compared to our
estimate). The range of error highly depends on the
number of samples and data variation. A large num-
ber of samples and large city have small error range
and vice versa.

4. Discussion

Different cities have different consumption patterns.
Information on the composition of the city house-
hold CF is necessary for cities to tailor policy options
to suit and prioritize the most effective steps to
reduce their consumption-based carbon emissions.
This study presents for the first time an itemized
and comprehensive inventory of city-level household
CF inventories estimated using detailed consumer

8



Environ. Res. Lett. 15 (2020) 114053 K Kanemoto et al

Figure 5. Relative deviation from the mean of per capita Japanese consumption-based emission of energy consumption. High per
capita consumption-based emission of electricity are visible in western Japan, excepting the Kyushu and Tokyo regions (top
figure). Per capita consumption-based emission of other energy (mainly kerosene for heating) consumption is high in northern
and the Sea of Japan side (lower figure).

expenditure microdata. These inventories can be
used by cities to complement the direct emissions
inventories that are already published by provincial
authorities and tailor a climate action plan to suit
them. Furthermore, we observe that consumption-
based carbon emissions of cities are highly concen-
trated in a few cities. 143 cities induce 40% of the
country’s total household CF. This means that strong
action by a relatively few cities can have a large impact
helping Japan achieve national level climate targets.
Climate mitigation actions by a small number of cit-
ies can provide substantial reduction of carbon emis-
sions.

There are two broad kinds of uncertainties in the
calculation of CF of cities. One is from the lack of
sample size and the other is from data itself. For
example, we need to estimate CF of a city from five

samples and can estimate CF of another city from
100 samples. Usually, the latter estimate is much
more accurate than the former estimate under ran-
dom sampling. Even if we get enough samples to
estimate CF of cities, collected data is not accur-
ate because of misreporting etc. Because the Japan-
ese prefecture-level MRIO table does not report the
standard error, in this study we cannot estimate the
later uncertainty correctly method. Only a few envir-
onmental footprint studies estimate the uncertainty
of the former estimates, but based on indicative find-
ings from Oita et al [49] and Lenzen et al [50]. the
uncertainty range of the later may be expected to be
around 10%–30%. Another limitation of the present
study is that the Japanese MRIO used assumes that
goods imported into Japan use the same global car-
bon intensity regardless of country of origin. Finally,
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Figure 6. Relative deviation from the mean of per capita Japanese consumption-based emission of durable goods and food
consumption. Urban areas emit relatively high household CFs of durable goods consumption (top) and food consumption
(bottom).

the data vintage must be kept in mind as a limita-
tion of the results presented here. While consump-
tion expenditure has grown since 2004, the relative
expenditure on different categories of goods and vari-
ous foodstuffs is perhaps more stable. The vintage of
the IO table data is also a limitation. In executing this
study we faced the choice between an older, year 2005
Japanese MRIO, or a newer, year 2015 IO. We used
the 2005 MRIO because city-level CF highly depends
on the emission factor by prefecture industries such as

regional electricity producer. The body of MRIO lit-
erature has shown that the inter-regional trade flow is
only the 3rd or 4th most important item in an error
budget [51–53]. The direct emissions data, in-region
IO table, and consumption bundle, are more import-
ant factors in achieving accurate IO results. The
prefecture-level direct emission data is from detailed
sectoral level energy balance tables and official direct
emissions by prefectures and therefore these factors
are well handled in our model.
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Figure 7. Uncertainty of CF of selected cities. The error bars are estimated by bootstrap method with 1000 resampling and
represent 2.5% and 97.5%.

Finally, we recommend the following three main
policy targets. The first is increasing public trans-
port and renewable fuel vehicles. The cities in red in
figure 4, upper panel, are heavily reliant on private
cars. While in many areas it is not feasible to ask
residents to give up cars, providing incentives for
electric and renewable fuel vehicles and increased
support for public transport could be a powerful
emission reduction policy. Second, heating and cool-
ing are one of biggest drivers of household CF, yet
any measures have not been taken to reduce those
building energy demand regarding differences of the
regional characteristics [54]. There is still room for
reducing household CF via the replacement of heat-
ing and cooling equipment as the air-conditioner by
the more efficient one [55, 56]. Policymakers could
deliver subsidies for replacement, require energy effi-
ciency labelling in real estate listings, enforce high
standards on new construction, and support energy
efficiency retrofit programs. Additionally, it is also
important to encourage consumers to save water
heating e.g. through shorter showers and less frequent
baths because its contribution to the home-related
energy has been dominant; or to invest in more car-
bon efficient methods of providing hot water such
as rooftop solar heaters [57]. A final recommenda-
tion is to reduce excessive consumption [30, 58]. We
observed that cities in urban area especially Kanto
area, including Tokyo and Yokohama, consume food
and durable goods at rates much higher than the
national average. Without directly intervening, poli-
cymakers still have opportunities to promote more
sustainable consumption patterns. In terms of diets,
policymakers could help to encourage a transition to a
lower trophic level diet [59], encourage reducing alco-
hol, confectionary, and restaurant consumption [60],

work to decrease food waste, and encourage plant-
based diets.

CF inventories of cities are fundamental inform-
ation needed for guiding and evaluating policy. With
accurate and detailed CF inventories it becomes pos-
sible to form more precise policy guidance and to
undertake studies which identify the role of key
factors and actions in affecting a city’s CF. City
policy makers can analyze their cities’ characterist-
ics from our analytical results in order to find suit-
able policies to help reduce their city’s scope 3 foot-
print. The inventories offer by this study provide
a data foundation which can guide this important
work.

As we have shown, different cities have differ-
ent CF compositions. Spatially detailed and city-level
inventories can help policymakers at the national,
province/prefecture/state, and county/municipality
level to allocate resources and set priorities tailored
to their jurisdiction. While the GHG implications of
specific actions (e.g. replacing one car trip with a bike
or train trip, or replacing one beef-based meal with
a vegetarian one) are well documented in the literat-
ure, mapping the CF profile at broader spatial scales
makes it possible to better target interventions (e.g.
where to improve public transit, or where to advertise
meatless Mondays.) City and prefecture level officials
would not be able to set such priorities as effectively if
they only had a list of individual intervention oppor-
tunities and no sense of which opportunities can be
pursued where and at what scale.

Ideally detailed city and province-level PBA and
CBA emissions inventories should be a product of
either the national statistics or national environ-
mental management agency. Such inventories are a
fundamental requirement for guiding countries on a
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maximally effective and minimally disruptive traject-
ory toward a zero-emissions society. In the absence of
such official inventories provided by national agen-
cies, unofficial inventories produced by the academic
sector, such as the present offering, can serve as a
placeholder until—hopefully—official data become
available.

The model results are available at: http://city.
spatialfootprint.com/#japan
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