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Abstract 

 

Multiple dipeptidyl-peptidases (DPPs) are present in the periplasmic space of Porphyromonas gingivalis, an 

asaccharolytic periodontopathic bacterium. Dipeptides produced by DPPs are presumed to be transported into the 

bacterial cells and metabolized to generate energy and cellular components. The present study aimed to identify a 

transporter responsible for dipeptide uptake in the bacterium. A real-time metabolic analysis demonstrated that P. 

gingivalis preferentially incorporated Gly-Xaa dipeptides, and then, single amino acids, tripeptides, and longer 

oligopeptides to lesser extents. Heterologous expression of the P. gingivalis serine/threonine transporter (SstT) 

(PGN_1460), oligopeptide transporter (Opt) (PGN_1518), and proton-dependent oligopeptide transporter (Pot) 

(PGN_0135) genes demonstrated that Escherichia coli expressing Pot exclusively incorporated Gly-Gly, while 

SstT managed Ser uptake and Opt was responsible for Gly-Gly-Gly uptake. Dipeptide uptake was significantly 

decreased in a P. gingivalis Dpot strain and further suppressed in a Dpot-Dopt double-deficient strain. In addition, 

the growth of the Dpot strain was markedly attenuated and the Dpot-Dopt strain scarcely grew, whereas the DsstT 

strain grew well almost like wild type. Consequently, these results demonstrate that predominant uptake of 

dipeptide in P. gingivalis is mostly managed by POT. We thus propose that Pot is a potential therapeutic target of 

periodontal disease and P. gingivalis-related systemic diseases. 

 

 
INTRODUCTION 

 

Porphyromonas gingivalis, an asaccharolytic Gram-negative anaerobe, is a keystone pathogen in chronic 

periodontitis, a highly prevalent type of chronic inflammation of periodontal tissues. This disease is the main 

cause of tooth loss in adults, which decreases the quality of life especially in the elderly. In addition, a large 

number of epidemiological and molecular-based studies have shown a keen association of chronic periodontitis 

and type 2 diabetes mellitus accounted for the involvement of inflammation and bacterial pathogens like 

lipopolysaccharide (Grossi and Genco 1998; Lalla and Papapanou 2011). We recently reported a more direct 

commitment of periodontopathic bacteria to the disease in which bacterial dipeptidyl-peptidase (DPP) 4 

modulates blood glucose level through the degradation of incretin peptides, glucagon-like peptide 1 (GLP-1) and 
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glucose-dependent insulinotropic polypeptide (GIP) (Ohara-Nemoto et al. 2017). Furthermore, P. gingivalis has 

been recently detected in the brain, suggesting its association with neurodegeneration in Alzheimer’s disease 

patients (Dominy et al. 2019). Therefore, it is important to elucidate the bacterial metabolic process for disease 

prevention and care of P. gingivalis-related systemic as well as oral diseases. 

    P. gingivalis growth is not supported by carbohydrates but by proteinaceous nutrients, and then the 

bacterium exclusively utilizes amino acids as its carbon and energy sources (Seddon et al. 1988). Previous 

studies suggested that most proteinaceous nutrients are incorporated as dipeptides into bacterial cells, since the 

production of end products such as methyl mercaptan and ammonia is significantly accelerated by the addition of 

dipeptides (Tang-Larsen et al. 1995; Takahashi and Sato 2001). In accord with these findings, P. gingivalis 

characteristically possesses four kinds of periplasmic dipeptidyl-peptidases (DPPs) that liberate dipeptides from 

the non-modified N-termini of polypeptides, in contrast to a trace of aminopeptidase activity (Nemoto and 

Ohara-Nemoto 2016b; Ohara-Nemoto et al. 2018). DPP4 preferentially cleaves a peptide bond on the C-terminal 

side of penultimate Pro from the N-terminus (P1 position) (Kiyama et al. 1998; Banbula et al. 2000) and P1 Ala 

with a lesser extent (Mentlein, Gallwitz and Schmidt 1993). DPP4 from P. gingivalis degrades GLP-1 and GIP 

same as the mammalian entity, resulting in elevation and prolongation of postprandial hyperglycemia in the 

mouse model (Ohara-Nemoto et al. 2017). Both DPP5 (Ohara-Nemoto et al. 2014) and DPP7 (Banbula et al. 

2001) are preferential for P1 hydrophobic residues, though DPP7 prefers hydrophobic N-terminal (P2-position) 

residues (Nemoto et al. 2018) and DPP5 has no such preference (Rouf et al. 2013). Finally, DPP11 is specific for 

P1 acidic residues, Asp and Glu (Ohara-Nemoto et al. 2011). Accompanying with these DPPs, P. gingivalis 

expresses prolyl tripeptidyl-peptidase A (PTP-A) (Banbula et al. 1999) and acylpeptidyl oligopeptidase (AOP) 

(Nemoto et al. 2016a) in the periplasmic space, which provide oligopeptides acceptable for DPPs. These 

characteristic features of dipeptide production and possible utilization let us presume that amino acid nutrients are 

transported mainly as a dipeptidyl form via a plasma membrane transporter. In the present study, we aimed to 

identify the transport molecule responsible for dipeptide uptake in P. gingivalis. 
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METHODS 

 

Bacterial growth conditions 

P. gingivalis ATCC 33277 were grown at 37˚C anaerobically (80% N2, 10% CO2, 10% H2) in Anaerobic 

Bacterial Culture Medium (ABCM) broth (EIKEN Chemical, Tochigi, Japan) supplemented with 0.5 µg mL-1 of 

menadione without or with 10 µg mL-1 of ampicillin and/or erythromycin. To measure bacterial growth, bacterial 

cells were collected in an early stationary phase and resuspended in the broth to adjust to 0.2 at A600. Cultures in a 

96-well plate were monitored by measuring A600. Growth was also measured by spotting 2 µL of 10-time serially 

diluted bacterial suspensions from a concentration of 107 cfu 2 µL-1 on ABCM agar plates containing 0.5 µg  

mL-1 of menadione and 5% sheep blood (blood agar plates). E. coli XL-1 blue and Streptococcus anginosus 

NCTC 10713 were cultured aerobically at 37˚C in Luria-Bertani (LB) broth and brain heart infusion broth, 

respectively. 

 

Substrate uptake assay 

Transporter activities were evaluated by a real-time measurement of bacterial metabolic activity using 

alamarBlue Cell Viability Reagent composed of resazurin (Thermo Fisher Scientific, Waltham, USA), according 

to previous reports (Shiloh, Ruan and Nathan 1997; Ishiguro et al. 2015) with slight modifications. In brief, 

bacterial cells precultured to A600 of 0.8 were harvested, washed twice with ice-cold PBS, and then suspended in 

50 mM HEPES, pH 7.5, to A600 of 0.3. The reagent was added to the cell suspensions giving a final concentration 

of 2.5 mM and incubated at 25˚C for 5 min. Measurement was started by the addition of an aliquot (40 µL) of the 

bacterial cell suspension to a reaction mixture (final 200 µL) composed of 50 mM HEPES without or with either 

10 mM single amino acids, 5 mM dipeptides, 5 mM each of two kinds of amino acids, or equivalent amounts of 

peptidyl compounds in an OptiPlate-96F (PerkinElmer). Fluorescence intensity with excitation at 550 nm and 

emission at 585 nm was measured every five min after two sec-shaking for 30 min with a DTX 800 Multimode 

Detector (Beckman Coulter). Fluorescence intensity (n = 4) was subtracted by that without a substrate, then the 

resulting figures represented genuine incorporation and metabolism mediated by each substrate. Amino acids, 
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Gly-Gly, Gly-Gln, Gly-Leu, Gly-Glu, polyE750, and polyE1500 were purchased from Sigma-Aldrich. Gly-Pro, 

Glu-Glu, and GGG were from Peptide Institute (Ibaraki, Japan), acetyl (Ac)-Gly-Leu and GGP from Bachem 

(Bubendorf, Switzerland), and Gly-Ser from Tokyo Chemical Industry.  

 

Expression of transporter proteins in E. coli 

The serine/threonine transporter (SstT) (PGN_1640), putative oligopeptide transporter (Opt) (PGN_1518), and 

putative H+/peptide symporter (alias proton-dependent oligopeptide transporter, Pot) (PGN_0135) genes were 

amplified by PCR with genomic DNA and an appropriate set of primers (Supplementary Table S1). PCR 

products were cloned into pTrcHis2-TOPO and the constructs were verified by sequencing. E. coli XL1-Blue 

harboring the plasmid was cultured in LB broth supplemented with 75 µg mL-1 of ampicillin at 37˚C for 16 h, 

then diluted 3-fold with LB broth and the culture was continued. After 1-h culture, bacterial cells were divided 

into two aliquots with or without 0.2 mM IPTG, and then further cultured at 30˚C. After 3 h, bacterial cells were 

harvested and washed with ice-cold PBS and then subjected to further analyses. 

 

Construction of P. gingivalis strains disrupting transporter genes 

P. gingivalis strains with disrupted transporter genes were constructed by homologous recombination (Table 1). 

In short, to construct NDP700 DsstT (sstT::cepA), DNA fragments from both the 5’- and 3’-parts of the 

PGN_1640 gene were PCR amplified with primers (Supplementary Table S1). A cepA fragment flanked with 

parts of PGN_1640 was amplified with primers using pCR4-TOPO as a template. Integrated PCR was 

performed with a mixture of the three fragments with a set of primers (PGN1640-5F1 and 3R-comp-2-

PGN1640), then an obtained DNA fragment was introduced into P. gingivalis by electroporation. Gene-

disrupted strains were selected on blood agar plates containing 10 µg mL-1 of ampicillin. Similarly, NDP800 

Dopt (opt::cepA) and NDP900 Dpot (pot::cepA) were generated. For the second gene disruption, DNA fragments 

of the opt and pot genes were inserted with an erythromycin-resistant gene cassette (ermF ermAM) derived from 

pYKP301 by integrated PCR, and then the obtained fragments were introduced into the single-gene deficient 
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mutants. Double transporter-gene disrupted strains were selected in the presence of 10 µg mL-1 each of ampicillin 

and erythromycin. 

 

Immunoblot analysis 

E. coli cells (1 mL) were harvested and lysed in SDS-sample buffer (0.1 mL) containing 5 mM dithiothreitol and 

10 µL of GLASSMILK suspension (MP Biomedicals) to remove genomic DNA. For P. gingivalis cells, 50 µM 

tosyl-L-lysyl-chloromethane hydrochloride, 3 µM E64, and 10 µg mL-1 of leupeptin were further added to inhibit 

protease activities. After heating and centrifugation, proteins were separated by SDS-PAGE and transferred to a 

polyvinylidene difluoride membrane. The membrane was incubated with 1% skim milk in PBS containing 

0.05% Tween 20 and 0.05% Triton X-100. P. gingivalis transporters were detected using mouse anti-

hexahistidine Ig followed by alkaline phosphatase-conjugated anti-mouse IgG, and visualized with 5-bromo-4-

chloro-3-indolyl phosphate and nitro blue tetrazolium (Promega). A rainbow marker and low molecular weight 

markers were purchased from GE Healthcare. Anti-P. gingivalis Pot Ig was produced against a synthesized 

peptide (CM134YDNDTYRDKR144) using a Wistar rat. Non-endogenous ‘C’ was added to facilitate conjugation 

to a hapten scaffold. After blocking, the membrane was incubated with anti-Pot Ig followed with horseradish 

peroxidase-conjugated anti-rat IgG, and then the bands were visualized with Western BLoT Ultra Sensitive HPR 

Substrate (Takara Bio, Kusatsu, Japan). Protein concentration was determined with the Coomassie Brilliant Blue 

dye method (Promega) using bovine albumin as the standard. 

 

Amino acid sequence alignment and 3D homology modeling 

Amino acid sequences of bacterial POT members were aligned using Clustal W (Larkin et al. 2007). A 

pyrogenetic tree was created by PhyML of the SeaView multiplatform with the default setting (Gouy, Guindon 

and Gascuel 2010). Homology modeling of the 3D structure was generated by Phyre2 (Kelley et al. 2015) and 

visualized using the PyMOL Molecular Graphics System, Ver 2.0 (Schrödinger). 
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RESULTS AND DISCUSSION 

 

Dipeptide incorporation in P. gingivalis 

P. gingivalis holds a series of DPPs together with their supporting exopeptidases, PTP-A and AOP, while 

aminopeptidase activities are scant. These specialized features for producing dipeptides seem to be beneficial for 

the bacterium to acquire its niche in the oral cavity (Nemoto and Ohara-Nemoto, 2020). Since information on 

amino acid incorporation of P. gingivalis is limited, we firstly examined single amino acid uptake in P. gingivalis 

by real-time measurement of the metabolic activity (Shiloh, Ruan and Nathan 1997; Ishiguro et al. 2015). The 

higher increase in fluorescence intensity was obtained with Gly, Leu, Ser (Fig. 1), and Thr (data not shown) than 

Gln, Pro, Glu (Fig. 1), and other amino acids (data not shown). Because Gly provided a high fluorescence 

intensity and six Gly-Xaa dipeptides and GGG were commercially available, we subsequently used these glycyl 

compounds. In addition, Glu-Glu and Glu oligopeptides (polyE750 and polyE1500), which have been previously 

used for the bacterial metabolic study (Takahashi and Sato, 2001), were also tested. 

    As shown in Fig. 1A, fluorescence intensity increased linearly for 30 min, indicating that substrates 

incorporated into the bacterial cells were readily metabolized to produce reducing molecules including NADH. 

The increase was significant in the presence of Gly-Gly and Gly-Leu as compared to those with equivalent 

amounts of Gly, Leu, and a mixture of Gly and Leu. In contrast, Strep. anginosus and E. coli, saccharolytic 

bacteria that possess no DPPs, did not show obvious differences in the intensity among the substrates at 30 min 

(Fig. 1B). These results indicate that the increase in fluorescence intensity primarily reflects the incorporation 

efficiency of substrates as compared with the metabolic efficiency of each amino acid at least in P. gingivalis. 

Substrate preference of P. gingivalis was further examined (Fig. 1C). The results again demonstrated that P. 

gingivalis more preferentially incorporates dipeptides, particularly Gly-Gly, Gly-Ser, Gly-Gln, and Gly-Leu, 

while uptake of dipeptides composed of Pro and Glu seemed limited. The efficiency of incorporation of single 

amino acids (Gly, Ser, Leu), a combination of the two amino acids, and tripeptides GGG and GGP was 15 – 40% 

of that of Gly-Gly. The uptake of Gln, Glu, and Pro was limited. Although Gly-Leu was favorable, Ac-Gly-Leu 

was poorly incorporated (5% of Gly-Leu), uptake of Poly-Glu750 [(Glu)6 as a major part] was scarce, and poly-

Glu1500 [(Glu)11-20] was not incorporated. Taken together, these results confirmed that P. gingivalis more 
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preferentially incorporates proteinaceous nutrients as dipeptidyl forms than single amino acids, tripeptides and 

longer oligopeptides. 

 

Functional expression of P. gingivalis transporters in E. coli 

P. gingivalis ATCC 33277 (Pg) possesses three candidates of amino acid transporter genes (Naito et al 2008): 

the serine/threonine transporter sstT (PGN_1640) encoding 412 amino acids with a predicted molecular mass of 

41,951 (Dashper et al. 2001), the putative oligopeptide transporter opt (PGN_1518) encoding 659 amino acid 

residues with a molecular mass of 69,743, and the putative H+/peptide symporter (alias proton-dependent 

oligopeptide transporter) pot (PGN_0135) encoding 513 amino acids with a predicted molecular mass of 56,727. 

To elucidate their roles in substrate uptake, full-length of the three genes were expressed in E. coli as C-terminal 

hexahistidine tagged molecules (Table 1, Fig. 2). After induction, PgSstT was detected as a 28-kDa band, with 

58- and 94-kDa and even larger bands. A small amount of 28-kDa SstT was observed without induction (Fig. 

2A, lanes 1 and 2). PgOpt was expressed as a 46-kDa monomer with a 110-kDa dimer, and PgPot as 35-, 76- and 

150-kDa bands. These findings suggest a polymerization tendency of the P. gingivalis transporters even under 

denaturing conditions. 

    Substrate uptake of E. coli expressing P. gingivalis transporters was examined with Ser, Gly-Gly, and GGG, 

since Ser is a major substrate for SstT (Dashper et al. 2001) and Gly-Gly and GGG recorded maximal 

incorporation in dipeptidyl and tripeptidyl forms, respectively (Fig. 1C). Inherent uptakes of E. coli cells without 

and with IPTG induction were subtracted from those values of the cells harboring expressing plasmids, resulting 

in the figures educed by expression of P. gingivalis transporters. The uptake of Ser was significantly enhanced in 

E. coli expressing PgSstT, whereas those were negligible in both E. coli with PgOpt and PgPot (Fig. 2B). 

Incorporation of Gly-Gly was markedly increased in E. coli expressing PgPot after induction, while GGG uptake 

was enhanced in E. coli-PgOpt. A small GGG uptake observed in E. coli-PgPot was independent of induction. 

These results suggest that P. gingivalis transporters were functionally expressed in E. coli. As a result, it was 

concluded that Pot is predominantly responsible for dipeptide uptake, Opt for tripeptides, and SstT for amino 

acids in P. gingivalis. 
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Characteristics of P. gingivalis mutants with disrupted transporter genes 

Single (DsstT, Dopt, Dpot)- and double (DsstT-Dopt, DsstT-Dpot, Dopt-Dpot, Dpot-Dopt)-transporter gene-

disrupted P. gingivalis strains were constructed (Table 1). Mutant strains were selected by antimicrobial 

resistances and gene disruption was further confirmed by PCR. The length of inserted cepA gene was 1,117 bp 

and that of ermF-ermAM was 2,179 bp, and then the amplified sstT::cepA fragment (1,925 bp) was observed in 

the DsstT, DsstT-Dopt, and DsstT-Dpot strains (Fig. 3A, lanes 2, 5, and 6, respectively). The opt::cepA fragment 

(2,643 bp) was demonstrated in the Dopt and Dopt-Dpot (lanes 3 and 7, respectively), that of the opt::ermF-

ermAM (3,705 bp) was in the DsstT-Dopt and Dpot-Dopt (lanes 5 and 8, respectively), that of the pot::cepA (2,458 

bp) was present in the Dpot and Dpot-Dopt (lanes 4 and 8, respectively), and the pot::ermF-ermAM (3,520 bp) 

was in the DsstT-Dpot and Dopt-Dpot strains (lanes 6 and 7, respectively). Since NDP901 (Dpot-Dopt) exhibited a 

similar growth profile and substrate uptake tendency to those of NDP801 (Dopt-Dpot), the results from NDP801 

are solely presented following. 

    P. gingivalis Pot was shown as the main 35-kDa band together with minor 76- and 150-kDa bands, the 

same as those of Pot molecules expressed in E. coli (Figs. 3B). Although all bands disappeared in the pot 

mutants, those amounts seemed to decrease in the DsstT-Dopt strain due to an unknown reason at present. The 

apparent molecular size of 35 kDa of Pot was smaller than the calculated value (molecular mass = 56,746) on 

SDS-PAGE, and this feature of membrane proteins has been commonly reported, such as E. coli Pot (Weitz et al. 

2007).  

    Uptakes of five Gly-Xaa dipeptides and Glu-Glu were examined using the transporter-deficient strains (Fig. 

3C). The DsstT mutant showed a profile similar to that of the wild type, confirming that SstT does not 

incorporate dipeptides. In contrast, dipeptide uptakes were significantly reduced in the Dpot strain (approx. 30 – 

60 % each of that in the wild type). Since the Dpot strain maintained certain dipeptide uptake, other molecules 

such as Opt might function as a dipeptide transporter under these conditions. Unexpectedly, an enhanced 

dipeptide uptake (130%) was observed in the Dopt strain. These findings further suggested that the defect of opt 

is likely compensated by the expression of other molecules such as Pot, because of its involvement as an 
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adequate role in nutrient uptake. Among the double-deletion mutants, dipeptide uptake was not significantly 

altered in DsstT-Dopt, and the DsstT-Dpot strain also exhibited incorporation of dipeptides, except for a 

significant decrease in Glu-Glu. In contrast, dipeptide uptake was markedly reduced in the Dopt-Dpot strain. 

These observations again suggest that the defect of either opt or pot gene could be compensated by upregulation 

of another gene, while such compensation hardly occurred in the Dopt-Dpot double-deficient mutant. 

    The growth of the P. gingivalis transporter-deficient strains was investigated in liquid and on blood agar 

plate cultures. As shown in Fig. 3D, the DsstT  strain showed the least extent of growth retardation, further 

suggesting that uptake of single amino acids via SstT is rather limited and does not significantly contribute to 

bacterial metabolism and energy production. On the other hand, modest growth retardation was observed in the 

Dopt strain, while that was markedly attenuated in the Dpot strain with a prolonged lag phase. With blood agar 

plate culture (Fig. 3E), the weakness of the growth of the Dpot strain was reproduced. Furthermore, the growth of 

the DsstT-Dopt was more weakened than those of their single mutants, and the Dopt-Dpot strain failed to grow 

except with the highest level of inoculation. These results indicate that dipeptide uptake mainly managed by Pot 

is most closely associated with bacterial growth and suggest that Opt appears to have a subsidiary role in 

substrate incorporation. SstT seemed to have the least role in the growth under these conditions. 

 

Amino acid sequence comparison and 3D structure modeling of P. gingivalis Pot 

The amino acid sequence of P. gingivalis Pot (PgPot) exhibits 29.6% similarity with that of Geobacillus 

kaustophilus Pot (GkPOT), followed by 29.2% to that of Shewanella oneidensis PepTSo, 27.7% to that of E. coli 

dipeptide and tripeptide permease B (DtpB), and 27.3% to that of Streptococcus thermophilus PepTSt, while the 

phylogenetic tree shows a closer kinship with E. coli DtpB than S. oneidensis PepTSo (Supplemental Fig. S1). 

The amino acid sequence alignment with other bacterial entities, in which 3D structures have been determined, 

indicates that identical amino acid residues are mainly located at the N-terminal half (Fig. 4). The conserved 

‘ExxER/K’ motif in the POT members was shown to change to ‘N16MGER20’ in PgPot, though Glu32 in GkPot 

has been reported to be essential for proton-driven uptake of substrates (Doki et al. 2013). KEGG orthologue 

search revealed that the ‘NxGER’ sequence is conserved in the members in the order Bacteroidales including 
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periodontopathic bacteria such as Tannerella forsythia and Prevotella intermedia, and gut indigenous bacteria 

such as Bacteroides fragilis, Bacteroides thetaiotaomicron, and Alistipes onderdonkii, as well as the species in 

the family Porphyromonadaceae. Because of the medical importance, it is interesting to examine whether amino 

acid substitutions in the conserved motif provides specific characteristics to Bacteroidales POT members. 

    Homology modeling of the 3D structure (471 of 513 residues, 92%) was generated with 100% confidence 

by the single highest scoring template of GkPot (Doki et al. 2013), showing that PgPot consists of the conserved 

N-bundle transmembrane regions (TM) 1–6 and C-bundle TM 7–12, with the a helix regions HA and HB (Fig. 

5). The N- and C-bundles surround and form a large central cleft, thus providing a substrate-binding site. Since 

diverse substrate promiscuity is recognized as a characteristic feature of the POT members (Weitz et al. 2007; Ito 

et al. 2013; Newstead 2015), it is of interest to elucidate that the 3D structure and the substrate multispecificity of 

P. gingivalis Pot. 

 

CONCLUSIONS 

P. gingivalis preferentially incorporates dipeptides as nutritional amino acids, which is managed predominantly 

by Pot. The other two transporters, i.e., Opt mainly responsible for tripeptides and SstT for single amino acids, 

play subsidiary roles in uptakes of nutritional amino acids. Bacterial growth was significantly retarded in the 

Dpot mutant, and the Dpot-Dopt double mutant scarcely grew under the present culture conditions. Thus, 

dipeptide production by DPPs and their uptake by Pot are conclusive molecular events in P. gingivalis for the 

entire metabolism and energy production. The present results indicate that the Pot molecule can be a potential 

drug target for the prevention and care of periodontal disease as well as P. gingivalis-related systemic diseases 

such as type 2 diabetes mellitus and Alzheimer’s disease. 
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Table 1. Bacterial strains used in this study. 

 

 
 
  

Bacteria Strain Genotype Source or reference 

P. gingivalis ATCC 33277 – ATCC 

 NDP700 sstT::cepA This study 

 NDP701 sstT::cepA opt::[ermF ermAM] This study 

 NDP702 sstT::cepA pot::[ermF ermAM] This study 

 NDP800 opt::cepA This study 

 NDP801 opt::cepA pot::[ermF ermAM] This study 

 NDP900 pot::cepA This study 

 NDP901 pot::cepA opt::[ermF ermAM] This study 

E. coli XL-1 Blue – – 

Strep. anginosus NCTC 10713 – NCTC 
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Figure 1. Substrate uptake potential determined by real-time metabolic activity. 

(A) Fluorescence intensity was measured with P. gingivalis pre-incubated with resazurin reagent with either 5 

mM Gly-Gly or Gly-Leu, 10 mM Gly or Leu, or 5 mM each of Gly and Leu. The average was shown. (B) 

Substrate uptake was measured and fluorescence intensity at 30 min is depicted for P. gingivalis, Strep. 

anginosus, and E. coli. (C) The analysis with P. gingivalis was performed with at identical moles as amino acids 

(5 mM Gly-Xaa and Glu-Glu, 10 mM single amino acid, 5 mM of each combination of amino acids, 3.3 mM 

GGG, GGP, 5 mM Ac-Gly-Leu, 1.7 mM poly E750, 0.7 mM polyE1500). Representative results at 30 min are 

shown as the average ± S.D. (n = 4), and four independent measurements were performed. 
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Figure 2. Expression of P. gingivalis transporters in E. coli. 

(A) Western blot analysis of P. gingivalis SstT, Opt , and Pot expressed in E. coli with pTrcHis2-TOPO-sstT-, 

opt, and pot, respectively. Whole bacterial cell lysates were subjected to immunoblotting with an anti-

hexahistidine Ig. (B) E. coli cells were cultured with or without IPTG. After washing and preparation of bacterial 

cell suspensions, substrate uptake was measured with 10 mM Ser, 5 mM Gly-Gly, and 3.3 mM GGG for 30 min. 

Values were obtained by subtraction of endogenous uptake of E. coli without plasmids. Representative results 

from three independent experiments are shown as the average ± S.D. (n = 4). 
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Figure 3. Characteristics of transporter-deficient P. gingivalis strains. 

(A) Transporter-deficient P. gingivalis strains were confirmed by PCR using sets of primers for nested PCR and 

genomic DNA from wild type (lane 1), DsstT (lane 2), Dopt (lane 3), Dpot (lane 4), DsstT-Dopt (lane 5), DsstT-

Dpot (lane 6), Dopt-Dpot (lane 7), and Dpot-Dopt (lane 8). (B) Whole cell lysates (5 µg of protein) were subjected 

to SDS-PAGE and P. gingivalis Pot was detected with ECL immunoblotting. (C) Dipeptide uptakes were 

measured by the real-time metabolic assay. Representative results at 30 min are shown as the average ± S.D. (n = 

4), and three independent measurements were performed. *p < 0.05, **p < 0.01, as compared with wild-type 

(Student’s t-test). (D) P. gingivalis strains were grown in ABCM broth. The average ± S.D. was calculated (n = 

4). (E) P. gingivalis strains at 107 cfu 2 µL-1 and 10-fold serially diluted bacterial cell suspensions were 

inoculated on blood agar plates and cultured for 42 h. 
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-----------------MLKNHP---KGLISASLTNMGERFGFYIMMGILLLFLQAKFGLSGKE-------ASVIYS 50 
MATNNSHEQTIQSIPQKGFFGHP---RGLGVLFFVEFWERFSYYGMRAMLIFY-—MYFAIHQNGLGIDKTTAMSIMS 72 
MTQQNSHGNQIQDIPQTGFFGHP---RGLGVLFFVEFWERFSYYGMRALLIFY--MYFAVTDNGLGIDKTTAMSIMS 72 
-MASIDKQQIAASVPQRGFFGHP---KGLFTLFFTEFWERFSYYGMRAILVYY--MYYEVSKGGLGLDEHLALAIMS 71 
---MEDKG--------KTFFGQP---LGLSTLFMTEMWERFSYYGMRAILLYY-MWFLISTGDL----HITRATAAS 58 
MQNLNKTE--------KTFFGQP---RGLLTLFQTEFWERFSYYGMRAILVYYLYALTTADNAGLGLPKAQAMAIVS 66 
--MSVAKPQ-------GTMLGHP---KGLFLLFTTELWERFSYYAMRAILVLYLVDQVGKQGGGLGWTQADALSLYG 65 
----MNT---------TTPMGMLQQPRPFFMIFFVELWERFGYYGVQG-------VLAVFFVKQLGFSQEQAFVTFG 57 

   
 
 
IFYASVYVLALVG---GIIADSMKNYKGTILVGLIVMAAGYVMLGIPTPTQATGMTPWLIFTCAALAFISFGNGLFK 124 
VYGALIYMSSIPG---AWIADRITGTRGATLLGAVLIIIGHICL---SLPFALF------GLFSSMFFIIIGSGLMK 137 
VYGSLIYMTSIPG---GWIADRITGTRGATLLGAVFIIIGHICL---SLPFALI------GLFTSMFFIIIGSGLMK 137  
IYGALVYMSGIIG---GWLADRVFGTSRAVFYGGLLIMAGHIAL---AIPGGVA------ALFVSMALIVLGTGLLK 136 
IMAIYASMVYLSGTIGGFVADRIIGARPAVFWGGVLIMLGHIVL---ALPFGAS------ALFGSIILIIIGTGFLK 126 
IYGALVYLSTIVG---GWVADRLLGASRTIFLGGILITLGHIAL---ATPFGLS------SLFVALFLIILGTGMLK 131 
TFTALVYLTPLIG---GWLADNFLGQRKAIYFGGALMATGQFML---AAPHAWFPGIETTVFYIGLGTLILGNGLFK 136 
AFAALVYGLISIG---GYVGDHLLGTKRTIVLGALVLAIGYFMTG--MSLLKPDLIFIALGTIAV------GNGLFK 123 
               
 
 
GNLQALVGRMYDNDTYRDKRDSGFSLFYMFINVGAVFAPLVAVAI--RNWWVQHNGFVYNADL-----PERCHQIL- 193 
PNISNIVGRLYPENDTRIDAGFVIF--YMSVNLGALISPIILQHF--VDIRNFHGGFLLAAIG-MALGLVWYLL--- 206 
PNISNIVGRLYPENDRRMDAGFVIF--YMSVNMGALLSPIILQHF--VNVKNFHGGFLIAAVG-MALGLVWYVL--- 206 
PNVSSIVGDMYKPGDDRRDAGFSIF--YMGINLGAFLAPLVVGTA--GMKYNFHLGFGLAAVG-MFLGLVVFVA--- 205 
PNVSTLVGTLYDEHDRRRDAGFSIF--VFGINLGAFIAPLIVGAA--QEAAGYHVAFSLAAIG-MFIGLLVYYF--- 195 
PNISNMVGHLYSKDDSRRDTGFNIF--VVGINMGSLIAPLIVGTV--GQGVNYHLGFSLAAIG-MIFALFAYWY--- 200 
PNISTMVGDLYEEGDHRRDGAFTIF--YMGINLGAALSGFVVAWAYTSFGHAEVINGKEVFIN-NWQAGFFCAGIGM 210 
ANPASLLSKCYPPKDPRLDGAFTLF--YMSINIGSLIALSLAPVIADRFGYSVTYNLCGAGLIIALLVYIACRG--- 195 

       
 
-----------------NGTLPENAKAQVMEMIQAANNGT--AVATEGLQEFALKYIQVFSTGFHYAFLAAVFFMAI 251 
---------------FNRKNLGSVGMKPTNPLSKEEKRK---YGMIIG----------IIVAIVIVVLLVTYYTHTL 257 
---------------FNRKNLGSVGMKPTNPLTPAEKKK---YGLIIG----------S-VVLAIVLIIVIGALTNS 256 
---------------TRKKNLGLAGTYVPNPLTPAEKKK---AAAIMA----------V-GAVVIAVLLAILIPNG- 252 
---------------GGKKTLDPHYLRPTDPLAPEEVKPLL-VK---V----------SLAVAGFIAIIVVMNLVGW 243 
---------------GRLRHFPEIGREPSNPMDSKARRNFL-ITLTIV----------VIVAIIGFFLLYQASPANF 251 
LLSLVIQFLFAQKLLGDIGTVPAARLERERQAKLGNVRKEPLTKVERD----------RIKVIMVLGLFTIIFWAGF 277 
-----------------------MVKDIGSEPDFRPMSFSKLLYVLLG----------SVVMIFVCAWLMHNVEVAN 297 
 

 
SFLIYIINKHQYPADQKA-----------NAVTEAHKDQKQEIKMAADEIRQRIIALCAVFGVVIFFWMSFHQNGVS 317 
----SFDLISNTVLVLGV--ALPIIYFTTMLRSKDVTDGE---RSRVK--AFIPLFILGMLFWSIQEQGSNVLNI-Y 320 
L---SFNLVSNTVLVLGI--ALPIIYFTLIIRSKDVTDTE---RSRVK--AFIPLFILGMVFWAIQEQGSNVLNI-Y 320 
------WFTVETFISLVGILGIIIPIIYFVVMYRSPKTTAEE-RSRVI--AYIPLFVASAMFWAIQEQGSTILAN-Y 319 
----NSLPAYINLLTIVA---IAIPVFYFAWMISSVKVTSTE-HLRVV--SYIPLFIAAVLFWAIEEQGSVVLATFA 310 
I---NNFINVLSIIGIVV---PII---YFVMMFTSKKVESDE-RRKLT--AYIPLFLSAIVFWAIEEQSSTIIAV-W 315 
EQA-GGLMNLFTNEFTDR---------YIGTWEVPTTYFQ---SLNAI--FIVLFAPVVASIWIR--LGKNEPNSPV 337 
L--------VLIVLSIVVT------IIFFRQAFKLDKTGRNK-MFVAF--VLMLEAVVFYILYAQMPTSLNFFAI-- 297 
 
 
LTQFAKDYIDLSSVKLDLG-FTSIVGAEMFQSINPFFVVTLTPLLLFIFGFLKK---RNMEPSTPKKIVIGMFIAAL 390 
GLERSDMQLNLFGWTTRFGEALFQSINPLFILLFAPVISMIW----------LK--MGKKQPSLAIKFSIGTLLAGL 385 
GIEHSDMKLNLFGWKTNFGEAIFQSINPLFILLLAPIISLLW----------QK--LGTKQPSLPVKFAIGTFLAGA 385 
A--DKRTQLD--VAGIHLSPAWFQSLNPLFIIILAPVFAWMW----------VK--LGKRQPTIPQKFALGLLFAGL 380 
AERVDSSWFPV---------SWFQSLNPLFIMLYTPFFAWLW----------TA--WKKNQPSSPTKFAVGLMFAGL 366 
GESRSNLDPTWFGITFHIDPSWYQLLNPLFIVLLSPIFVRLW----------NK--LGERQPSTIVKFGLGLMLTGI 380 
KF-ALGLVLLAIGFLFMIGAVVE---------------MGGD----------AS--AKSS----MWWLVGAYFFHTM 382 
---NNVHHEIL---GFSINPVSFQALNPFWVVLASPILAGIY----------THLGNKGKDLSMPMKFTLGMFMCSL 358 
 
 
AFVVMAIGSMGLPTFEERNAGVE-----FTKVSPWLMVLTYMILTIAELFISPMGISFVSKVAPPHLQGIMQGLWLC 462 
SYILIGLVGL-------GYGHT------QFSVN--WVILSYVICVIGELCLSPTGNSAAVKLAPKAFNAQMMSVWLL 447 
SYILIGIVGY-------ASGSS------NFSVN--WVILSYIICVIGELCLSPTGNSAAVKLAPKAFNAQMMSIWYL 447 
SFI--VILVP-------GHLSG------GGLVHPIWLVLSYFIVVLGELCLSPVGLSATTKLAPAAFSAQTMSLWFL 442 
SFLLMAIPGA-------LYGTS------G-KVSPLWLVGSWALVILGEMLISPVGLSVTTKLAPKAFNSQMMSMWFL 429 
SYLIMTLPGL-------LNGTS------G-RASALWLVLMFAVQMAGELLVSPVGLSVSTKLAPVAFQSQMMAMWFL 450 
GELCLSPIGL-------SMVTKLAPLRIASLMMGAWFLFVAAANKIGGVVGSFIGHGGEKEEQLANAMAIFSGIAIT 452 
GFLTAAAAGM-------WFADA------QGLTSPWFIVLVYLFQSLGELFISALGLAMIAALVPQHLMGFILGMWFL 422 

               
 
 
ATA-----VGNSLLFVGMILYESL------SISATWIVFTCACALSMLVMLSMVKWLERV-AK---- 513 
T-------NASAQAINGTLVKLIKPL----GQTNYFIFLGTVAIVITLIILVFSPKITKA-MKGIH- 501 
T-------NASAQAINGTLVKLIEPL----GQTNYFIFLGVVAIIVTTIVLAISPLIIKA-MKGIR- 501 
S-------NAAAQAINAQLVRFYTPE----NETAYFGTIGGAALVLGLILLAIAPRIGRL-MKGIR- 496 
S-------SSVGSALNAQLVTLYNAK----SEVAYFSYFGLGSVVLGIVLVFLSKRIQGL-MQGVE- 483 
A-------DSTSQAINAQITPLFKAA----TEVHFFAITGIIGIIVGIILLIVKKPILKL-MGDVR- 497 
A-------ALSGVILYFMADKLVD--------WMHGAESKHHNEAEALEAEIAVTAEHEA-IKR--- 500 
TQAAAFLLGGYVATFTAVPDNITDPLETLPVYTNVFGKIGLVTLGVAVVMLLMVPWLKRMIATPESH 489 
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Figure 4. Sequence alignment of the POT family members and secondary structure of P. gingivalis Pot. 

Amino acid sequences of P. gingivalis Pot (PgPot,UniProt: B2RH09), Staphylococcus hominis PepTSh 

(A0A533J3Z5), Staphylococcus aureus SauPepT (A0A0H2XIN4), Geobacillus kaustophilus GkPot (Q5KYD1), 

Streptococcus thermophilus PepTSt (Q5M4H8), Lactococcus lactis LiDptT (P0C2U2), Shewanella oneidensis 

PepTSo (K4PU14), and E. coli DtpB (P36837) were aligned. Identical residues in 8 and 7 molecules are 

highlighted in yellow and green, respectively, and essential amino acid residues in the conserved ExxER/K motif 

and 5 residues involved in H+-driven substrate uptake proposed for GkPot are presented in bold red. 

Transmembrane (TM) helices, additional intermediate helix A (HA) and HB, and a-helices in black are indicated 

within the sequences predicted by Phyre2 modeling. 
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Figure 5. 3D homology modeling of P. gingivalis Pot. 

A 3D homology model was generated by Phyre2 in the plane of the inner membrane. The canonical N bundle of 

TM 1 – 6 and C bundle of TM 7 – 12, with additional intermediate helix A (A) and helix B (B), are indicated. 
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Supplemental Table S1. Primers used in this study. 
    
Usage Name Sequence (5’-3’) 
sstT 5’ fragment-cepA PGN1640-5F1*1 atgcgtaaactacggatcggcctct 

PGN1640-5R-cep-comp TGCTTCACACtggcaatgaatcctgccaccg 

sstT-cepA PGN1640-5F-cepF gattcattgccaGTGAAGCATCTTCGATGCTG 
PGN1640-3R-comp aaggattcttctCCGATAGTGATAGTGAACGG 

sstT 3’ fragment-cepA cep-3F-PGN1640-3F TCACTATCGGagaagaatcctttcaggatgc 

3R-comp-PGN1640  cgggcagacatatactgcgccatcc 

sstT nested PCR PGN1640-5F2 ttgcccaagatcatattgg 
3R-comp-2-PGN1640 agagagggatcgtaaagcc 

opt 5’ fragment-cepA PGN1518-5F1*2 tcatcggcggttgtctcggtatatt 

PGN1518-5R-cep-comp TGCTTCACACaaaagcatcgttaccaccaaa 
opt-cepA PGN1518-5F-cepF aacgatgcttttGTGAAGCATCTTCGATGCTG 

PGN1518-3R-comp ttgaattggaagCCGATAGTGATAGTGAACGG 

opt 3’ fragment-cepA cep-3F-PGN1518-3F TCACTATCGGcttccaattcaacgtgctgtt 

3R-comp-PGN1518*3 ttatgcttcatgtttcttgcctctg 
opt nested PCR PGN1518-5F2 tgctattgattcctttccg 

3R-comp-2-PGN1518 gtcgacgatgaagtagagaat 

opt 5’ fragment-erm PGN1518-5F1*2 tcatcggcggttgtctcggtatatt 
PGN1518-5R-erm-comp CAATAGCGGAAGCTaaaagcatcgttaccaccaaa 

opt-erm PGN1518-5F-ermF aacgatgcttttAGCTTCCGCTATTGCTTTTTTGC 

PGN1518-3R-comp-erm ttgaattggaagCTCTAGAGGATCCCCGAAGCTG 

opt 3’ fragment-erm erm-3F-PGN1518-3F GATCCTCTAGAGcttccaattcaacgtgctgtt 
3R-comp-PGN1518*3 ttatgcttcatgtttcttgcctctg 

pot 5’ fragment-cepA PGN0135-5F1*4 atcttctatgcttcggtatatgtattg 

PGN0135-5R-cep-comp TGCTTCACACaactgcgcaaagagcaataat 
pot-cepA PGN0135-5F-cepF ctttgcgcagttGTGAAGCATCTTCGATGCTG 

PGN0135-3R-comp aacgacaccgaaCCGATAGTGATAGTGAACGG 

pot 3’ fragment-cepA cep-3F-PGN0135-3F TCACTATCGGttcggtgtcgttattttcttc 
3R-comp-PGN0135*5 ttacttcgctacccgctccagccac 

pot nested PCR PGN0135-5F2 tgggctctcgtgggaggta 

3R-2-PGN0315 aaccatggagagcataacgag 

pot 5’ fragment-erm PGN0135-5F1*4 atcttctatgcttcggtatatgtattg 
PGN0135-5R-erm-comp CAATAGCGGAAGCTaactgcgcaaagagcaataat 

pot-erm PGN0135-5F-ermF ctttgcgcagttAGCTTCCGCTATTGCTTTTTTGC 

PGN0135-3R-comp-erm aacgacaccgaaCTCTAGAGGATCCCCGAAGCTG 
pot 3’ fragment-erm erm-3F-PGN0135-3F GATCCTCTAGAGttcggtgtcgttattttcttc 

3R-comp-PGN0135*5 ttacttcgctacccgctccagccac 
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sstT expression PGN1640-5F1*1 atgcgtaaactacggatcggcctct 

3R-PGN1640-comp ccttgcgactgcttgcctcttgcgc 

opt expression 5F-PGN1518 atggaaaacaaacagacaacgagcat 
3R-PGN1518-comp tgcttcatgtttcttgcctctgatgctgtc 

pot expression 5F-PGN0135 atgctaaagaatcaccctaaagggttaatctc 

3R-PGN0135-comp cttcgctacccgctccagccactta 
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Supplemental Figure S1. Phylogenetic tree of the POT family members. 

A phylogenetic tree of P. gingivalis POT and bacterial homologues shown in Fig. 4 and human homologues was 

created using the PhyML package with default settings following sequence alignment with Clustal W. P. 

gingivalis PgPot (UniProt: B2RH09), Staphylococcus hominis PepTSh (A0A533J3Z5), Staphylococcus aureus 

SauPepT (A0A0H2XIN4), Geobacillus kaustophilus GkPot (Q5KYD1), Streptococcus thermophilus PepTSt 

(Q5M4H8), Lactococcus lactis LiDptT (P0C2U2), Shewanella oneidensis PepTSo (K4PU14), E. coli DtpB 

(P36837), Homo sapiens PepT1 (O43641) and PepT2 (S15A2). 
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