

Contents lists available at ScienceDirect

Stem Cell Research

Lab resource: Stem Cell Line

Generation of a human induced pluripotent stem cell line, BRCi009-A, derived from a patient with glycogen storage disease type 1a

Check for updates

Yukimi Katagami^{a,b}, Takayuki Kondo^{a,c,d}, Mika Suga^a, Yuichiro Yada^a, Keiko Imamura^{a,c,d}, Ran Shibukawa^a, Yukako Sagara^a, Yasue Okanishi^a, Kayoko Tsukita^{a,c}, Kenji Hirayama^b, Takumi Era^e, Haruhisa Inoue^{a,c,d,*}

^a iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan

^b Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan

^c Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan

^d Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan

e Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan

ABSTRACT

Glycogen storage disease type 1a (GSD1a) is an autosomal recessive disorder caused by mutations of the glucose-6-phosphatase (*G6PC*) gene. Mutations of the *G6PC* gene lead to excessive accumulation of glycogen in the liver, kidney, and intestinal mucosa due to the deficiency of microsomal glucose-6-phosphatase. Human induced pluripotent stem cells (iPSCs) enable the production of patient-derived hepatocytes in culture and are therefore a promising tool for modeling GSD1a. Here, we report the establishment of human iPSCs from a GSD1a patient carrying a *G6PC* mutation (c.648G > T; p.Leu216 =).

(continued)

1. Resource Table:

Unique stem cell line	BRCi009-A	Unique stem cell line identifier	BRCi009-A	
identifier		Inducible/constitutive	Not available	
Alternative name(s) of	HPS3926	system		
stem cell line		Date archived/stock date	January 2020	
Institution	RIKEN BioResource Research Center (BRC), Kyoto, Japan	Cell line repository/bank	RIKEN BioResource Research Center (BRC), Japan http://en.brc.riken.jp/index.htmlcellbank.	
Contact information of	Haruhisa Inoue		brc@riken.jp	
distributor	haruhisa.inoue@riken.jp	Ethical approval	Ethics Committee of the RIKEN BioResource Research	
Type of cell line	iPSC		Center (Approval No. Tsukuba 29–1)	
Origin	Human			
Additional origin info	Applicable for human iPSC			
	Age: 31			
	Sex: female	1.1. Resource utility		
	Ethnicity if known: Japanese			
Cell Source	Fibroblasts		-1	
Clonality	Clonal	GSD1a is an autosomal recessive disorder caused by mutations of the G6PC gene. The disease pathophysiology is not well understood. iPSCs were generated from a GSD1a patient with a G6PC gene mutation (c.648G > T; p.Leu216 =). This disease-specific iPSC line will be used to study the pathological mechanisms of GSD1a (Table 1)		
Method of reprogramming	Sendai virus vectors (KLF4, OCT3/4, SOX2, c-Myc)			
Genetic Modification	None			
Type of Modification	None			
Associated disease	Glycogen storage disease type 1a (GSD1a)			
Gene/locus	G6PC gene/Chromosome 17	study the pullotogreat h		
Method of modification	Not available	10 0 1.1		
Name of transgene or	Not available	1.2. Resource details		
resistance				

(continued on next column)

Glycogen storage disease type 1a (GSD1a) is an autosomal recessive

* Corresponding author at: iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan. *E-mail address*: haruhisa@cira.kyoto-u.ac.jp (H. Inoue).

https://doi.org/10.1016/j.scr.2020.102095

Received 10 November 2020; Accepted 17 November 2020 Available online 23 November 2020

1873-5061/© 2020 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Table 1

Characterization and validation.

Classification	Test	Result	Data
Morphology Phenotype	Photography Qualitative analysis Immunocytochemistry)	Normal Positive staining of the pluripotency markers NANOG and SSEA-4	Fig. 1 panel A Fig. 1 panel A
	Quantitative analysis (Flow cytometry)	99.8% of cells positive for pluripotency marker, SSEA-4	Fig. 1 panel B
Genotype	Karyotype (G-banding) and resolution	46XX, Resolution 500	Fig. 1 panel D
Identity	Microsatellite PCR (mPCR)	Not performed	Not performed
	STR analysis	16 loci, matched	Available from the authors
Mutation analysis	Sequencing	Homozygous G6PC mutation (c.648 G > T, p. Leu216 =)	Fig. 1 panel E
Microbiology and virology	Southern Blot OR WGS Mycoplasma	Not performed Mycoplasma testing by indirect staining and RT-PCR. Negative	Not performed Supplementary Fig. 1
Differentiation potential	Embryoid body formation	Proof of formation of the three germ layer type cells: expression of βIII-Tubulin (ectoderm), alpha smooth muscle actin (mesoderm) and SOX17 (endoderm)	Fig. 1 panel C
Donor screening	HIV 1 + 2 Hepatitis B, Hepatitis C	N/A	N/A
Genotype additional info	Blood group genotyping HLA tissue typing	Not performed Not performed	Not performed Not performed

disorder caused by mutations of the glucose-6-phosphatase (G6PC) gene. Mutations of the G6PC gene lead to excessive accumulation of glycogen in the liver, kidney, and intestinal mucosa due to the deficiency of microsomal glucose-6-phosphatase (Akanuma et al., 2000; Kanungo et al., 2018). The clinical manifestations of GSD1a include short stature, doll-like face, hepatomegaly, hypoglycemia, hyperuricemia, and lactic acidemia. However, the disease pathophysiology is largely unknown. GSD 1a-specific iPSCs have the potential for investigation of the pathophysiological mechanisms of GSD 1a. We established and characterized an iPSC line from a patient with attenuated GSD 1a who carried a G6PC gene mutation (c.648G > T; p.Leu216 =). GSD1a-specific iPSCs were generated from fibroblasts of the GSD1a patient using Sendai virus vectors carrying reprogramming factors (Fujie et al., 2014). The GSD1aspecific iPSCs (HPS3926) had a human ES cell-like morphology (Fig. 1A). The iPSCs were immunocytologically positive for the pluripotency markers NANOG and SSEA4 (Fig. 1A); 99.8% of the iPSCs were positive for the pluripotency marker SSEA4 by flow cytometry (Fig. 1B). The capacity of the iPSCs to differentiate into the three germ layers was confirmed using an *in vitro* embryoid body (EB) formation assay (Fig. 1C; ßIII-tubulin, ectoderm; smooth muscle actin (SMA), mesoderm; SOX17, endoderm). Furthermore, the iPSCs retained a normal karyotype (Fig. 1D), and carried the G6PC gene mutation (Fig. 1E). The identity of the cell line was verified with an STR analysis (information available from the authors). Mycoplasma contamination was not detected in the cell culture (Supplementary Fig. 1). Established iPSCs were able to differentiate into hepatocytes that showed positive staining for alphafetoprotein (AFP) (Fig. 1F)

2. Materials and methods

2.1. Ethics statement

The generation and use of human iPSCs was approved by the Ethics Committees of RIKEN BioResource Research Center (BRC). Formal informed consent was obtained from the patient.

2.2. Generation of iPSCs

Human cDNAs for reprogramming factors were transduced into the fibroblasts using Sendai virus vectors (KLF4, OCT3/4, SOX2, c-Myc). The generated iPSCs were cultured under feeder-free conditions on iMatrix-511 (Nippi, Tokyo, Japan)-coated plates with StemFit (AK02N, Ajinomoto, Tokyo, Japan) (Nakagawa et al., 2015).

2.3. Karyotyping

A G-band analysis was performed by LSI Medience (Tokyo, Japan) to determine the karyotype of the iPSC line at passage number 6. Twenty metaphase plates were analyzed.

2.4. Genotyping

Genomic DNA from undifferentiated iPSCs at passage number 27 was extracted using a PureLink Genomic DNA Mini Kit (Invitrogen, Thermo Fisher Scientific) and amplified by PCR using the enzyme KOD Plus Neo (TOYOBO, Japan). The targeted PCR product was directly sequenced.

2.5. In vitro three germ layer differentiation assay

Embryoid bodies (EBs) were produced by culturing 9,000 dissociated iPSCs in DMEM/F12 medium supplemented with 20% knockout serum replacement (KSR), 2 mM L-glutamine, 0.1 mM non-essential amino acid (NEAA) supplement, 0.1 mM 2-mercaptoethanol (Thermo Fisher Scientific), 10 μ M Y-27632 (Nacalai Tesque, Kyoto, Japan) for 11 days, followed by culture in DMEM containing 10% FBS (Thermo Fisher Scientific) on a Matrigel (BD Bioscience)-coated tissue culture plate for 7 days.

2.6. Hepatocyte differentiation

Dissociated iPSCs were plated onto a Matrigel coated plate, and cultured in RPMI 1640 Medium, GlutaMAXTM supplement, with B27 supplement (Minus Vitamin A: B27^{VitA-}) (Thermo Fisher Scientific), 5% KSR, 1% DMSO, 100 ng/ml of human recombinant Activin A (Wako Pure Chemical Industries Ltd.), 3 μ M CHIR99021 (STEMCELL Technologies) and 10 μ M Y-27632 for 3 days. The cells were then cultured in RPMI 1640 medium, GlutaMAXTM supplement with B27^{VitA-}, 5% KSR, 1% DMSO, 2 mM valproic acid, 20 ng/ml of BMP4 and 20 ng/ml of FGF4 (Wako Pure Chemical Industries Ltd.) for 3 days. Next, the cells were cultured in RPMI1640 medium, GlutaMAXTM supplement with B27^{VitA-}, 5% KSR, 5% KSR, 20 ng/ml hepatocyte growth factor (HGF; R&D Systems) and 2 mM valproic acid for 4 days. Finally, the cells were cultured in hepatocyte culture medium (Lonza) with 20 ng/ml of oncostatin M (Wako Pure Chemical Industries Ltd.) for 5 days.

2.7. Immunocytochemistry

Cells were fixed in 4% paraformaldehyde (Nacalai Tesque). The fixed cells were incubated with blocking buffer composed of PBS containing 5% Blocking-One-histo (Nacalai Tesque) and 0.1% Triton-X 100 (Nacalai Tesque). Nuclei were stained with DAPI (Invitrogen, Thermo

Fig. 1.

Fisher Scientific). Images were obtained with a BZ-X710 microscope (Keyence, Osaka, Japan).

2.8. Flow cytometry

The iPSCs were dissociated with Accumax solution (Sigma Aldrich, St. Louis, MO). The dissociated iPSCs were suspended in PBS containing 2% FBS (Stain buffer, BD Bioscience, San Jose, CA) at a density of 1.0×10^6 cells/ml. The cells were stained for 30 min on ice and analyzed using a FACS Aria (BD Bioscience). The Alexa Fluor 647-labeled antibodies used for flow cytometry are listed in Table 2. The FlowJo software program (ver.10, FLOWJO, BD Bioscience) was used for data analysis.

2.9. STR analysis

STR analysis was performed using a PowerPlex® 16 System (Promega, Madison, WI).

2.10. Mycoplasma test

iPSC culture medium was tested by staining with Hoechst33258 (Thermo Fisher Scientific) after 6 days of co-culture with VERO cells (RCB0001, RIKEN BRC Cell Bank) as mycoplasma negative indicator cells. Nested-PCR was performed using AmpliTaq Gold 360 DNA Polymerase (Thermo Fisher Scientific) to detect mycoplasma contamination.

Table 2

Reagent details.

Antibodies used for immunocytochemistry/flow-cytometry					
	Antibody	Dilution	Company Cat # and RRID		
Pluripotency marker	Mouse anti-Stage- Specific Embryonic	1:1,000	Millipore Cat# MAB4304		
Pluripotency marker	Antigen-4 (SSEA-4) Rabbit anti-NANOG	1:500	RRID: AB_177629 Cell Signaling Technology Cat# 3580		
Differentiation marker	Mouse anti-Tubulin βIII	1:1,000	RRID:AB_2150399 Millipore Cat# MAB1637		
(Ectoderm) Differentiation marker	Mouse anti-alpha- Smooth Muscle	1:500	RRID: AB_2210524 DAKO Cat# MAB1637 RRID: AB_2210524		
Differentiation marker	Goat anti-SOX17	1:1,000	R&D systems Cat# AF1924		
(Endoderm) Differentiation marker	Mouse anti- α-Fetoprotein (AFP)	1:1,000	RRID: AB_355060 Sigma-Aldrich Cat# A8452 RRID:		
(Hepatocyte) Secondary antibody	Clone C3 Goat Anti-Mouse IgG Alexa Fluor Plus 488	1:1,000	AB_258392 Thermo Fisher Scientific Cat# A32723		
Secondary antibody	Goat Anti-Rabbit IgG Alexa Fluor 488	1:1,000	RRID: AB_2633275 Thermo Fisher Scientific Cat# A11034		
Secondary antibody	Chicken Anti-Mouse IgG Alexa Fluor 647	1:1,000	RRID: AB_2576217 Thermo Fisher Scientific Cat# A21463 RRID: AB_2535869		
Primers					
	Target	Forward/	Reverse primer (5'-3')		
Genotyping	enotyping G6PC Exon 5		CACATGGGAATAAGCCAGGC/		
Nested-PCR, 1st step PCR (MCGpF11/	Mycoplasma detection	ACACCATO CTTC(A/T)	GGGAG(C/T)TGGTAAT/)TCGACTT(C/T)		
Nested-PCR, 2nd step PCR (R16–2/	Mycoplasma detection	GTG(C/G) TGGATCA	GG(A/C) CCTCCT/ GCATCCACCA		
MCGpR21)	(200–400 bp)	(A/T)A(A/	(A/T)AC(C/T)CTT		

Acknowledgements

This research was supported in part by grants from the Core Center

for iPS Cell Research of the Research Center Network for Realization of Regenerative Medicine of the Japan Agency for Medical Research and Development (AMED) to H.I. There is no financial relationship to the work presented in this manuscript. We would like to express our sincere gratitude to all of our co-workers and collaborators and to Makiko Yasui and Mikie Iijima for their administrative support.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scr.2020.102095.

References

Akanuma, J., Nishigaki, T., Fujii, K., Matsubara, Y., Inui, K., Takahashi, K., Kure, S.,	
Suzuki, Y., Ohura, T., Miyabayashi, S., Ogawa, E., Iinuma, K., Okada, S.,	
Narisawa, K., 2000, Glycogen storage disease type Ia: Molecular diagnosis of 51	
Japanese patients and characterization of splicing mutations by analysis of	
ectopically transcribed mRNA from lymphoblastoid cells. Am. J. Med. Genet. 91,	
107-112. https://doi.org/10.1002/(SICI)1096-8628(20000313)91:2<107::AID-	
AJMG5>3.0.CO;2-Y.	
Fujie, Y., Fusaki, N., Katayama, T., Hamasaki, M., Soejima, Y., Soga, M., Ban, H.,	
Hasegawa, M., Yamashita, S., Kimura, S., Suzuki, S., Matsuzawa, T., Akari, H.,	
Era, T., 2014. New type of Sendai virus vector provides transgene-free iPS cells	
derived from chimpanzee blood. PLoS One 9. https://doi.org/10.1371/journal.	
pone.0113052.	

Kanungo, S., Wells, K., Tribett, T., El-Gharbawy, A., 2018. Glycogen metabolism and glycogen storage disorders, 474–474 Ann. Transl. Med. 6. https://doi.org/ 10.21037/atm.2018.10.59.

Nakagawa, M., Taniguchi, Y., Senda, S., Takizawa, N., Ichisaka, T., Asano, K., Morizane, A., Doi, D., Takahashi, J., Nishizawa, M., Yoshida, Y., Toyoda, T., Osafune, K., Sekiguchi, K., Yamanaka, S., 2015. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci Rep 4 (1). https://doi.org/10.1038/srep03594.