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Abstract: The 2016 Kumamoto earthquake had a significant impact on groundwater levels and quality.
In some areas, the groundwater level increased significantly due to the release of groundwater
from upstream mountainous regions. Conversely, the groundwater level in other areas greatly
decreased due to the creation of new fracture networks by the earthquake. There were also significant
changes in certain groundwater quality variables. In this study, we used clustering based SOM
(self-organizing maps) analysis to improve the understanding of earthquake effects on groundwater
quality. We were especially interested in effects on groundwater used for drinking purposes and
in nitrate concentration. For this purpose, we studied groundwater nitrate (NO3

− + NO2
−–N)

concentrations for the period 2012–2017. Nitrate concentration changes were classified into seven
typical SOM clusters. The clusters were distributed in three representative geographical regions:
a high concentration region (>4 mg/L), a low concentration region (<1.6 mg/L) with minimal
anthropogenic loading area, and an intermediate concentration region (2–4 mg/L). Depending on
these regions, the nitrate concentration changes just before and after the earthquake had both
increasing and decreasing trends between 2015–2017. This points to complex physiographical
relationships for release of stored upstream groundwater, promotion of infiltration of shallow soil
water/groundwater, and nitrate concentration as affected by earthquakes. We present an analysis
of these complex relationships and a discussion of causes of nitrate concentration changes due to
earthquakes.

Keywords: 2016 Kumamoto earthquake; groundwater; nitrate; self-organizing maps

1. Introduction

The Kumamoto earthquake sequence started with a foreshock (Mw 6.2) at 21:26 (JST,
UTC+9) on 14 April 2016, and 28 h later the mainshock (Mw 7.0) occurred at 1:25 on
16 April 2016. Many foreshocks and aftershocks accompanied the mainshock within the
week from 14–20 April 2016. The earthquake produced a 40 km long surface rupture along
the Hinagu-Futagawa fault fracture zone, and simultaneously, a series of geological disas-
ters occurred such as formation of new fault systems (Suizenji fault), mountain landslides,
land subsidence and uplift, and liquefaction [1–4]. These processes resulted in extensive
damage to buildings and infrastructure in the seismic area, as well as 273 fatalities [5]. The
focal mechanism was the strike-slip movement and normal displacement of the active
Hinagu-Futagawa fault that triggered seismic activity in the Kumamoto area. The earth-
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quake is considered as the largest inland earthquake in Kyushu Island during the past
century. Its focal depth was about 11 km [6–8].

Hydrological and hydro-chemical changes after earthquakes occur due to geolog-
ical and tectonic deformations in seismic-affected areas. Such changes include hydro-
biogeochemical features in aquifer systems, abnormal fluctuations of water levels, fluvial
discharge oscillations, and groundwater temperature shifts. These effects have been ob-
served in many parts of the world, e.g., America, China, Italy, Taiwan, Iceland, and New
Zealand. Observations have two main objectives, firstly to protect water resources and
secondly to develop earthquake prediction indicators [9–17]. The 2016 Kumamoto earth-
quake provides a unique opportunity for systematic understanding of seismic-induced
hydro-environmental phenomena at the scale of regional groundwater basins. A plethora
of hydrogeological data have been assembled for this area during the last three decades.
The main findings for the active fault area include seismic-induced mountainside water
release that has been verified by tank modeling and changes in isotopic trace signatures
indicating groundwater age [5,18,19]. Using observations of seismic-induced tectonic defor-
mation and water chemistry, new spring formation was detected in the active Aso-caldera
volcanic system [7]. The 2016 Kumamoto earthquake triggered a new Suizenji fault system
within the Kumamoto urban area, leading to local groundwater level decline. Groundwater
moved through newly developed cracks in the new fault formation. This occurrence and
groundwater movement were quantitively verified using numerical simulations [4,20].
Seismic-induced changes in hydro-geochemistry are also likely to lead to changes in micro-
bial species and noble gases (radon, helium). Changes in hydrochemistry and hydrobiology
are proposed to occur due to mixing of surface water and groundwater, dilution from
mountainside water release, agricultural and sewer pollutant infiltration into groundwater,
and local geothermal fluid release into groundwater [21–25].

Seismic-induced hydrological and environmental changes can be confirmed by obser-
vation of multi-physicochemical variables and validated by simulation. Physicochemical
variables such as dissolved silicates, sulfate, electric conductivity, dissolved oxygen, chlo-
ride, nitrate, and pH are likely to change with seismic activity [21,24]. Seismic triggered
rock fractures and ground shaking tend to increase the dissolution of silicate rocks based
on decomposing of the Si–O bond of silicate minerals. Decreasing concentration of typical
ions (Ca2+, Na+, K+, Cl–, and F−) and electric conductivity occur due to dilution from
mountainside water release in groundwater recharge areas. Increasing concentration of
NO3

− + NO2
−–N, SO4

2−, and Mg2+ may be due to agricultural fertilizer and soil leaching
of pollutants through surface fractures in agricultural production upland areas. Decreasing
pH may occur in some groundwater wells because of mixing of surface water and different
types of aquifer groundwater [21,24]. Especially, nitrate (NO3

− + NO2
−–N) concentration

has been confirmed to change due to earthquake effects in the Kumamoto area [26–28].
However, all seismic-induced nitrate changes in groundwater are not fully understood.
To improve this knowledge, we observed nitrate concentrations in groundwater for all
drinking water production wells (134 wells) covering the 2016 Kumamoto earthquake using
pre- and post-seismic data from 2012 to 2017. The spatiotemporal change characteristics of
these observations were analyzed using self-organizing maps (SOM). Possible mechanisms
for groundwater nitrate changes are interpreted through links to hydro-chemical and
hydrogeological alternations.

2. Materials and Methods
2.1. Study Area

Kumamoto region is situated in the middle part of Kyushu Island, south Japan
(Figure 1). The regional climate characteristics are humid subtropical. Mean annual temper-
ature and precipitation are 16.9 ◦C and 1986 mm, respectively [2,29]. In terms of geological
tectonic features, Kyushu Island is located on the converging margins of two tectonic plates.
Moreover, the active Hinagu-Futagawa fault that runs over the western extension of the
Median Tectonic Line crosscuts the Kumamoto area. Because of these features, there are fre-
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quent earthquakes and volcanic activities along the fault zones [8,30,31]. In the Kumamoto
area, the major geological characteristics are composed of a basement of metamorphic and
sedimentary rocks from the Paleozoic Era, volcanic pyroclastic deposits, porous tuff, and
alluvial and marine clay sediments from the Tertiary-Quaternary periods [19,29]. Volcanic
pyroclastic deposits and alluvial sediments have evolved as dual-layer structured aquifers.
The shallowest aquifer is unconfined with a depth of 0–50 m from soil surface. The second
aquifer is semi-confined to confined with an aquifer thickness of 60–200 m below ground
surface. The heterogeneous distribution of lacustrine formations serves as aquiclude be-
tween the first and second aquifers [32]. Most production wells for drinking water pump
water from the second aquifer. Regional groundwater is recharged from the Aso caldera
rim mountains as well as plateaus (Kikuchi, Ueki, and Takayubaru regions). In addition,
river water also recharges groundwater at the midstream of Shirakawa River. Groundwater
flows into the Kumamoto plain and discharges into coastal stagnant areas in a southwest
direction [33].
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Figure 1. Kumamoto study area with sampling wells. Therein, four water work groups are represented: the Kumamoto
City Waterworks and Sewerage Bureau (SSS), Koshi City (KSS), Mashiki Town Waterworks and Sewerage Bureau (MASS),
and Water Works Bureau of Ozu Kikuyou (OKS), respectively.

Kumamoto Region includes Kumamoto City and 11 municipalities as shown in
Figure 1. Water supplies for residents (about 1,000,000 people) come entirely from ground-
water resources. The area uses the largest groundwater volumes in Japan. The total
consumption of groundwater is about 236 million m3 in 2018 year [34]. To safeguard
groundwater resources, many high-resolution monitoring wells are distributed in the
regional groundwater flow system. To preserve environmental groundwater quality and
quantity, several major hydrogeological studies have been performed. Groundwater
renewal capacity has been evaluated by use of environmental indicators [32]. Groundwa-
ter recharge and discharge balance has been investigated for the regional groundwater
basin [35,36]. Hydro-biogeochemical evolution and origin of groundwater pollutants (ni-
trate, arsenic, and fluoride) have been investigated for the Kumamoto regional groundwater
flow system [29,33,37–39]. Based on these studies, two main environmental groundwater
protection policies have been implemented for preserving groundwater resources. An arti-
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ficial recharge system has been established using paddy fields in the midstream section
of the Shirakawa River. These measures aim at increasing groundwater recharge [36].
Another measure is the “Kumamoto City Nitrate-Nitrogen Reduction Plan” that has been
in operation since 2007, due to nitrate contamination from agriculture in groundwater. The
effects of the artificial recharge system have meant increasing recharge of groundwater
during the past decade [35,40]. However, the effects of the nitrate-nitrogen reduction
plan are still inconclusive. Groundwater nitrate content is still increasing in the Kikuchi
upland area. Consequently, groundwater quality is still deteriorating as shown in Figure 2.
Figure 3 shows the land-use with water sampling locations. The core sampling data were
collected at five locations in the groundwater recharge area. On the basis of these data, the
downward velocity of soil water movement and annual groundwater recharge rate were
determined at 1.37 to 2.34 m/year and 745 to 1058 mm/year, respectively [41]. At the same
time, the residence time of soil water from soil surface to groundwater was assessed as
9 to 24 years. In other words, soil water infiltration into groundwater varies depending
on location. The main reasons for this are heterogeneous soil types, different permeability,
and different terrain features (such as the Shirasu doline terrain). These properties give
rise to spatial variability and preferential flow of soil water [27,41].
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2.2. Self-Organizing Maps (SOM)

SOM are also known as Kohonen maps, a type of unsupervised artificial neural net-
work [42–44]. Due to their powerful data processing capability, SOM has been extensively
applied in data mining, classification, and prediction in many subjects [45–50]. The main
advantage of SOM is that it can project high-dimensional, complicated input data into
low-dimensional array (usually two-dimensional) and simplified visualized maps based
on data similarity principles [2,51–53]. By running the SOM, informative reference vectors
are extracted by iterative updates under three important steps, that is competition with
nodes, selection of winner node, and updating of the reference vectors. Then, an optimal
number of SOM nodes is determined by heuristic rules [54–57].

According to the above methodology, SOM structures were established, as well as us-
ing k-means algorithms for efficient clustering of SOM reference vectors. These procedures
were performed using a modified version of SOM Toolbox 2.0 [24,58]. Further details on
the SOM methodology can be found in [46,47,58].

2.3. Data Collection and Analysis

Time-series of groundwater nitrate contents from 2012 to 2017 were acquired from
four different administrative departments: the Kumamoto City Waterworks and Sewerage
Bureau (SSS in Figure 1), Koshi City (KSS in Figure 1), Mashiki Town Waterworks and
Sewerage Bureau (MASS in Figure 1), and Water Works Bureau of Ozu Kikuyou (OKS in
Figure 1). The groundwater nitrate concentration was measured by different water work
groups that follow analytical guidelines and manuals from the Japanese Ministry of Health,
Labour, and Welfare. They are quality certified by this ministry. Because of this, the quality
of analyses is expected to be reliable and of high quality. In total, nitrate concentrations
from 152 wells were collected. After a quality check, all except for 18 wells (due to lack of
data), were used in this study. Each administrative department regularly administers and
quality checks water samples one to three times a year, though with the different purpose
of drinking water resources utilization. In our study, annual average nitrate content was
used as input data to the SOM analysis. For efficient data preprocessing, annual nitrate
ratios for 2013/2012, 2014/2013, 2015/2014, 2016/2015, and 2017/2016 and the original
average nitrate data for 2012, 2013, 2014, 2015, 2016, and 2017 (in total 11 parameters) were
used as input parameters.
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3. Results and Discussion
3.1. SOM Analysis

To compare pre- and post-seismic groundwater nitrate change features, pre-seismic
groundwater nitrate distribution characteristics for the Kumamoto area are shown in
Figure 4. The figure shows that the primary groundwater nitrate contamination area is
distributed in the Kikuchi and Ueki upland groundwater recharge area. The land-use
of this area is mainly agricultural. However, the groundwater nitrate content is lower
in groundwater discharge and stagnant areas due to denitrification processes [29,37]. In
general, the spatial distribution of groundwater nitrate content shows large differences
within the regional groundwater flow system.

To explore seismic-induced groundwater nitrate changes, average groundwater nitrate
contents (2012–2017) from 134 production wells were prepared together with 11 parameters
for input to the SOM analysis. Due to the SOM methodology, the number of SOM node
reference vectors was 55, with 11 vertical and 5 horizontal columns, respectively. The results
of SOM analysis after training are displayed in Figure 5. In the figure, the component
values of the 11 parameters are expressed by 55 reference vectors, where vectors were
standardized in the range of 0–1. Hence, if a node color is red, it means a comparatively high
concentration ratio and high original concentration. If the node color is blue, this means a
comparatively low concentration ratio and low original concentration. In general, average
nitrate contents for 2012, 2013, 2014, 2015, 2016, and 2017 were similar. This means that the
earthquake did not induce a large change in the average nitrate concentration. However,
the SOM component maps for nitrate ratios 2016/2015 and 2017/2016 experienced larger
changes than the nitrate ratios for 2013/2012, 2014/2013, and 2015/2014. This implies
that the 2016 Kumamoto earthquake triggered groundwater nitrate concentration changes
in some areas. Besides, the SOM component maps for original nitrate concentrations
indicated that some groundwater samples with higher nitrate concentration (4–7 mg/L)
were mainly located at the bottom of the SOM maps. On the contrary, some groundwater
samples with lower nitrate concentration (<1.6 mg/L) were primarily situated at the top of
the SOM maps.
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In the SOM analyses, the Davies-Bouldin Index (DBI) was used to determine the
optimal cluster number on the basis of k-means algorithms [48]. The value of DBI was
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calculated from the minimum cluster (2 clusters) to the total number of nodes (55 nodes).
Then, the smallest DBI was selected as an optimal number of clusters. After this, a fine-tune
cluster analysis was executed using Ward’s method [59]. Based on this methodology, 7 out
of the first 10 clusters were selected as optimal cluster number. The pattern classification
map for the 7 clusters is shown in Figure 6. Each well number is included in the figure.
Combining the pattern classification map and the SOM component maps (Figure 5), it
is possible to see that water samples of Cluster 1, 4, and 5 are mainly from low nitrate
content areas (<1.6 mg/L). Correspondingly, water samples of Cluster 2 mainly come from
high nitrate areas (>4 mg/L). In addition, node locations of Cluster 2 and 6 experienced
a relatively large change in the nitrate ratio during 2017/2016. A logical cause of these
changes is the 2016 earthquake. In the next section, these processes will be further discussed
using the original time-series of nitrate contents for each cluster.
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3.2. Nitrate Changes for Each Cluster

In total, 134 water sample locations were classified into 7 clusters. Based on the spatial
distribution of groundwater sampling locations in Figures 7 and 8, the 7 clusters were
further divided into three groups depending on nitrate level (Figure 9). Cluster 1, 4, and 5
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represent a lower nitrate content region (<1.6 mg/L). This region has less anthropogenic
influence and groundwater reduction reaction area (Cluster 1; [29,33,37]). Nitrate content
for Cluster 3 and 6 represent intermediate nitrate content (2–4 mg/L). Finally, Cluster 2
and 7 represent a high nitrate region (>4 mg/L). Cluster 2, 3, 6, and 7 are high-productive
agricultural and urbanized areas. The nitrate changes for representative wells in each
cluster are displayed in Figure 7. As seen from the figure, the well KSS-06 has an obvious
increase in nitrate concentration in connection to the earthquake. Another well, SSS-112,
shows slightly increasing nitrate concentration. These two wells are located in the Kikuchi
groundwater recharge area. Possible causes for the groundwater nitrate increase here are
effects of the earthquake by ground shaking and new rupture formation. These processes
appear to have triggered high nitrate concentration of soil water and shallow groundwater
that penetrated the aquiclude and rapidly released into the confined aquifer. The results
were increased groundwater nitrate content. However, two wells displayed a decrease
of groundwater nitrate content. One of these, well OKS-26, showed a clear decease of
nitrate concentration. It is located in a mountainside area. The other, SSS-076, displayed
a small decrease in nitrate content. A possible mechanism for these wells is that seismic-
induced originally clean mountain water (OKS-26) and shallow groundwater flowed into
the original confined aquifer at the hillside area (SSS-076). This process diluted the original
groundwater in the two wells. The three other wells, SSS-023, SSS-069, and SSS-080, had no
significant nitrate content change.
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2 and 7.

Seismic-induced groundwater nitrate changes for each of the three above clusters were
described by linking Figure 8 with Figure 9 as follows; Cluster 1 contains 5 wells, which are
distributed in a reduction reaction area [29,33,37]. Thus, groundwater nitrate concentration
is generally low (<1.6 mg/L), and it is difficult to distinguish pre- from post-seismic nitrate
change (Figures 8a and 9a).

Cluster 4 covers 15 wells. Average nitrate content is about 0.8 mg/L and the original ni-
trate concentration was very low. These wells are mainly located in a groundwater recharge
area with highlands and hillsides. The major land-use type is forest area (Figure 8a). Ni-
trate loading on the soil surface is basically nonexistent in this area. However, by the
comparison of pre- and post-seismic nitrate data, post-seismic nitrate concentration from
2016 to 2017 show an obvious decreasing trend (Figure 9a). The main reason for this is
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seismic-induced mountainside water released into the original groundwater aquifer [5,18].
Mixing of the water means dilution of the original nitrate concentration. Besides, other
common ions (Ca2+, Na+, K+, Cl−), TDS and electric conductivity also experienced the
local dilution phenomena by mountainside water released to the groundwater recharge
area [21,24].

Cluster 5 includes 9 wells. Mean groundwater nitrate content fluctuated in the range
of 1.2–1.6 mg/L. These samples are sparsely distributed over a quite large area (Figure 8a).
By comparing pre- and post-seismic nitrate content from 2015 to 2016, it is seen that nitrate
concentration increased by 0.2–0.3 mg/L from mean concentration at shown in Figure 9a.
However, a similar increasing trend was also observed between 2013 and 2014. This means
that the increasing trend for nitrate content may be mainly from increasing groundwater
pollution, not as a result of seismic effects.

Cluster 3 contains 30 wells. Average groundwater nitrate concentration is 2.2–2.4 mg/L.
The change of nitrate concentration is not clear. Thus, seismic-induced nitrate changes are
difficult to confirm in Figure 9b.

Cluster 6 includes 41 wells. These samples are primarily located at the foot of Kikuchi
and Ueki uplands and mean groundwater nitrate concentration fluctuated in the range of
3.6–3.8 mg/L. The seismic-induced groundwater nitrate trend from 2015 to 2016 increased
slightly by 0.1–0.2 mg/L as seen from Figure 9b. Despite the increase, it is lower than for
Cluster 7 in the same area. The main reason for this is that seismic-induced high nitrate
content soil water penetrating the aquiclude was released into the original confined aquifer
by preferential flow. Shallow groundwater containing higher nitrate concentration may
also have percolated downwards into the original confined aquifer. These mixing processes
lead to the increase of groundwater nitrate content. In addition, the content of SO4

2− and
Mg2+ also increased sharply in some wells in this area [21].

Cluster 2 involves 14 wells. Average groundwater nitrate content is 4.6–5.0 mg/L.
These wells are mainly situated in the groundwater recharge area in the Kikuchi upland
(Figure 8c). Seismic-induced groundwater nitrate content from 2015 to 2016 decreased
slightly according to Figure 9c. A possible reason for this is that original confined ground-
water was diluted by fresher water release from the shallow aquifer at the midstream
of Shirakawa River and from Kimpo and Aso mountainside areas [18]. Seismic-induced
surface ruptures and permeability enhancement give rise to fresh unconfined water rapidly
leaching into the original confined aquifer. This process is causing dilution phenomena. It is
worth noting that Cluster 6 and 2 are located in the same area. However, nitrate concentra-
tion of Cluster 6 shows a small increasing trend. The different trends of Cluster 6 and 2 may
be due to the different land-use type as well as heterogeneity of hydrogeological properties.

Cluster 7 includes 20 wells. These wells are also distributed in the groundwater
recharge area in the Kikuchi and Ueki uplands (Figure 8c). These areas have been used
for intensive agricultural production for more than 50 years. The result is a high nitrate
concentration in the groundwater. Average nitrate content is 5.4–6.3 mg/L as seen from
Figure 9c. Nitrate content increased by 0.6–0.7 mg/L from 2015 to 2016. After this, nitrate
concentration has decreased to pre-seismic level. Seismic-induced hydrogeological changes
such as new fracture formations, permeability enhancement, and Shirasu doline terrain
give rise to the occurrence of preferential flow. As a result, high nitrate concentration of soil
water and/or shallow groundwater penetrating aquiclude rapidly flow into the original
confined aquifer system. This resulted in a temporal nitrate content increase. In addition,
the change features of pre- and post-seismic groundwater mean nitrate concentration in
each cluster is further quantitively expressed by adding standard deviation in Figure 10.



Minerals 2021, 11, 43 13 of 17Minerals 2021, 11, x FOR PEER REVIEW 13 of 17 
 

 

 

Figure 10 The change features of pre- and post-seismic groundwater nitrate concentration by add-
ing standard deviation (SD) to each cluster.  

4. Conclusions 
Groundwater serves as an important water resource in the Kumamoto area. The area 

has long-term and high-quality groundwater and nitrate monitoring networks. Because 
of these, the 2016 Kumamoto earthquake-induced groundwater nitrate change could be 

Figure 10. The change features of pre- and post-seismic groundwater nitrate concentration by adding
standard deviation (SD) to each cluster.

4. Conclusions

Groundwater serves as an important water resource in the Kumamoto area. The area
has long-term and high-quality groundwater and nitrate monitoring networks. Because
of these, the 2016 Kumamoto earthquake-induced groundwater nitrate change could be
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systematically studied as a regional groundwater flow system. Using the SOM analysis,
134 production wells were divided into 7 clusters. These were classified according to three
different nitrate levels, namely low nitrate content region (<1.6 mg/L) for Cluster 1, 4, and
5, intermediate content region (2–4 mg/L) for Cluster 3 and 6, and high nitrate content
region (4–7 mg/L) for Cluster 2 and 7. Both groundwater nitrate decrease and increase
occurred due to the earthquake. Seismic-induced groundwater nitrate features were quan-
titively explained by use of time-series for nitrate data. The groundwater nitrate content
decreased for Cluster 2 and 4, due to seismic-induced mountainside water release and shal-
low groundwater percolation into the original confined aquifer. These processes diluted
the original groundwater content of nitrate. The groundwater nitrate content for Cluster 6
and 7 displayed an increase. The primary reason was seismic-induced hydrogeological en-
vironment alternations such as formation of new fractures and permeability enhancement.
This resulted in transport of high nitrate concentration soil water and shallow groundwater
through the aquiclude and seepage into the original confined aquifer. These processes led
to the temporal increase in groundwater nitrate concentration. However, the groundwater
nitrate changes for Cluster 1, 3, and 5 did not display distinct features from the earthquake.
In all, seismic-induced groundwater nitrate content increase affected mainly Cluster 7. Its
mean nitrate content fluctuated in the range of 5.4–6.3 mg/L. This value is lower than
the nitrate concentration limit of Japanese drinking water standard (10 mg/L). At the
same time, groundwater nitrate concentration in Cluster 7 recovered to pre-seismic level
sometime after the earthquake. From these results, we confirmed that groundwater for
drinking water is comparatively safe in this area, even after the earthquake.

Main delimitations of this study are, first of all, the spatial distribution features of
sampling locations. These are generally uneven in the study area. Secondly, groundwater
nitrate content is easily influenced by land-use features around the wells. Because of these,
sampling points in some clusters showed large variation in the SOM analysis. Finally,
there were only six years of nitrate data via combining four water works group. This
led to seismic-induced time-series nitrate change features that could not be assessed in a
quantitative way through statistical analyses.

In any case, we improved the understanding of relationships between seismic-induced
hydro-environment changes and groundwater nitrate contents. In addition, these results
can be compared to other studies of seismic-induced groundwater nitrate changes for
regional groundwater flow systems.
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