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Abstract: The Gram-negative bacterium Flavobacterium johnsoniae employs gliding motility to move
rapidly over solid surfaces. Gliding involves the movement of the adhesin SprB along the cell surface.
F. johnsoniae spreads on nutrient-poor 1% agar-PY2, forming a thin film-like colony. We used electron
microscopy and time-lapse fluorescence microscopy to investigate the structure of colonies formed
by wild-type (WT) F. johnsoniae and by the sprB mutant (∆sprB). In both cases, the bacteria were
buried in the extracellular polymeric matrix (EPM) covering the top of the colony. In the spreading
WT colonies, the EPM included a thick fiber framework and vesicles, revealing the formation of a
biofilm, which is probably required for the spreading movement. Specific paths that were followed by
bacterial clusters were observed at the leading edge of colonies, and abundant vesicle secretion and
subsequent matrix formation were suggested. EPM-free channels were formed in upward biofilm
protrusions, probably for cell migration. In the nonspreading ∆sprB colonies, cells were tightly
packed in layers and the intercellular space was occupied by less matrix, indicating immature biofilm.
This result suggests that SprB is not necessary for biofilm formation. We conclude that F. johnsoniae
cells use gliding motility to spread and maturate biofilms.

Keywords: extracellular polymeric matrix; extracellular fibers; vesicle; bacterial clusters; cell-to-cell
connections; transmission electron microscopy

1. Introduction

Flavobacterium johnsoniae is a Gram-negative rod-shaped aerobic bacterium commonly
found in soil and fresh water. The cells of this bacterium move rapidly over solid surfaces
by gliding motility and thus form thin spreading colonies on agar [1,2]. This characteristic
motility is shared by many other members of the Bacteroidetes phylum that lack bacterial
motility organelles, such as flagella or pili. Instead, their movements depend on a complex
motility-specific apparatus that has been intensively studied in F. johnsoniae, which is a
model system [3,4].

SprB with a mass of 669 kDa is a cell surface adhesin component of the motility
machinery of F. johnsoniae and forms filaments on the cell surface [5–7]. SprB filaments
were observed on WT cells using ammonium molybdate staining and transmission electron
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microscopy (TEM), but were not present on sprB mutant (∆sprB) cells [6]. SprB appears to
be propelled rapidly along a closed helical loop track by the motility machinery in a process
that requires a proton motive force, resulting in gliding of the cell [6,7]. Cryo-electron
tomography revealed filaments and outer membrane-associated patches near the base of
the outer membrane of WT cells, but these were not observed when the nonmotile gldF
mutant cells were similarly examined [8]. SprB is secreted and translocated to the cell
surface by the Bacteroidetes-specific type IX secretion system (T9SS), which is intertwined
with the gliding motility machinery [9–15]. Therefore, T9SS mutants influenced gliding
and caused nonspreading colonies on both agar surfaces.

Colony spreading of F. johnsoniae is influenced by modifications of the motility machin-
ery complex, such as SprB deficiency, and by environmental factors, such as temperature
and nutrient availability [16]. When cultured on nutrient-poor agar medium, gliding cells
of F. johnsoniae form thin film-like spreading colonies [2]. Although these exhibit apparent
gross similarities to typical bacterial biofilms, it remains unclear whether they are organized
and constructed in the same way.

A microbial biofilm is a sessile community of surface-attached microorganisms em-
bedded in self-produced extracellular polymeric matrix (EPM) that grows on various solid
surfaces with a fluid interface [17,18]. Biofilms are involved in many chronic infectious dis-
eases such as periodontal disease, bacterial endocarditis and bacterial osteomyelitis [19–21].
In the Flavobacterium genus, the widely distributed fish pathogens Flavobacterium columnare
and Flavobacterium psychrophilum form biofilms when they colonize the gill [22–24]. Cai
et al. showed that EPM and water channels are present in mature biofilms of F. columnare
under aqueous condition [25]. As revealed by scanning confocal laser microscopy, in
biofilms formed by F. psychrophilum, most live bacterial cells are found in the deeper and
intermediate layers, while dead cells predominate in the upper layer [22].

Some members of the Bacteroidetes phylum exhibiting gliding motility cause infectious
diseases in humans and fish [26]. Capnocytophaga canimorsus, a commensal bacterium in
dog and cat mouths, can cause rare severe human infections [27,28]. Zhang et al. showed
that colony morphology is associated with the virulence of F. columnare. F. columnare forms
three colony morphotypes (rhizoid, rough and soft), but only the rhizoid morphotype
is virulent in rainbow trout [29,30]. Furthermore, T9SS deletion mutants of F. columnare
exhibit reduced virulence in zebrafish [30]. Mutants of gld genes necessary for the gliding
of F. psychrophilum also exhibit reduced virulence in zebrafish [31,32]. Shrivastava et al.
showed that cells of the gliding bacterium Capnocytophaga gingivalis present in the human
oral microbiome carry polymicrobial cargoes, including nonmotile species, to new locations,
where they form colonies [33]. These data suggest that the gliding motility of bacteria
influences their virulence.

It is known that gliding of F. johnsoniae cells on agar is needed for colony spreading, but
structural analyses of differences between cells and interactions of cells in a spreading wild
type colony and in a nonspreading sprB mutant colony have not been analyzed in detail.

Here, we investigated the detailed structure of the spreading colony in wild-type
F. johnsoniae (WT) and an sprB deletion mutant CJ1922 (∆sprB) on nutrient-poor agar media
using time-lapse fluorescence microscopy and TEM [34]. The WT cells were found to be
embedded in an EPM that contained a thick filamentous network and vesicles, indicating
biofilm formation. The bacterial cells at the extending tip of WT colonies were densely
surrounded by budding vesicles and many secreted vesicles. In nonspreading ∆sprB
colonies, the cells were tightly packed in layers and the intercellular space was occupied
by less matrix, indicating immature biofilm. We showed that the motility, population
kinetics, matrix production and cell localization within the biofilm were influenced by the
cell surface adhesin SprB-dependent gliding machinery.
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2. Results
2.1. WT F. johnsoniae Colonies Spread on Nutrient-Poor Agar Surfaces

To investigate F. johnsoniae colony spreading, we compared the behavior of the wild-
type (WT) strain and an sprB deletion mutant strain (∆sprB) [34]. A 1 µL drop of washed
F. johnsoniae UW101 WT cells was initially inoculated on nutrient-poor 1% agar PY2 medium
(1% A-PY2), and the cells were incubated at room temperature (RT) (23–24 ◦C) for 5 days.
During this period, the WT cells grew and spread radially from all edges of the inoculation
spot at the same speed to form a large circular colony (Figure 1a, left). In contrast, the ∆sprB
mutant CJ1922 colony did not spread (Figure 1a, right) [5,34]. The radius of the developing
WT colony depended on the time after incubation (Figure S1a).
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branch. Lower panel: ΔsprB mutant. At the leading edge of a nonspreading ΔsprB colony, curved lines of static cells 
expressing GFP were observed and were interpreted to be cells connected in line. Time is shown at the top left. Selected 
frames showing the edge of each bacterial colony during 10 min of video captures (see Figure S2). 

2.2. Movement of Single Bacterial Cells in the WT Colony Spread on 1% A-PY2 
To visualize the movement of single bacterial cells at the colony edge, a 1:100 mixture 

of WT cells with and without cytoplasmic GFP expression was inoculated in the center of 
an agar plate, incubated for 24 h, and visualized by time-lapse fluorescence microscopy 
(Figure S2a) [16,35]. This video (at 300× the speed of standard time-lapse fluorescence mi-
croscopy imaging) is shown in Figure S2a. On 1% A-PY2, the colony spread out from the 
inoculated spot. At the leading edge of the spreading colony, a small cell cluster at the tip 
of a branch moved outwards and was followed by other cells (Figure 1b, upper panel, 
Figure S2a). This suggested cell-to-cell connections. Furthermore, cells often moved along 

Figure 1. Colony spreading of WT and ∆sprB mutant cells on 1% A-PY2. (a) Images of the colonies spreading on 9-cm
diameter dishes (5 days). (b) Behavior of bacteria in spreading of WT and ∆sprB colonies. Cells expressing GFP in their
cytoplasm were added to the inoculated bacterial solution at a concentration of 1%, and movement of the bacterial cells at
the colony edge was monitored. Images were recorded by fluorescence microscopy at 30-s intervals for 30 min. Upper panel:
WT. At the leading edge of a spreading WT colony on 1% A-PY2, a small cell cluster moved outward at the tip of a branch.
Lower panel: ∆sprB mutant. At the leading edge of a nonspreading ∆sprB colony, curved lines of static cells expressing GFP
were observed and were interpreted to be cells connected in line. Time is shown at the top left. Selected frames showing the
edge of each bacterial colony during 10 min of video captures (see Figure S2).

2.2. Movement of Single Bacterial Cells in the WT Colony Spread on 1% A-PY2

To visualize the movement of single bacterial cells at the colony edge, a 1:100 mixture
of WT cells with and without cytoplasmic GFP expression was inoculated in the center of
an agar plate, incubated for 24 h, and visualized by time-lapse fluorescence microscopy
(Figure S2a) [16,35]. This video (at 300× the speed of standard time-lapse fluorescence
microscopy imaging) is shown in Figure S2a. On 1% A-PY2, the colony spread out from
the inoculated spot. At the leading edge of the spreading colony, a small cell cluster at the
tip of a branch moved outwards and was followed by other cells (Figure 1b, upper panel,
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Figure S2a). This suggested cell-to-cell connections. Furthermore, cells often moved along
the path on the agar surface used by the preceding cell clusters (Figure S2a), suggesting the
existence of a track formed by the leading cells controlling the movement of the following
cell clusters.

2.3. Static Single Bacterial Cells in the ∆sprB Mutant Colony on 1% A-PY2

The same experiment was performed for sprB deletion mutant cells. The ∆sprB colony
did not spread, and curved lines of cells producing cytoplasmic GFP were apparent within
the colony (Figure 1a,b and Figure S2b). The video of ∆sprB colony (at 300× the speed of
standard time-lapse fluorescence microscopy imaging) is shown in Figure S2b. Because
F. johnsoniae cells divide along a single axis, it is reasonable to propose that the cells in the
line all originated from the same cell. The movement of individual cells in the colony was
not detectable.

2.4. WT F. johnsoniae Colonies Form a Biofilm on Nutrient-Poor Agar Surfaces

To investigate the structure of a spreading colony more precisely, the WT colony was
aldehyde-fixed, embedded in Epon, and vertically sectioned parallel to the direction of
spreading (Figure S1b). The approximately 70 nm thick, 1 mm wide, and 0.5 mm long
sections were stained with heavy metals and inspected by TEM. At the bottom of the
WT colony spreading on 1% A-PY2, i.e., close to the agar layer, cells were loosely packed
and sparsely embedded in a low electron density matrix (Figure 2). Bacterial cells were
positioned in different directions. Above the bottom layer, there were fewer cells.
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Figure 2. TEM of spreading colonies of WT F. johnsoniae on 1% A-PY2. WT colonies were aldehyde-fixed and embedded in
Epon resin. Then, 70 nm-thick sections were cut parallel to the direction of colony growth and perpendicular to the surface
of the agar medium (Figure S1b), stained with metal solutions and examined by TEM. Overview of the sections examined.
High-magnification images of cells in Figure 2 are shown in Figure 7. Inset is the enlargement of the square in the left panel.

2.5. Bacteria at the Advancing Front of WT Colonies Secreted Many Vesicles

To observe the edge structure of WT colonies, the concentric WT colony formed on 1%
A-PY2 was divided into six equal regions at the colony margin (<0.5 mm from the edge)
(Figure 3a,b). Epon embedding and TEM revealed that the layered coat on the surface
of cells found in all regions showed irregular undulations (Figure 3c). The intercellular
space was occupied by a matrix containing thin extracellular fibers (3–7 nm in diameter)
interspersed with secreted vesicles (Figure 3c). The bacteria advancing the furthest in the
colonies were more densely surrounded by budding vesicles and many secreted vesicles
(30–50 nm in diameter) (Figure 3c, image 1–2 and 1′). In the inner regions of the colony,
each bacterial cell was surrounded by only a few smaller vesicles (Figure 3c, image 3–6
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and 3′). The densities of vesicles attached to the cells in the regions 1–2 were higher than
those in the regions 3–6 (Figure 3d). Some round vacancies that could be gas bubbles were
visible at the front edge of the colony (Figure 3b1,3b2 and 3c1). All these results suggested
biofilm formation.

1 
 

 
Figure 3. TEM of the extending edge of a WT colony on 1% A-PY2. (a) Overview of the sampled region of the spreading
colony. (b) Images from regions 1–6 are indicated in Figure 3a. The bacterial layer on the agar surface is shown, with the
cross-section along the axis of spreading and perpendicular to the agar surface (Figure S1b). The vacant area at the bottom
of each image is the agar layer. (c) (1–6) Higher magnification images of the corresponding panels in Figure 3b. (1′) and (3′)
are 3× enlarged images of the squares in (1) and (3), respectively. (d) The density of cell-attached vesicles per perimeter of
cells (vesicles/mm) was measured. The areas around 33 cells were analyzed for each region. More vesicles were attached
to the cells in region 1 and 2 than those in region 3, 4, 5 and 6 (Figure 3b,c). Symbols on the graph represent the average
density, and the error bars correspond to the SD.

2.6. WT Cells form a Queue at the Advancing Vertical Top of the Colony

Upon detailed observation of the advancing top of the WT cell layer, we found strings
of cells protruding upwards away from the main colony, presumably due to the pile-up
induced by the increase in cell population (Figure 4). As shown in Figure 4a, the strings
could be classified into four distinct regions, I to IV, that extend perpendicular to the
culture substrate. No bacterial cells were found in the region farthest from the agar surface
(region I), but fiber-like structures were rather uniformly distributed throughout the area
(Figure 4bI). We suggest that these fibers were secreted from the leading edge of the cell
population. Region II contained bacteria that were presumably close to the top of the colony.
A thin channel without any thin extracellular fibers was observed in the bottom half of this
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region (Figure 4a). The bacteria in region II were densely surrounded by budding vesicles
and many isolated vesicles (Figure 4bII,c). In contrast, each bacterial cell was surrounded
by only a few relatively smaller vesicles in region III and by even fewer vesicles in region
IV, the least distal upper region of the colony, closest to the bottom layer (Figure 4a,b). Thin
extracellular fibers were viewed from top to bottom from region I through region IV and
were fully distributed from the front of the cell population. The filamentous background in
region II, which lies under region I, was traversed from top to bottom by a filament-less
channel that contained many cells (Figure 4a). More vesicles were attached to the cells in
region II than those in region III and IV (Figure 4c).
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Figure 4. Strings of clustered WT bacteria protrude upwards, away from the main colony and the agar surface. WT colonies
grown on 1% A-PY2 were aldehyde-fixed and embedded in Epon resin, and 70 nm sections were cut perpendicular to the
surface of the agar medium and examined by TEM. Four distinct regions could be discerned. (a) Overview of the sections.
Left panels: Higher-magnification images of region II and III in Figure 4a. Top panel: (a1′) Enlarged image of the area (a1) in
Figure 4a. The filamentous background is traversed from top to bottom by a filament-less channel that contains many cells.
(b) High-magnification images of regions I–IV. Region I is the highest in the marginal zone of the main colony and furthest
from the agar plate. No bacteria are apparent; only fibers are observed at the leading edge of the biofilm. Region II: bacteria
with many large vesicles and fibers surrounding the cells are observed at the top of the colony. Region III: bacteria with a
few large vesicles surrounding them are observed. Region IV, just above the bottom bacterial layer: bacteria with a few
small vesicles surrounding them are observed. Overall, the large intercellular space rich in filaments and vesicles in regions
I–IV suggests mature biofilm formation in the WT colony. (c) The density of cell-attached vesicles per perimeter of cells
(vesicles/mm) was measured. More vesicles were attached to the cells in region II than those in region III and IV (Figure 4b).
Symbols on the graph represent the average density, and the error bars correspond to the SD.
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2.7. Biofilm Maturation Depends on the Cell-Surface Adhesin SprB

Next, we investigated whether the motility adhesin SprB is required for biofilm
formation in F. johnsoniae. To this end, we evaluated the spreading phenotype of an sprB
deletion mutant on 1% A-PY2. Deletion of sprB prevented F. johnsoniae colonies from
spreading on 1% A-PY2; the cells only grew within the small inoculation circle (Figure 1a,
right). This growth pattern was in stark contrast to the behavior of the WT strain, which
spread radially from all edges of the inoculation spot on the agar surface (Figure 1a, left). To
investigate the role of SprB in detail, as for the WT, a ∆sprB colony was embedded in Epon,
sliced, and observed by TEM (Figure 5). Unlike the WT cells, the mutant cells were crowded
and formed three distinct layers on the 1% A-PY2 medium (Figure 5). Higher magnification
images revealed that the ∆sprB cells had a smooth rod-like shape (Figure 6a–h).

In the base layer, cells were tightly packed on the agar surface (Figure 6b–d,g–h) and
grouped in preferred orientations due to the high cell density; variations in the length of
the similarly shaped cells within a group were relatively small (Figure 6b–d,g–h). In the
middle of the base layer, the intercellular space was occupied by many large and small
vesicles, extracellular filaments and a few secreted bacterial cytoskeletal-like structures,
but the separation between cells was clearly small (Figure 6c,g). In some places, lysed
cells that maintained gross cell shape of membranes were observed (decreased contrast in
cytoplasm) (Figure 6c,g). These suggests that the biofilm formed was immature.
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Figure 5. TEM of spreading colonies of the F. johnsoniae ∆sprB mutant on 1% A-PY2. Colonies of ∆sprB were aldehyde-
fixed and embedded in Epon resin. Then, 70 nm-thick sections were cut parallel to the direction of colony growth and
perpendicular to the surface of the agar medium (Figure S1b), stained with metal solutions and examined by TEM. Overview
of the sections examined. High-magnification images of cells pictured in Figure 5 are shown in Figures 6 and 7 (second row).
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A large cluster of cells was observed above the base layer, the region we refer to as 
the 2nd layer (Figures 5 and 6a,b,e,f). In contrast to the tightly packed base layer, curved 
and straight rod-shaped cells of various lengths were adjacent to one another, resulting in 
less dense communities and loss of directionality (Figure 5, 2nd layer, Figure 6e,f). Some 
cells spread out from the cluster, forming a less populated 3rd layer further towards the 
top (Figure 5, 3rd layer, Figure 6a,e). Similar to the WT cells, the space between the ΔsprB 
cells in the 2nd and 3rd layers was occupied by a substance containing thin extracellular 
fibers and vesicles (Figure 6a,b,e,f). Within the 2nd layer, each ΔsprB cell possessed a thick 
surface coat structure (Figure 7, lower), similar to WT (Figure 7, upper). 

Figure 6. Colony spreading of the ∆sprB on 1% A-PY2. Higher-magnification images of cells shown in Figure 5. The
corresponding position of each panel is indicated by the squares in Figure 5. (a–d) Left panels: Images of the spreading
colony showing the bottom of the 3rd layer/top of the 2nd layer, the bottom of the 2nd layer/top of the base layer, middle
of the base layer, and the bottom of the base layer/top of the agar, as indicated. (e–h) Middle panels: Higher magnification
images of the regions shown on the left. (i–k) Right panels: Enlargement of the annotated regions shown on the left.
The smaller intercellular space containing fewer filaments and vesicles suggests that the biofilm formed by the ∆sprB
is immature.

A large cluster of cells was observed above the base layer, the region we refer to as
the 2nd layer (Figures 5 and 6a,b,e,f). In contrast to the tightly packed base layer, curved
and straight rod-shaped cells of various lengths were adjacent to one another, resulting in
less dense communities and loss of directionality (Figure 5, 2nd layer, Figure 6e,f). Some
cells spread out from the cluster, forming a less populated 3rd layer further towards the
top (Figure 5, 3rd layer, Figure 6a,e). Similar to the WT cells, the space between the ∆sprB
cells in the 2nd and 3rd layers was occupied by a substance containing thin extracellular
fibers and vesicles (Figure 6a,b,e,f). Within the 2nd layer, each ∆sprB cell possessed a thick
surface coat structure (Figure 7, lower), similar to WT (Figure 7, upper).
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Figure 7. WT and ∆sprB mutant cells on 1% A-PY2 embedded in Epon imaged by TEM. Embedded cells were 70 nm
thin-sectioned. High-magnification images of cells pictured in Figure 1a. Each cell in the bacterial layer on the agar surface
had a thick layered coat structure (arrows). The coat structure had regular undulations along the long and short axes, and
was often in contact with the coat of the neighboring cells (arrowheads).

2.8. Surface Connecting Structure of F. johnsoniae Cells in Biofilm

Within the biofilm, each WT cell was oriented in various directions and contained
a thick layered surface coat structure (Figure 7). The layered coat structure had regular
undulations along the long and short axes of the cells and contacted the coat of neighboring
cells (Figure 7). The coat structure was not observed when the bacterial cells isolated from
the colony grown on 1% A-PY2 were washed with washing buffer (10 mM Tris-HCl pH 7.5)
prior to aldehyde fixation (Figure 8). The remaining outer membrane surrounding the
WT cells was undulated (Figure 8, left), as observed in Figure 7. Such undulation of outer
membrane was also observed for the cells from ∆sprB colony (Figure 8a, right).
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Figure 8. TEM images of buffer-washed WT and ∆sprB cells isolated from their colonies formed on
the agar. Cells were isolated from a few mm-zone from the edges of WT and ∆sprB colonies formed
on 1% A-PY2, washed with the washing buffer, and aldehyde fixed. After dehydration, the cells were
embedded in Epon. The samples were 70 nm thick thin-sectioned, stained, and imaged by TEM. (a)
Thin-sections along the long axis of cells. (b) Thin-sections along the short axis of cells. After the
washing, surface coat structure was not observed. The undulations of the remaining outer membrane
were still observed for both WT and ∆sprB cells.

3. Discussion

The attachment of colonies to a solid surface is a complex process mediated by cell-cell
interactions. For F. johnsoniae, this process was affected by the cell surface components and
environmental factors, such as the nutrient supply and moisture (Figures 1–5) [16]. Biofilms
of many bacteria, such as P. aeruginosa and E. coli, are surface-attached microbial communi-
ties composed of cells embedded in an extracellular polymeric matrix (EPM) [36,37]. These
matrices are composed of polysaccharides, extracellular DNA and protein structures such
as curli, fimbriae and pili [38–41]. The biofilm formed by P. aeruginosa, which exhibits
flagellum-mediated swimming motility and surface-associated swarming and twitching
motilities, is established in five main stages: (i) attachment, involving adhesion of bacte-
ria to the substrate; (ii) cell–cell adhesion; (iii) early development of biofilm architecture;
(iv) maturation of biofilm architecture; and (v) dispersion of single dissociated cells from
the biofilm [42–44].

As reported earlier [2], WT F. johnsoniae cells grew and formed a characteristic large
circular colony on 1% A-PY2 (Figure 1a). It is not clear how the cells were distributed
and connected three-dimensionally in the spreading colony. Here, we studied the precise
structure of the SprB-dependent spreading and the ∆sprB nonspreading colonies using
electron microscopy (EM) (Figures 2–6). This showed that cells were embedded in a self-
produced EPM, forming a biofilm, while they divided and glided on the agar medium.
Consequently, the biofilm of the colony spread from the central region outwards.

TEM of colony sections of WT F. johnsoniae revealed that the space between the cells
was occupied by an EPM containing fibers and vesicles (Figures 3 and 4). These fibers,
3–7 nm in diameter, were somewhat thicker than those observed in biofilms formed by
Staphylococcus aureus [45] and P. acnes [46]. This might reflect the tough structure required
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for the mobile nature of the F. johnsoniae biofilm, in contrast to the static biofilms of S. aureus
and P. acnes. In the WT F. johnsoniae colony spreading on 1% A-PY2, the internal space
was sparsely populated by cells. At its marginal top, extracellular fibers were distributed
from the leading edge of the cell population (Figure 3b). In the matrix, a cell trajectory
was clearly identified by the presence of a filament-less channel, through which following
cells could move (Figure 4a, upper left). These observations suggest that secretion of EPM
preceded the migration of F. johnsoniae cells. In total, colony expansion seems to reflect
the morphological, behavioral and physiological characteristics of the cells in the biofilm
colony (Figure 4).

Attachment to a solid surface is an important first step in biofilm formation [47–49].
Because gliding motility is a movement that allows bacteria to stay in contact with the solid
surface, it appears that F. johnsoniae cells, partly with the assistance of adhesins such as
SprB, can glide on the agar surface covered with secreted EPM while secreting vesicles, thus
extending the biofilm. The bacteria in the advancing fronts toward horizontal (Figure 3a,
region 1–2) or upward direction (Figure 4a, region II) were more densely surrounded
by budding vesicles and many secreted vesicles in the colony (Figure 3d, image 1–2 and
Figure 4c, region II). The abundant vesicle secretions might support EPM formation because
vesicles could include or attach to proteins, including chaperons, contributing to EPM
formation.

WT cells grew and formed a large circular colony on 1% A-PY2, whereas the ∆sprB
mutant formed nonspreading colonies. Although the ∆sprB cells were densely packed,
the intercellular space was occupied by a substance containing thin extracellular fibers
and vesicles (Figures 5 and 6). Consequently, the cell surface adhesin SprB has a role in
the expansion of F. johnsoniae biofilm, although SprB is not required for biofilm formation.
This is in good accordance with a previous study showing that the P. aeruginosa biofilm
architecture formed by a flagella- and type IV-pili-double mutant was different from that
formed by WT [49]; flagella- and twitching-motility have roles in shaping the biofilm
architecture, although they are not necessary for biofilm formation.

The volume of extracellular matrix of the ∆sprB mutant colony was significantly
less than that of the WT colony (Figure 6). Our data suggest that gliding movement is
associated with the volume of extracellular matrix and thus affects the maturation of
biofilm architecture. Recently, we investigated the SprB-independent colony spreading of
F. johnsoniae on soft agar containing glucose [16]. The extracellular matrix of the colony
contained a network of extracellular fibers and many secreted vesicles, which is similar
with that on 1% A-PY2 [16,50].

Death of cells was observed in the tightly packed region of the F. johnsoniae ∆sprB
mutant colony that grew on 1% A-PY2 (Figures 5 and 6, the base layers). Such death might
reflect social apoptosis, including activities forming cell-free channels, to allow external
nutrition to diffuse into the biofilm. Consequently, the thick fiber-containing EPM might
include double-stranded DNA filaments and extracellular polysaccharides, as observed in
the biofilms of S. aureus and P. acnes immersed in aqueous liquid by atmospheric scanning
electron microscopy (ASEM) [45,46]. Further experiments are required to understand the
water-rich architecture of F. johnsoniae biofilms, for example, using ASEM that enabled
observations of various water-rich phenomena of organic and inorganic substances at high
resolution [16,51,52]. The undulations observed for the layered surface coats of F. johnsoniae
cells in biofilm has a possibility to be artefacts, due to the dehydration pretreatment of the
Epon-embedded TEM. It should be also addressed using the liquid-phase ASEM.

The results reported here shed light into the liquid-phase biofilm structures formed
at the interfaces between air and water, and also between water and solid substrate. The
various electron microscopy and optical microscopy techniques used in this studies will
accelerate study of such biofilms.
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4. Materials and Methods
4.1. Bacterial Strain and Biofilm Cultivation

F. johnsoniae strains were grown in casitone-yeast extract (CYE) medium at 24 ◦C
(Becton, Dickinson and Co., Franklin Lakes, NJ, USA). The details of the bacterial strains
and plasmids used are shown in Table 1. For selection and maintenance of antibiotic-
resistant F. johnsoniae strains, antibiotics were added to the medium at the following
concentrations: streptomycin, 100 µg/mL; erythromycin, 100 µg/mL.

Table 1. Bacterial strains and plasmids used in this study.

Strain Description Ref.
E. coli strain

S17-λpir RP4-2-Tc::Mu aph::Tn7 recA, Smr [53]
F. johnsoniae strain

CJ1827 rpsL2, Smr [34]
CJ1922 sprB, Smr [34]

F. johnsoniae plasmid
pFj29 Apr Emr, Expression vector carrying with ompA promoter and gfp [35]

To observe colony spreading, F. johnsoniae WT and sprB deletion mutant CJ1922 (∆sprB)
cells were grown in CYE medium at 27 ◦C with shaking (175 rpm) overnight. The cells
were collected as a pellet by centrifugation at 800× g for 10 min, at 22 ◦C. The pellet was
resuspended in the same volume of washing buffer (10 mM Tris-HCl pH 7.4) by vortexing,
and the suspension was centrifuged at 800× g for 10 min at 22 ◦C. These steps were repeated
twice. The cells were spotted onto peptone yeast (PY2) agar medium (peptone and yeast
extract, Becton, Dickinson and Co. and agar, Ina Food Industry Co., Ltd., Nagano, Japan)
in a dish 9 cm in diameter and incubated at 24 ◦C [15]. Construction of an F. johnsoniae
strain expressing GFP was carried out as follows: After the mating of E. coli S17-1 λpir
carrying pFj29 with F. johnsoniae WT (CJ1827) and CJ1922, an Emr transconjugant was
obtained [34,53].

4.2. Fixation

For Epon embedding and TEM, spreading colonies on agar medium and cultured
bacterial cells were fixed with 1% paraformaldehyde and 3.5% glutaraldehyde in 0.1 M
phosphate buffer (PB) (pH 7.4) at room temperature (RT) for 3 h and further with 1% osmic
acid in the same buffer at 4 ◦C for 1 h.

4.3. Epon Embedding and Sectioning

Fixed colonies were dehydrated through a gradient series of alcohol at RT and em-
bedded in Epon 812. Ultrathin sections (70 or 400 nm thick) were cut parallel to the colony
spreading direction and perpendicular to the agar medium surface. This allowed both
spreading across the surface of the agar medium and any penetration into the agar to be
monitored. A Leica Ultracut UCT microtome (Leica, Wetzlar, Germany) was employed. A
series of ultrathin sections was cut at RT and collected on EM grids.

4.4. TEM Imaging

Epon sections mounted on grids were stained with uranyl acetate (UA) and lead
citrate (LC) and observed with an H7600 TEM (Hitachi, Tokyo, Japan) at 80 kV.

4.5. Quantification of Vesicles

The number of vesicles attached to the outer circumference of bacteria was manually
counted and divided by the outer circumference to get vesicle density (vesicles/µm).
The circumference of the cells was measured using ImageJ (National institute of Health).
Thirty-three cells were analyzed for each region.
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