2	Molecular characteristics of methicillin-resistant Staphylococcus aureus isolated from						
3	skin and soft-tissue infections collected in the Japanese nationwide surveillance						
4							
5	Running Head						
6	Molecular characteristics of MRSA from SSTI in Japan						
7							
8	Author names						
9	Norihito Kaku ^{*a} , Takamitsu Ohnishi ^b , Tetsuya Matsumoto ^c , Shinichi Watanabe ^b ,						
10	Katsunori Yanagihara ^a						
11							
12	Author affiliations						
13	^a Department of Laboratory Medicine, Nagasaki University Graduate School of						
14	Biomedical Sciences, Nagasaki, Japan						
15	^b Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan						
16	^c Department of Infectious Diseases, International University of Health and Welfare,						
17	Chiba, Japan						
18							
19	*Corresponding author						
20	Norihito Kaku						
21	Department of Laboratory Medicine, Nagasaki University Graduate School of						
22	Biomedical Sciences						

- 23 E-mail: kaku-ngs@umin.ac.jp
- 24 Tel: +81-95-819-7574 Fax: +81-95-819-7422
- 25
- 26

27 Abstract

Skin and soft tissue infections (SSTIs) are a common infection among both outpatients 2829and inpatients. The most frequently isolated bacterium in SSTIs was Staphylococcus 30 aureus, and quarter of which was methicillin-resistant S. aureus (MRSA). In this study, 31to investigate molecular epidemiology of the 141 MRSA strains collected in the Japanese 32nationwide surveillance, we performed multiplex real-time PCR to detect staphylococcal 33 cassette chromosome mec (SCCmec) type and virulence genes. The percentage of SCCmec type I, II, III, and IV was 1.4%, 52.5%, 5.7%, and 40.4%, respectively. 3435According to the SCC*mec* type, we classified the strains into HA-MRSA (n = 84) and CA-MRSA (n = 57). Among the virulence genes, the percentage of enterotoxin C gene-36 37positive strains was significantly higher in CA-MRSA than in HA-MRSA. No significant 38 differences were detected between the two groups in terms of antibiotic susceptibility and 39 patients' background information, classification of SSTIs, or symptoms of SSTIs.

40

41 Key words

42 MRSA; SCCmec; surveillance; epidemiology; SSTI

43 Introduction

44Skin and soft tissue infections (SSTIs) are common in both outpatient and inpatient. Although most MRSA infections are categorized as healthcare-associated infections, 4546 those caused by community-associated MRSA (CA-MRSA), which usually carries 47staphylococcal cassette chromosome mec (SCCmec) types IV or V, have been reported from all over the world for over 10 years.(1,2) However, the molecular characteristics of 4849 MRSA isolated from SSTIs in Japan remain unclear, because there are only a few 50multicenter studies on molecular epidemiology of MRSA isolated from SSTIs in Japan. 51(3-5)

To reveal the molecular epidemiology of MRSA isolated from patients with SSTIs in Japan, we performed genetic analysis of MRSA collected in the nationwide surveillance conducted by the Japanese Society of Chemotherapy, Japanese association for infectious diseases and Japanese society for Clinical Microbiology.(6) Additionally, we investigated the differences between HA-MRSA and CA-MRSA based on classification via genetic analysis.

- 58
- 59

60 *Material and methods*

61 Strains and patients' background

MRSA strains were collected throughout Japanese institutions included 30
dermatology departments within hospitals and 10 dermatology clinics (Supplementary
Table 1) between January and October 2013, as described in a previous study.(6) Of the

65 141 strains, 7 strains were isolated from clinics and 134 strains were isolated from 66 hospitals. Minimum inhibitory concentration (MIC) of MRSA strains was measured in 67 the previous study. (6) Patients' background information was collected from all 68 participants and anonymized for use in this study.

69

70 Real-time PCR assay

Bacterial DNA extraction and real-time PCR were performed as reported previously to amplify SCC*mec* I, SCC*mec* II-III, SCC*mec* I-II-IV, toxic shock syndrome toxin 1 genes (*tst*), enterotoxin C genes (*sec*), exfoliative toxin type b genes (*etb*), and *pvl*. (7) Based on the result of real-time PCR, the strains were determined as SCC*mec* type I, II, III, IV, and non-typeable. (2,7–9) Based on the SCC*mec* type, we classified the strains into HA-MRSA (SCC*mec* type I, II, and III) and CA-MRSA (SCC*mec* type IV).(8)

78 Ethics

This study followed the principles set forth in the Declaration of Helsinki and was approved by the ethics committee of Nagasaki University Hospital (approval number, 19012118).

82

83 Statistical analysis

In a comparative study, we used IBM SPSS version 25 (IBM Japan, Tokyo, Japan) for all statistical analyses, which were unpaired, two-tailed, and tests of significance. The statistically significant alpha level was set at ≤ 0.05 . Fisher's exact test was used to compare categorical variables. Continuous variables were expressed as mean ± standard
deviation (SD), and compared using the Student t-test.

89

90

91 Results

92 Genetic analysis

93 Of the 141 strains, 2 (1.4%) carried SCCmec type I, 74 (52.5%) carried SCCmec type

94 II, 8 (5.7%) carried SCCmec III, and 57 (40.4%) carried SCCmec type IV (Fig. 1A). There

95 was no non-typeable strain. With regard to virulence genes, 114 strains (80.9%) were

96 positive for sec, 132 (93.6%) were positive for tst, 14 (9.9%) were positive for etb, and 9

97 (6.4%) were positive for *pvl* (Fig. 1B).

98 According to the SCCmec type, we classified the strains into HA-MRSA (n = 84) and

99 CA-MRSA (n = 57). The percentage of sec gene-positive strains was found to be

100 significantly higher in CA-MRSA than in HA-MRSA (89.5%, CA-MRSA and 75.0%,

101 HA-MRSA, *P* = 0.048) (Fig. 1C).

102

103 Comparison of patient background information between HA- and CA-MRSA

According to the patients' background information, the percentage of inpatients in the HA- and CA-MRSA groups was 36.9% and 38.6%, respectively. History of hospitalization within 1 year in the HA- and CA-MRSA groups was 45.2% and 42.1%, respectively. There were no significant differences between the two groups in patients' background (Table 1).

110	Differences in antibiotic susceptibility between HA-MRSA and CA-MRSA
111	The MICs of HA-MRSA and CA-MRSA are shown in Supplementary Table 2. There
112	was no difference in MIC ₅₀ and MIC ₉₀ between HA-MRSA and CA-MRSA. Antibiotic
113	susceptibility of HA-MRSA and CA-MRSA is shown in Figure 2. The susceptibility rate
114	of ciprofloxacin, levofloxacin, and moxifloxacin was lower in HA-MRSA than in CA-
115	MRSA. However, there was no significant difference in antibiotic susceptibility between
116	the two groups.
117 118	
119	Discussion
120	We investigated the molecular epidemiology of MRSA isolated from patients with
121	SSTIs in the Japanese nationwide surveillance. From our genetic analysis, the percentage
122	of SCCmec type II was higher than that of SCCmec type IV. On the other hand, in the
123	previous nationwide surveillance of CA-MRSA isolated from skin and pus samples of
124	outpatients in Japan, the most frequent SCCmec type was IV and the second was II.(4)
125	However, there were some differences in study design between two nationwide
126	surveillance. MRSA strains were collected from only outpatients in the first nationwide
127	surveillance while MRSA strains were collected from both outpatients and inpatients in
128	this study. In addition, MRSA strains were collected from many small hospitals that
129	possible no microbiology laboratories in the first nationwide surveillance,(4) whereas
130	MRSA strains were collected from many university hospitals. (6) Most of the MRSA
131	strains (95.0%) in this study were isolated from hospitals. A previous multicenter study

132 of MRSA isolated from outpatients in Tama district of Tokyo revealed that the percentage 133 of SCCmec type II in hospitals was higher than that in clinics.(3), which could explain 134 why the most frequent SCCmec type was different between two nationwide surveillance. 135 A recent multicenter study on MRSA isolated from outpatients with impetigo in 136 Kagawa reported that the most frequent SCCmec type was V.(5) The previous study in 137Tama also reported the percentage of SCCmec V in hospitals and clinics were 20.0% and 138 46.3%, respectively.(3) SCCmec V was determined as non-typeable in our method,(9) but 139 there was no non-typeable strain in this study. There is a possibility that the difference in 140 method between two previous studies and this study influenced the results. However, 141 patients' background is markedly different between two previous studies and this study. 142The median age of patient in Kagawa was 12, (5) and that in hospitals and clinics in Tama 143 was 5 and 4, respectively. (3) On the other hand, the mean age was 52.5 in this study. 144 Moreover, 72.3% of the patients in this study had underlying diseases. Since SCCmec 145type V was generally seen in healthy children or young athletes,(10) these differences 146 might influence the detection of SCCmec V. In addition, there is a possibility that 147 epidemic SCCmec type vary depending on the region, because there was no participating 148 institution located in Tama district or Kagawa in this study.

We compared virulence genes, patients' background, and antibiotic susceptibility between HA-MRSA and CA-MRSA groups in this study. For virulence factors, the percentage of *sec* gene-positive strains was significantly higher in the CA-MRSA group than in HA-MRSA as previously reported.(8,11) From a comparison of patient background information, we found no significant differences between HA-MRSA and 154 CA-MRSA groups. A percentage of inpatient in CA-MRSA group was almost as much as 155 that in HA-MRSA. This means that hospital-acquired SSTIs was also caused by CA-156 MRSA strain. In this study, the susceptibility rate of fluoroquinolone was lower in HA-157 MRSA than in CA-MRSA, but there was no significant differences. A Previous studies 158 reported that antibiotic susceptibility was different between HA-MRSA and CA-159 MRSA.(3,4,9)

160 There were some limitations to the current study. First, other than SCCmec typing, we 161 did not perform a detailed molecular analysis, such as multi locus sequence typing 162(MLST). Recently, SCCmec type IV has been increasing in the hospital-acquired MRSA 163 infections.(2,12) In addition, both SCCmec types II and IV were frequently found in the 164 same clonal complex in the previous study.(5) Hence, in further nationwide surveillance, 165a performance of MLST is needed. Second, we analyzed MRSA strains isolated at a 166 specific point in time. Since there is a possibility that the percentage of SCCmec type II 167 and IV is different depending on the study period,(5) further study at other period is 168 needed. Third, we were not able to investigate the effect of antibiotics. CA-MRSA tended 169 to be sensitive to fluoroquinolones, but their effect remains unknown. 170 In conclusion, this study revealed that the percentage of SCCmec type II is higher 171 than that of SCCmec type IV in MRSA strains isolated from patients with SSTIs in 172Japan. Additionally, there are no significant differences in patient background or

173 antibiotic susceptibility between HA-MRSA and CA-MRSA in this study.

174 Acknowledgements

We would like to thank Editage (www.editage.jp) for English language editing. We 175wish to thank Dr. Akira Yuasa from Dermatological Sub-committee and the Surveillance 176 177 Committee of Japanese Society of Chemotherapy (JSC), The Japanese Association for 178Infectious Disease (JAID) and The Japanese Society for Clinical Microbiology (JSCM), 179Tokyo, Japan, Dr. Hiroshi Kiyota, Dr. Satoshi Iwata, Dr. Mitsuo Kaku, Dr. Akira 180 Watanabe, and Dr. Junko Sato from The surveillance Committee of JSC, JAID, and 181 JSCM, Tokyo, Japan, and Dr. Hideaki Hanaki from Infection Control Laboratory & 182Infection Control Research Center, Kitasato University, Tokyo, Japan for providing 183 bacterial strains and information on patients' background. We wish to thank Dr. 184 Motomu Manabe from Department of Dermatology and Plastic Surgery, Akita 185University, Graduate School of Medicine and Faculty of Medicine, Akita, Japan, Dr. 186 Tamio Suzuki from Department of Dermatology, Faculty of Medicine, Yamagata 187 University, Yamagata, Japan, Dr. Fujio Otsuka from Department of Dermatology, 188 Center for Medical Education and Training, University of Tsukuba Hospital, Ibaraki, 189 Japan, Dr. Michiko Aihara from Department of Environmental Immuno-Dermatology, 190 Yokohama City University Graduate School of Medicine, Kanagawa, Japan, Dr. Ken 191 Iozumi from Department of Dermatology, Tokyo Metropolitan Police Hospital, Tokyo, 192Japan, Dr. Takeshi Tamaki from Department of Dermatology, Center Hospital of the 193 National Center for Global Health and Medicine, Tokyo, Japan, Dr. Yuichi Funada from 194Tobudaishimae Clinic, Tokyo, Japan, Dr. Mikio Shinozaki from Shinozaki Dermatology 195Clinic, Tokyo, Japan, Dr. Motoko Kobayashi from Kobayashi Dermatology Clinic,

196	Tokyo, Japan, Dr. Masaru Okuda from Okuda Dermatology Clinic, Tokyo, Japan, Dr.
197	Go Kikyo from Go Dermatology Clinic, Tokyo, Japan, Dr. Kumi Kikuchi from Kikuchi
198	Orthopedic Clinic, Tokyo, Japan, Dr. Yoshitane Okada from Okada Dermatology Clinic,
199	Tokyo, Japan, Dr. Masanori Takeshima from Takeshima Dermatology Clinic, Tokyo,
200	Japan, Dr. Osamu Kaneko from Kaneko Dermatology Clinic, Saitama, Japan, Dr.
201	Natsuki Ogawa from Fujimino Dermatology Clinic, Saitama, Japan, Dr. Rie Ito from
202	Department of Dermatology, Saitama Cooperative Hospital, Saitama, Japan, Dr. Ryuhei
203	Okuyama from Department of Dermatology, Shinshu University School of Medicine,
204	Nagano, Japan, Dr. Shinji Shimada from Department of Dermatology, University of
205	Yamanashi Hospital, Yamanashi, Japan, Dr. Tadamichi Shimizu from Department of
206	Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of
207	Toyama, Toyama, Japan, Dr. Naohito Hatta from Department of Dermatology, Toyama
208	Prefectural Central Hospital, Toyama, Japan, Dr. Manabu Maeda from Department of
209	Dermatology, Gifu Prefectural General Medical Center, Gifu, Japan, Dr. Kiyohiro
210	Tsutsui from Department of Dermatology, Ishikawa Prefectural Central Hospital,
211	Ishikawa, Japan, Dr. Toshihiro Tanaka from Department of Dermatology, Shiga
212	University of Medical Science, Shiga, Japan, Dr. Yoshiki Miyachi from Department of
213	Dermatology, Kyoto University, Graduate School of Medicine, Kyoto, Japan, Dr. Hideo
214	Asada from Department of Dermatology, Nara Medical University Hospital, Nara,
215	Japan, Dr. Fukumi Furukawa from Department of Dermatology, Wakayama Medical
216	University, Wakayama, Japan, Dr. Ichiro Kurokawa from Department of Dermatology,
217	Meiwa Hospital, Hyogo, Japan, Dr. Keiji Iwatsuki from Department of Dermatology,

218	Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical
219	Sciences, Okayama, Japan, Dr. Michihiro Hide from Department of Dermatology,
220	Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan,
221	Dr. Masahiko Muto from Department of Dermatology, Yamaguchi University, Graduate
222	School of Medicine, Yamaguchi, Japan, Dr. Osamu Yamamoto from Department of
223	Dermatology, Tottori University Hospital, Tottori, Japan, Dr. Hiroyuki Niihara from
224	Department of Dermatology, Shimane University Hospital, Shimane, Japan, Dr. Kenji
225	Takagaki from Department of Dermatology, Shimane Prefectural Central Hospital,
226	Shimane, Japan, Dr. Yasuo Kubota from Department of Dermatology, Kagawa
227	University Hospital, Kagawa, Japan, Dr. Koji Sayama from Department of
228	Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan, Dr.
229	Shigetoshi Sano from Department of Dermatology, Kochi Medical School Hospital,
230	Kochi, Japan, Dr. Masutaka Furue from Department of Dermatology, Kyushu
231	University, Graduate School of Medical Sciences, Fukuoka, Japan, and Dr. Takuro
232	Kanekura from Department of Dermatology, Kagoshima University Graduate School of
233	Medical and Dental Sciences, Kagoshima, Japan for collecting bacterial strains and
234	patients' background information.
235	
236	

236

Funding 237

This study was supported by the Health and Labor Sciences Research Grants from 238the Ministry of Health, Labour, and Welfare in Japan (H28-Shinkou-Ippan-003). 239

0	Λ	n
4	4	υ

240		
241	Con	flict of interest
242	Tł	ne authors declare no conflict of interest.
243		
244	Refe	erences
245	1.	Dryden MS. Skin and soft tissue infection: microbiology and epidemiology. Int J
246		Antimicrob Agents [Internet]. 2009 Jul [cited 2019 Jan 11];34:S2-7. Available
247		from: http://www.ncbi.nlm.nih.gov/pubmed/19560670
248	2.	Kaku N, Yanagihara K, Morinaga Y, Yamada K, Harada Y, Migiyama Y, et al.
249		Influence of antimicrobial regimen on decreased in-hospital mortality of patients
250		with MRSA bacteremia. J Infect Chemother [Internet]. 2014 Jun [cited 2019 Jun
251		12];20(6):350–5. Available from:
252		https://linkinghub.elsevier.com/retrieve/pii/S1341321X14000701
253	3.	Nakaminami H, Sugiyama T, Okamura Y, Hanawa M, Abou M, Sawada K, et al.
254		Comparative analysis of methicillin-resistant Staphylococcus aureus isolated
255		from outpatients of dermatology unit in hospitals and clinics. J Infect Chemother
256		[Internet]. 2019 Mar 1 [cited 2019 Mar 11];25(3):233–7. Available from:
257		https://www.sciencedirect.com/science/article/pii/S1341321X18302885?via%3D
258		ihub
259	4.	Yamaguchi T, Okamura S, Miura Y, Koyama S, Yanagisawa H, Matsumoto T.
260		Molecular Characterization of Community-Associated Methicillin-Resistant
261		Staphylococcus aureus Isolated from Skin and Pus Samples of Outpatients in

262		Japan. Microb Drug Resist [Internet]. 2015 Aug [cited 2019 Mar 11];21(4):441-
263		7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25789579
264	5.	Sasai N, Nakaminami H, Iwasaki M, Iwao M, Misegawa K, Hasui M, et al.
265		Clonal change of methicillin-resistant Staphylococcus aureus isolated from
266		patients with impetigo in Kagawa, Japan. J Dermatol [Internet]. 2019 Apr 25
267		[cited 2019 Aug 14];46(4):301–7. Available from:
268		https://onlinelibrary.wiley.com/doi/abs/10.1111/1346-8138.14820
269	6.	Watanabe S, Ohnishi T, Yuasa A, Kiyota H, Iwata S, Kaku M, et al. The first
270		nationwide surveillance of antibacterial susceptibility patterns of pathogens
271		isolated from skin and soft-tissue infections in dermatology departments in
272		Japan. J Infect Chemother [Internet]. 2017 Aug [cited 2018 Feb 28];23(8):503-
273		11. Available from:
274		http://linkinghub.elsevier.com/retrieve/pii/S1341321X17301228
275	7.	Motoshima M, Yanagihara K, Morinaga Y, Matsuda J, Sugahara K, Yamada Y,
276		et al. Genetic diagnosis of community-acquired MRSA: a multiplex real-time
277		PCR method for Staphylococcal cassette chromosome mec typing and detecting
278		toxin genes. Tohoku J Exp Med [Internet]. 2010 Feb [cited 2018 Feb
279		28];220(2):165–70. Available from:
280		http://www.ncbi.nlm.nih.gov/pubmed/20139668
281	8.	Yanagihara K, Araki N, Watanabe S, Kinebuchi T, Kaku M, Maesaki S, et al.
282		Antimicrobial susceptibility and molecular characteristics of 857 methicillin-
283		resistant Staphylococcus aureus isolates from 16 medical centers in Japan (2008-

284		2009): nationwide survey of community-acquired and nosocomial MRSA. Diagn
285		Microbiol Infect Dis [Internet]. 2012 Mar [cited 2019 Aug 15];72(3):253-7.
286		Available from: http://www.ncbi.nlm.nih.gov/pubmed/22244779
287	9.	Mitsumoto-Kaseida F, Murata M, Toyoda K, Morokuma Y, Kiyosuke M, Kang
288		D, et al. Clinical and pathogenic features of SCCmec type II and IV methicillin-
289		resistant Staphylococcus aureus in Japan. J Infect Chemother [Internet]. 2017 Feb
290		[cited 2019 Mar 11];23(2):90–5. Available from:
291		http://www.ncbi.nlm.nih.gov/pubmed/27955954
292	10.	Yamamoto T, Nishiyama A, Takano T, Yabe S, Higuchi W, Razvina O, et al.
293		Community-acquired methicillin-resistant Staphylococcus aureus: community
294		transmission, pathogenesis, and drug resistance. J Infect Chemother [Internet].
295		2010 [cited 2019 Jul 24];16(4):225–54. Available from:
296		https://linkinghub.elsevier.com/retrieve/pii/S1341321X10705870
297	11.	Kimura Y, Morinaga Y, Akamatsu N, Matsuda J, Yamaryo T, Kawakami K, et
298		al. Antimicrobial susceptibility and molecular characteristics of methicillin-
299		resistant Staphylococcus aureus in a Japanese secondary care facility. J Infect
300		Chemother [Internet]. 2016 Jan [cited 2019 Jun 12];22(1):14-8. Available from:
301		https://linkinghub.elsevier.com/retrieve/pii/S1341321X15001944
302	12.	Popovich KJ, Weinstein RA, Hota B. Are community-associated methicillin-
303		resistant Staphylococcus aureus (MRSA) strains replacing traditional nosocomial
304		MRSA strains? Clin Infect Dis [Internet]. 2008 Mar 15 [cited 2019 Mar
305		11];46(6):787–94. Available from: https://academic.oup.com/cid/article-

306 lookup/doi/10.1086/528716

308 Supporting information

Supplementary Table 1. Participating institutions

Institutions
Hospitals
Akita University Hospital, Akita
Yamagata University Hospital, Yamagata
University of Tsukuba Hospital, Ibaraki
Yokohama City University Hospital, Kanagawa
Teikyo University Hospital, Tokyo
Tokyo Metropolitan Police Hospital, Tokyo
Center Hospital of the National Center for Global Health and Medicine, Tokyo
Saitama Cooperative Hospital, Saitama
Shinshu University School of Medicine, Nagano
University of Yamanashi Hospital
Toyama University Hospital, Toyama
Toyama Prefectural Central Hospital, Toyama
Gifu Prefectural General Medical Center, Gifu
Ishikawa Prefectural Central Hospital, Ishikawa
Shiga University of Medical Science Hospital, Shiga
Kyoto University Hospital, Kyoto
Nara Medical University Hospital, Nara
Wakayama Medical University Hospital, Wakayama
Meiwa Hospital, Hyogo
Okayama University Hospital, Okayama
Hiroshima University Hospital, Hiroshima
Yamaguchi University Hospital, Yamaguchi
Tottori University Hospital, Tottori
Shimane University Hospital, Shimane
Shimane Prefectural Central Hospital, Shimane
Kagawa University Hospital, Kagawa
Ehime University Hospital, Ehime
Kochi Medical School Hospital, Kochi

Kyushu University Hospital, Fukuoka Kagoshima University Hospital, Kagoshima

Clinics

Tobudaishimae Clinic, Tokyo Shinozaki Dermatology Clinic, Tokyo Kobayashi Dermatology Clinic, Tokyo Okuda Dermatology Clinic, Tokyo Go Dermatology Clinic, Tokyo Kikuchi Orthopedic Clinic, Tokyo Okada Dermatology Clinic, Tokyo Takeshima Dermatology Clinic, Tokyo Kaneko Dermatology Clinic, Saitama Fujimino Dermatology Clinic, Saitama

309

Supplementary Table 2. Comparison of MICs between HA-MRSA and CA-MRSA

A	HA-MRSA ($n = 84$)			CA-MRSA ($n = 57$)		
Antibiotic	50%	90%	range	50%	90%	range
PCG	8	32	0.125 to 64	8	32	0.5 to 32
MPIPC	64	128	4 to >128	64	> 128	4 to > 128
ABPC	8	32	0.25 to 128	16	32	1 to 64
SBT/ABPC	8	16	0.25 to 32	8	16	0.5 to 32
AMPC	16	32	1 to >64	16	32	1 to 64
CVA/AMPC	8	32	0.5 to 64	8	32	1 to 32
PIPC	64	128	2 to >128	64	128	2 to > 128
TAZ/PIPC-1	16	128	2 to >128	8	128	1 to > 128
TAZ/PIPC-2	32	128	2 to 128	16	128	2 to 128
CEZ	8	> 128	1 to > 128	8	> 128	1 to > 128

СТМ	4	> 128	1 to > 128	8	> 128	1 to > 128
CFDN	4	> 64	0.5 to > 64	4	> 64	0.5 to > 64
CDTR	16	> 64	1 to > 64	16	> 64	2 to > 64
CFPN	16	> 128	2 to > 128	16	> 128	2 to > 128
CFX	64	> 128	4 to > 128	32	> 128	4 to > 128
CMZ	16	64	2 to 128	8	64	2 to 128
IPM	0.5	32	≤ 0.06 to > 64	0.5	32	≤ 0.06 to 64
MEPM	2	32	0.125 to 64	2	16	0.25 to 32
FRPM	1	> 128	0.25 to > 128	1	> 128	0.25 to > 128
CPFX	64	> 128	0.25 to > 128	16	> 128	0.125 to >128
TFLX	>16	> 16	≤ 0.06 to > 16	>16	>16	≤ 0.06 to >16
NDFX	2	16	≤ 0.06 to 128	2	16	≦0.06 to 64
LVFX	16	> 128	0.125 to >128	8	>128	0.25 to >128
MFLX	2	64	≦0.06 to 128	2	64	≦0.06 to 128
GM	32	128	0.125 to > 128	32	64	0.125 to >128
ABK	0.5	1	0.25 to 8	0.5	1	0.25 to 8
EM	> 128	> 128	0.5 to > 128	>128	> 128	0.25 to > 128
CAM	> 64	> 64	0.25 to > 64	>64	> 64	0.25 to > 64
AZM	> 64	> 64	0.5 to > 64	>64	> 64	0.5 to > 64
CLDM	0.25	> 128	0.125 to > 128	0.25	>128	0.125 to > 128
MINO	0.125	16	≤ 0.06 to 32	0.125	16	≤ 0.06 to 32
VCM	1	1	0.5 to 2	1	1	0.5 to 2
TEIC	1	2	0.5 to 2	1	2	0.25 to 2
LZD	2	4	1 to 4	2	4	1 to 4

FOM	32	> 128	0.5 to > 128	8	>128	0.5 to > 128
ST	0.06	0.125	0.06 to > 8	0.06	0.125	0.06 to 0.25

MICs, minimum inhibitory concentrations; HA-MRSA, hospital associated MRSA; CA-MRSA, community associated MRSA

310

311

312 Figure legends

- 313 Figure 1. Genetic analysis of MRSA strains.
- 314 A total of 141 strains were isolated from patients with SSTI, and identified as MRSA.

315 SCCmec type (A) and virulence genes (B) were identified using real-time PCR. We

316 compared the virulence genes between HA-MRSA and CA-MRSA (C).

317 sec, enterotoxin type C; tst, toxic shock syndrome toxin 1; pvl, Panton-Valentine

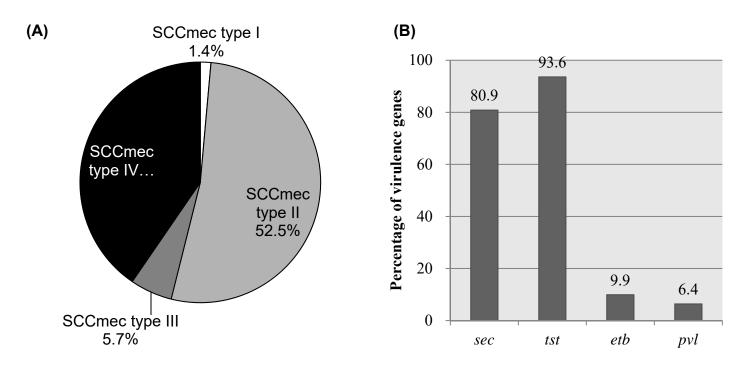
318 Leucocidin; *etb*, exfoliative toxin type b; HA-MRSA, healthcare-associated MRSA;

319 CA-MRSA, community-associated MRSA; NS, not significant in Fisher's exact test.

320

321 Figure 2. Comparison of antibiotic susceptibility of HA-MRSA and CA-MRSA.

- 322 Resistance breakpoints were defined according to criteria from the CLSI M100-S22.
- 323 CPFX, ciprofloxacin; LVFX, levofloxacin; MFLX, moxifloxacin; GM, gentamicin; EM,
- 324 erythromycin, CAM, clarithromycin; AZM, azithromycin; CLDM, clindamycin; MINO,
- 325 minocycline; ST, sulfamethoxazole / trimethoprim; VCM, vancomycin; TEIC,
- 326 teicoplanin; LZD, linezolid.

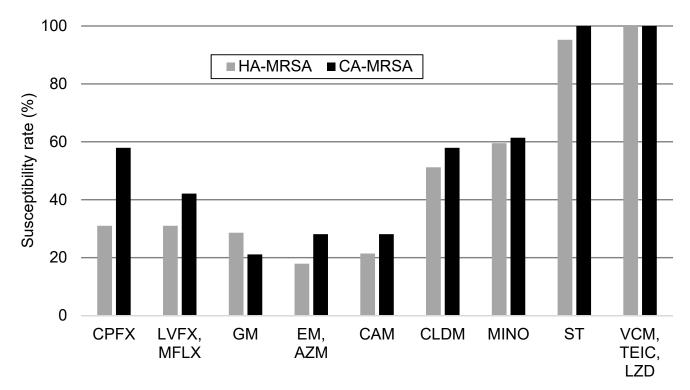

327

329 Tables

Table 1. Comparison of patients' background information between HA-MRSA and CA-MRSA

Patients' background	HA-MRSA $(n = 84)$		CA-MRSA (n = 57)		<i>P</i> value
	n	(%)	n	(%)	
Age					
mean \pm SD	52.5	± 27.5	52.4	± 29.9	
≦ 15	14	(16.7)	12	(21.1)	NS
16 - 64	35	(41.7)	17	(29.8)	NS
≧ 65	33	(39.3)	39	(49.1)	NS
Gender, female	40	(47.6)	21	(36.8)	NS
Outpatient	53	(63.1)	35	(61.4)	NS
Complicated underlying disease	62	(73.8)	40	(70.2)	NS
History of antibiotics within 4 weeks	36	(42.9)	23	(40.4)	NS
History of hospitalization within 1 year	38	(45.2)	24	(42.1)	NS
Classification of SSTI					NS
Superficial SSTI	38	(45.2)	28	(49.1)	NS
Deep-seated SSTI	35	(41.7)	19	(33.3)	NS
Unknown	11	(13.1)	10	(17.5)	NS
Symptoms of SSTI					NS
Redness	65	(77.4)	39	(68.4)	NS
Swelling	46	(54.8)	23	(40.4)	NS
Local heat	30	(35.7)	17	(29.8)	NS

Pain	32	(38.1)	14	(24.6)	NS
Fever	14	(16.7)	6	(10.5)	NS
Pus / discharge	28	(33.3)	20	(35.1)	NS


(C)

Virulence genes	HA-MRS.	A(n = 84)	CA-MRS	P value	
	n	(%)	n	(%)	
Sec	63	(75.0)	51	(89.5)	0.048
tst	78	(92.9)	54	(94.7)	NS
etb	10	(11.9)	4	(7.0)	NS
pvl	5	(6.0)	4	(7.0)	NS

Figure 1. Genetic analysis of MRSA strains.

A total of 141 strains were isolated from patients with SSTI, and identified as MRSA. SCC*mec* type (A) and virulence genes (B) were identified using real-time PCR. We compared the virulence genes between HA-MRSA and CA-MRSA (C).

sec, enterotoxin type C; *tst*, toxic shock syndrome toxin 1; *pvl*, Panton-Valentine Leucocidin; *etb*, exfoliative toxin type b; HA-MRSA, healthcare-associated MRSA; CA-MRSA, community-associated MRSA; NS, not significant in Fisher's exact test.

Figure 2. Comparison of the antibiotic susceptibility of HA-MRSA and CA-MRSA

Resistance breakpoints were defined according to criteria from the CLSI M100-S22. CPFX, ciprofloxacin; LVFX, levofloxacin; MFLX, moxifloxacin; GM, gentamicin; EM, erythromycin, CAM, clarithromycin; AZM, azithromycin; CLDM, clindamycin; MINO, minocycline; ST, sulfamethoxazole / trimethoprim; VCM, vancomycin; TEIC, teicoplanin; LZD, linezolid.