1	Title
2	Efficacy of meropenem and amikacin combination therapy against carbapenemase-
3	producing Klebsiella pneumoniae mouse model of pneumonia
4	
5	Authors
6	Kenji Ota ^{a,b} , Norihito Kaku ^{a,b*} , and Katsunori Yanagihara ^{a,b}
7	
8	Affiliation
9	^a Department of Laboratory Medicine, Nagasaki University Graduate School of
10	Biomedical Sciences, Nagasaki, Japan
11	^b Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
12	
13	*Corresponding author
14	Norihito Kaku
15	Department of Laboratory Medicine, Nagasaki University Graduate School of

16 Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.

- 17 Tel: +81-95-819-7418 Fax: +81-95-819-7257
- 18 E-mail: <u>kaku-ngs@umin.ac.jp</u>
- 19

20 Authorship statement

21 All authors meet the ICMJE authorship criteria.

22

- 23 This article is submitted as a Committee Report, supported by the Japanese Society of
- 24 Chemotherapy.

26 Abstract

27	Background: The emergence and spread of carbapenem-resistant Enterobacteriaceae
28	(CRE) is a global health problem due to its high mortality and limited treatment options.
29	Combination antimicrobial therapy is reported to be effective against CRE in vitro;
30	however, its efficacy in vivo has not been thoroughly evaluated. Thus, this study
31	assessed the efficacy of combination therapy of meropenem (MEPM) and amikacin
32	(AMK) in a carbapenem-resistant Klebsiella pneumoniae (CR-Kp) mouse model of
33	pneumonia.
34	Materials and Methods: Agar-based bacterial suspension of CR-Kp clinical isolates was
35	inoculated into the trachea of BALB/c mice. Treatment was initiated 6 h post infection,
36	with 100 mg/kg MEPM every 6 h, 100 mg/kg AMK every 12 h, or in combination;
37	survival was evaluated for 7 days. The number of viable bacteria in the lungs, lung
38	histopathology, and neutrophil counts in broncho-alveolar lavage fluid (BALF) were
39	evaluated 42 h after infection.
40	Results: All mice in the untreated control group died in 48 hours, while all the mice in
41	treatment groups survived past 7 days following infection. The bacterial count in the

42	lungs (log ₁₀ CFU/mL, mean \pm SEM) in the combination group (2.00 \pm 0.00) decreased
43	significantly compared to that in control (10.19 \pm 0.11, p<0.0001), MEPM (6.38 \pm 0.17,
44	p<0.0001), and AMK (6.17 ± 0.16, p <0.0001) groups. BALF neutrophil count reduced
45	only in the combination therapy group. Combination therapy prevented the progression
46	of lung inflammation, including alveolar neutrophil infiltration and hemorrhage.
47	Conclusions: This study demonstrates in vivo efficacy of MEPM and AMK combination
48	therapy against CR-Kp pneumonia.
49	
50	Keywords: CPE, CRE, pneumonia mouse model, antibiotic combination therapy, in
51	vivo
52	
53	Funding: This work was supported by the tactical working committee against
54	multidrug-resistant bacteria by the Japanese Society of Chemotherapy.
55	
56	Conflicts of Interest: Yanagihara K received Research funding from Daiichi-Sankyo,
57	Sumitomo Daininnon Pharma Co. I td. MSD K.K. Toyama Chemical Co. I td. Pfizer

- 59 KYORIN Pharmaceutical Co., Ltd.; Lecture fee from Daiichi-Sankyo, MSD K.K.,
- 60 Taisho Toyama Pharmaceutical Co. Ltd., Japan Becton, Dickinson and Company,
- 61 Astellas Pharma, and bioMérieux Japan Ltd. Other authors declare no conflict of
- 62 interests associated with this manuscript.

63 **1. Introduction**

Emergence of carbapenem-resistant Enterobacteriaceae (CRE) has been considered one 64 65of the major global health problems that require immediate and appropriate actions [1,2]. 66 Nevertheless, the global spread of CRE is accelerating. A recent systematic review 67 revealed that the resistance rates to imipenem and meropenem in Enterobacteriaceae are 68 steadily increasing in Asia (from 0.5% and 0.3% in 2000-2004 to 1.9% and 2.4% in 2009-69 2011, respectively). Among the three most commonly isolated Enterobacteriaceae, 70*Klebsiella pneumoniae* has demonstrated the highest resistance rates [3]. 71CRE infections possess a high impact on mortality, which makes CRE an even more 72urgent problem. A previous study reported that infections caused by CRE have high 73mortality rates, ranging from 18% to 48% [4]. The mortality rate is higher especially in immunocompromised patients, who are prone to CRE colonization [5]. Therefore, the 74establishment of appropriate and robust antimicrobial treatment is strongly required. 7576Antibiotic combination therapy is considered to be superior to monotherapy for treatment 77of CRE infections, due to reduction in use of inappropriate initial antimicrobial therapy, the potential synergistic effects, and suppression of emerging resistance [6]. A recent 78

79	clinical observational study revealed that combination therapy with two or more active
80	agents, in vitro, was associated with lower mortality than treatment with a single active
81	agent [7]. However, the evidence that supports the effectiveness of anti-CRE agents,
82	colistin and tigecycline, against pneumonia is scarce. In a set of mouse pneumonia
83	experiments, intravenously administered colistin, lacked permeability into lung tissue [8],
84	and has been reported to be less effective against pneumonia than against other types of
85	infection in a clinical study [9]. Tigecycline's clinical effectiveness to pneumonia and
86	safety are not yet studied thoroughly enough [10], and its use for treatment in pneumonia
87	is not approved in Japan. Therefore, development of an antibiotic regimen independent
88	of colistin or tigecycline is crucial to the treatment of pneumonia caused by CRE. Among
89	the limited antibiotics available, carbapenem is a reasonable option when administered in
90	combination with another active antibiotic. Daikos et al. analyzed data from 138
91	carbapenem-resistant strains of Klebsiella pneumoniae (CR-Kp) infection in patients and
92	found that the lowest mortality rate was observed in patients with carbapenem-based
93	combination therapy when compared to non-carbapenem combination therapy [11]. In
94	those regimens, aminoglycoside was the most common antibiotic accompanied by

95	carbapenems, suggesting clinical effectiveness of the combination. The combination of
96	carbapenems and aminoglycosides has been studied in vitro, displaying synergistic
97	activity against CR-Kp isolates [12], but their effectiveness in the <i>in vivo</i> setting has not
98	yet been studied thoroughly.
99	In this study, we assessed the efficacy of combination therapy of meropenem (MEPM)
100	and amikacin (AMK) in a CR-Kp mouse model of pneumonia.

102 **2. Materials and methods**

103 2.1. Bacterial strains

104 In preliminary experiments for developing the mouse model, a total of eighteen clinically

105 isolated CR-Kp in Nagasaki University Hospital between January 2009 and June 2015

106 [13] were screened in four kinds of mice strains (BALB/c, C57/BL6, ddY, and ICR) by

107 instilling saline-based inoculum into their tracheas. Among them, the strain named KP2

108 showed the strongest pathogenicity against BALB/c, though the infection was

109 inconsistent and lacked reproducibility. Therefore, we decided to inoculate using an agar-

- 110 based inoculum method, using the KP2 strain. This strain has been confirmed to have
- 111 IMP-1 gene and produce carbapenemase. [13] The bacteria were stored at -80 °C in a

112 Microbank[®] bead preservation system (Pro-Lab Diagnostics, Ontario, CA) until use.

113

114 2.2. Antimicrobial agents

MEPM, cilastatin (CS), and AMK were purchased from FUJIFILM Wako Pure Chemical
Corporation (Osaka, Japan), Hangzhou APIChem Technology Co., Ltd (Hangzhou,
China), and Sigma-Aldrich Co. LLC (St. Louis, MO, U.S.A.), respectively.

1	1	Q
Т	Т	0

119	2.3. Animals
120	We purchased specific pathogen-free male BALB/c mice (6-7 weeks old, 18-22 g) from
121	Japan SLC, Inc. (Shizuoka, Japan). The mice were housed in a pathogen-free environment
122	and received sterile food and water in the Biomedical Research Center at Nagasaki
123	University.
124	
125	2.4. Ethics
126	All the experimental protocols used in this study were approved by the Ethics Review
127	Committee for Animal Experimentation (approval number 1003310842).
128	
129	2.5. Antimicrobial susceptibility tests
130	The MICs (minimum inhibitory concentration) for MEPM and AMK were determined
131	using a microdilution method in accordance with the guidelines of the CLSI (M100, 29 th
132	ed.).
133	

134 2.6 Murine model of pneumonia using agar-based inoculum

In order to develop a robust pneumonia model, we modified the agar-based inoculum 135 136 method previously reported by Hoover et al. [14]. The KP2 strain was cultured overnight 137 on Mueller-Hinton II agar (Becton Dickinson, Le Pont-de-Claix, France). They were suspended in sterile saline and the concentration was adjusted to 5×10^6 CFU/mL, as 138 139 estimated by turbidimetry (DEN-1B Densitometer, WAKENBTECH, Kyoto, Japan). Then, the bacterial suspension was diluted with liquid Mueller-Hinton II agar to 5×10^5 140 141 CFU/mL. Subsequently, 20 µL of the agar-based inoculum was inoculated through the outer sheath of the intravenous catheter (1×10^4 CFU/mouse). The procedures were 142143 carried out carefully in order not to cause choking from clotted agar. For model validation, 144survival rate and sequential bacterial load in the lungs were analyzed. 145146 2.7. Treatment protocol

Antimicrobial treatment was initiated 6 h post infection. MEPM was administered
intraperitoneally at 100 mg/kg four times a day (every 6 h) combined with 100 mg/kg CS.
AMK (100 mg/kg) was administered intraperitoneally twice a day (every 12 h). Treatment

150	was continued until the evaluation time point. The doses of these antibiotics were
151	determined according to previous studies [15,16] and concentrations that exerted a
152	sufficient antibacterial effect were chosen for this study. For the survival analysis (n=7
153	for each group), treatment was continued up to 120 h after inoculation and survival was
154	checked every 6 h for 5 days. Simultaneously, bodyweights of the mice were measured
155	twice a day until the end of the treatment. We performed the survival study and the
156	bacteriological study separately.
157	
158	2.8. Bacteriological examinations
159	For the bacteriological examinations, the infected mice of each group were sacrificed at
160	18, 30, and 42 h post infection i.e. 12, 24, and 36 h after the initiation of therapy as well

- 161 as at the end of the treatment of 5 days (n=3 to 4 for each group). Subsequently, they were
- 162 dissected under aseptic conditions, blood was collected via right ventricular puncture
- 163 using heparin-coated syringes. The lungs were removed, suspended in 1 mL of normal
- 164 saline and homogenized with a homogenizer (T10 basic ULTRA-TURRAX[®], Yamato,
- 165 Fukuoka, Japan). Serial dilutions of the lungs and blood were quantitatively cultured in

166	Mueller-Hinton II agar plates. After 12-16 h incubation, we evaluated the number of
167	visible colonies. The lowest level of detectable counts was 1×10^2 CFU/mL.
168	
169	2.9. Histopathological examinations
170	Whole lungs were removed under aseptic conditions and fixed in a 10% Formalin Neutral
171	Buffer-Methanol Solution (Mildform® 10NM, Wako, Osaka, Japan), and then the lung
172	tissue sections were paraffin embedded and hematoxylin and eosin (HE) stained.
173	
174	2.10. Bronchoalveolar lavage fluid (BALF) cell analysis
174 175	2.10. Bronchoalveolar lavage fluid (BALF) cell analysisBALF analysis was performed on mice different from those used for CFU determination
174 175 176	2.10. Bronchoalveolar lavage fluid (BALF) cell analysisBALF analysis was performed on mice different from those used for CFU determinationand histopathological analysis, in order to assess inflammatory cell accumulation in the
174 175 176 177	2.10. Bronchoalveolar lavage fluid (BALF) cell analysisBALF analysis was performed on mice different from those used for CFU determinationand histopathological analysis, in order to assess inflammatory cell accumulation in theairspace. The chest was opened to expose the lungs and trachea after the mouse was
174 175 176 177 178	 2.10. Bronchoalveolar lavage fluid (BALF) cell analysis BALF analysis was performed on mice different from those used for CFU determination and histopathological analysis, in order to assess inflammatory cell accumulation in the airspace. The chest was opened to expose the lungs and trachea after the mouse was sacrificed, and a disposable sterile tube (Safelet Cath[®] PU, NIPRO, Osaka, Japan) was
174 175 176 177 178 179	 2.10. Bronchoalveolar lavage fluid (BALF) cell analysis BALF analysis was performed on mice different from those used for CFU determination and histopathological analysis, in order to assess inflammatory cell accumulation in the airspace. The chest was opened to expose the lungs and trachea after the mouse was sacrificed, and a disposable sterile tube (Safelet Cath[®] PU, NIPRO, Osaka, Japan) was inserted into the trachea. BAL was performed three times sequentially using 1.0 mL of
 174 175 176 177 178 179 180 	 2.10. Bronchoalveolar lavage fluid (BALF) cell analysis BALF analysis was performed on mice different from those used for CFU determination and histopathological analysis, in order to assess inflammatory cell accumulation in the airspace. The chest was opened to expose the lungs and trachea after the mouse was sacrificed, and a disposable sterile tube (Safelet Cath® PU, NIPRO, Osaka, Japan) was inserted into the trachea. BAL was performed three times sequentially using 1.0 mL of 0.9% saline each time, and the recovered fluid was pooled on ice. Total cell counts were

182 Korea), and the percentage of neutrophils was calculated using Diff-Quik staining.

183

184	2.11.	Statistical	analysis
-----	-------	-------------	----------

- 185 All data were analyzed using Prism ver. 7.0e (GraphPad Software) and were expressed
- 186 as mean \pm standard errors of the mean (SEM). Differences between groups were
- 187 examined using one-way ANOVA with Tukey's multiple comparison test. A *P* value of
- 188 <0.05 was considered to indicate a statistically significant difference.

3. Results

- 191 3.1. MICs of antimicrobial agents for KP2
- 192 The MICs of MEPM and AMK for the bacterial strain KP2 were both 8 mg/L. This strain
- 193 exhibits resistance to MEPM but susceptibility to AMK.
- 194
- 195 3.2. Evaluation of the murine pneumonia model using agar-based CR-Kp inoculum
- 196 In the evaluation of this pneumonia model, the survival rate and sequential bacterial load
- 197 were analyzed. Two different bacterial concentrations of 10^4 and 10^3 CFU/mouse were
- 198 compared in the survival analysis. The mortality of the 10⁴ CFU /mouse group was higher
- 199 than that of the 10^3 CFU /mouse group (Fig. 1A), and the bacterial load in the lungs
- 200 showed a constant increase (Fig. 1B). Pathological findings were consistent with
- 201 inflammation caused by a bacterial infection (Fig. 1C).
- 202
- 203 3.3 Therapeutic effect of combination therapy compared to monotherapy on survival rate
- and change of bodyweight
- 205 The survival rate of the mice is shown in Fig. 2A. Most of the mice in treatment groups

206 survived through 5 days after infection. No statistical difference was observed in terms 207 of survival between the three treatment groups. The change of bodyweight of the mice is 208 shown in Fig. 2B. In all of the groups, the body weight decreased drastically just after the infection procedure. However, the decrease was suppressed in the combination group 209 210after day 2. From day 3 to 4, the body weight of combination group is statistically higher 211than both of the monotherapy groups (P < 0.001 vs. MEPM, P < 0.05 vs. AMK). 2122133.4. Bacteriological examinations. 214The bacterial load in the lungs was counted and analyzed at each timepoint. The bacterial 215load started to decrease in the treatment groups after initiation of antibacterial treatment 216 (Fig. 3A). The bacterial counts in the lungs of the control group at 6 h, 18 h, 30 h, and 42 217h were 4.916 ± 0.11 , 8.18 ± 0.14 , 9.57 ± 0.20 , 10.19 ± 0.11 , the MEPM-treated group at 18 h, 30 h, and 42 h were 5.06 ± 0.05 , 4.55 ± 0.33 , and 6.38 ± 0.17 , the AMK-treated group 218 219 at 18 h, 30 h, and 42 h were 3.68 ± 0.10 , 3.94 ± 0.05 , and 6.17 ± 0.16 , and in the 220MEPM+AMK-treated group at 18 h, 30 h, and 42 h were 3.20 ± 0.11 , 2.74 ± 0.07 , and 2.00 ± 0.00 , respectively. The bacterial load of the group receiving combination therapy 221

222	at 30 h and 42 h (Fig. 3B, C) was statistically lower than that in each monotherapy group.
223	The bacterial load in the blood was also counted and analyzed. The bacterial counts in the
224	blood of the mice of control group, MEPM, AMK, and MEPM+AMK group were 6.12 \pm
225	$0.46,0.00\pm0.00,0.73\pm0.73$ and $0.00\pm0.00,$ respectively (Fig. 3D). The bacterial counts
226	in the lungs of the mice which received thorough course of antibiotic therapy were below
227	the detection limit.
228	
229	3.5. Histopathological examinations
230	Light microscopy analysis of the HE-stained lungs of the control group at 42 h post
231	infection, revealed infiltration of large numbers of inflammatory cells in the alveolar
232	spaces, alveolar hemorrhage, and destruction of alveolar structures (Fig. 4A). These
233	findings are relatively conservative in the treatment groups. In MEPM+AMK-treated
234	mice, only mild inflammatory changes were observed, supporting a beneficial advantage
235	of using combination therapy.
236	

237 3.6. Analysis of BALF

238	KP2 induced an increase in the total number of neutrophils in BALF. The total numbers
239	of neutrophils in BALF were significantly lower in treatment groups, with significant
240	reduction in the MEPM+AMK-treated group compared to MEPM or AMK monotherapy
241	groups (Fig. 4B).
242	
243	

4. Discussion

245 In this study, we developed a novel CR-Kp mouse model of pneumonia using an agar-

- 246 based inoculum method. Furthermore, we demonstrated the efficacy of combination
- 247 MEPM and AMK therapy in this model.

248To the best of our knowledge, this is the first study to establish a CR-Kp pneumonia model 249in immunocompetent mice. K. pneumoniae is one of the most common pathogens of 250community-acquired pneumonia, causing infection in immunocompetent patients [17-25119]. Therefore, in this study, the pneumonia mouse model under immunocompetent 252conditions is more relevant than the neutropenic mouse model commonly used for 253assumed patient populations. We generated this mouse model using an agar-based 254inoculum method that was previously reported [14]. Agar-based inoculum enables 255bacteria to scaffold in the lungs and helps their primary growth. Correspondingly, this method showed robust development of pneumonia with sufficient reproducibility. 256257Furthermore, it has potential adaptability to other pneumonia mouse models, independent 258of bacterial strains or mouse matching. However, the concern remains that agar itself might induce some inflammatory response, regardless of the existence of an infection. 259

260	Therefore, it may be difficult to precisely assess the host-pathogen interaction in this
261	model. However, evidence of infectious inflammation is suggested by the continuous
262	bacterial growth and findings of pathological bacterial infection observed (Fig. 1B, C).
263	Additionally, no deaths were observed in mice exposed to agar-based inoculum without
264	bacterial suspension. For these reasons, we consider this model appropriate in validating
265	the efficacy of antimicrobial agents against pathogens.
266	The efficacy of MEPM and AMK combination therapy against CR-Kp pneumonia over
267	monotherapy was thoroughly demonstrated by this study. The number of viable bacteria
268	in the lungs decreased and the inflammatory changes were limited in the combination
269	therapy group when compared to those in the monotherapy groups. Several clinical
270	studies have suggested the effectiveness of carbapenem and AMK in combination against
271	CR-Kp pneumonia, [20,21] but little is known about the efficacy of the combination in
272	vivo. Hirsch et al. screened combinations of doripenem, AMK, levofloxacin, or rifampin
273	against CR-Kp in vitro and found that doripenem and AMK exerted a synergistic effect.
274	[22] They further assessed the combination in immunocompromised mice and
275	demonstrated its efficacy by comparing with a placebo control group. In this study, we

276demonstrated the superiority of the combination therapy to monotherapy in vivo. We 277consider these results to be meaningful, based on the findings *in vitro* and the supporting 278clinical evidence available.

279On the other hand, a certain degree of reduction in bacterial load and inflammatory cell infiltration were shown by both monotherapy groups. Furthermore, sufficient 280281improvement of survival was observed in both monotherapy and combination treatment 282groups. These results can be partially explained by the immunocompetent status. In a 283meta-analysis comparing β -lactam monotherapy with β -lactam-aminoglycoside 284combination therapy for severe infections, no advantage of the combination therapy on 285mortality, in patients without neutropenia, was found [23]. Another review of clinical 286 studies suggests that combination therapy is associated with improved outcomes only in 287severely ill patients. [24] These clinical data suggest that combination therapy contributes 288to survival rate improvement only in immunocompromised or severely ill patients; this 289finding is consistent with our results that even monotherapy improved survival rate in an 290 immunocompetent host.

There are several limitations to this study. First, we have not performed any 291

292	pharmacokinetic analysis. Therefore, the drug administration doses are determined
293	according to the previous studies in mice [15,16] and the intervals are set considering the
294	half-life in mice, which is shorter than in humans [25]. In this study, antimicrobial effects
295	were observed in each monotherapy treatment group, and the synergistic effects were
296	confirmed for those situations. Further studies including PK studies are needed in order
297	to confirm concordance between synergies in vitro and in vivo. Another limitation is that
298	we assessed a single strain of KP2 in this study. We tried other clinical isolates, but the
299	pathogenicity was weak, and it was difficult to create pneumonia stably. This KP2 strain
300	possesses IMP-1 carbapenemase, which is the most dominant type in Japan [13]. It is
301	known that different types of carbapenemase hydrolyze carbapenems to different degrees,
302	thereby exhibiting variations in antimicrobial resistance [26]. For example, most of the
303	strains harboring IMP-1 carbapenemase exhibit susceptibility to aminoglycosides [13],
304	while NDM-1 carbapenemase possessing strains often show high levels of resistance
305	against aminoglycosides [27]. Hence, careful attention is required in applying these
306	results to clinical situations. In order to combat highly carbapenem-resistant pathogens,
307	other antimicrobial combinations against various strains should be further explored and

309	In conclusion, this pneumonia model is robust and consistent enough to evaluate
310	antimicrobial effectiveness. We confirmed that combination therapy of MEPM and AMK
311	was effective in the treatment of CR-Kp-induced pneumonia mouse model. Exploration
312	of additional antimicrobial combinations for selection or to be avoided and further
313	validation against other MIC strains is warranted.
314	
315	5. Acknowledgments

The authors sincerely appreciate receiving the 14th award in the Category of Basic Research Conferred by the Director of the West Japan Branch of the Japanese Society of Chemotherapy.

321	[1]	CDC. Antibiotic resistance threats in the USA 2013:22-50. doi:CS239559-B.
322	[2]	World Health Organization. Antimicrobial resistance: global report on
323		surveillance. World Health Organization; 2014.
324	[3]	Xu Y, Gu B, Huang M, Liu H, Xu T, Xia W, et al. Epidemiology of carbapenem
325		resistant Enterobacteriaceae (CRE) during 2000-2012 in Asia. J Thorac Dis
326		2015;7:376-85. doi:10.3978/j.issn.2072-1439.2014.12.33.
327	[4]	Akova M, Daikos GL, Tzouvelekis L, Carmeli Y. Interventional strategies and
328		current clinical experience with carbapenemase-producing Gram-negative
329		bacteria. Clin Microbiol Infect 2012;18:439–48. doi:10.1111/j.1469-
330		0691.2012.03823.x.
331	[5]	Mathers AJ, Cox HL, Bonatti H, Kitchel B, Brassinga AKC, Wispelwey B, et al.
332		Fatal cross infection by carbapenem-resistant Klebsiella in two liver transplant
333		recipients. Transpl Infect Dis 2009;11:257-65. doi:10.1111/j.1399-
334		3062.2009.00374.x.
335	[6]	Van Duin D, Kaye KS, Neuner EA, Bonomo RA. Carbapenem-resistant

320

References

336		Enterobacteriaceae: A review of treatment and outcomes. Diagn Microbiol Infect
337		Dis 2013;75:115–20. doi:10.1016/j.diagmicrobio.2012.11.009.
338	[7]	Gutiérrez-Gutiérrez B, Salamanca E, de Cueto M, Hsueh P-R, Viale P, Paño-
339		Pardo JR, et al. Effect of appropriate combination therapy on mortality of
340		patients with bloodstream infections due to carbapenemase-producing
341		Enterobacteriaceae (INCREMENT): a retrospective cohort study. Lancet Infect
342		Dis 2017;17:726–34. doi:10.1016/S1473-3099(17)30228-1.
343	[8]	Aoki N, Tateda K, Kikuchi Y, Kimura S, Miyazaki C, Ishii Y, et al. Efficacy of
344		colistin combination therapy in a mouse model of pneumonia caused by
345		multidrug-resistant Pseudomonas aeruginosa. J Antimicrob Chemother
346		2009;63:534-42. doi:10.1093/jac/dkn530.
347	[9]	Levin AS, Barone AA, Penço J, Santos MV, Marinho IS, Arruda EAG, et al.
348		Intravenous Colistin as Therapy for Nosocomial Infections Caused by Multidrug-
349		Resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Clin Infect Dis
350		1999;28:1008–11. doi:10.1086/514732.
351	[10]	Freire AT, Melnyk V, Kim MJ, Datsenko O, Dzyublik O, Glumcher F, et al.

352		Comparison of tigecycline with imipenem/cilastatin for the treatment of hospital-
353		acquired pneumonia. Diagn Microbiol Infect Dis 2010;68:140–51.
354		doi:10.1016/j.diagmicrobio.2010.05.012.
355	[11]	Daikos GL, Markogiannakis A. Carbapenemase-producing Klebsiella
356		pneumoniae: (when) might we still consider treating with carbapenems? Clin
357		Microbiol Infect 2011;17:1135–41. doi:10.1111/j.1469-0691.2011.03553.x.
358	[12]	Le. In Vitro Activity of Carbapenems Alone and in Combination With Amikacin
359		Against KPC-Producing Klebsiella Pneumoniae. J Clin Med Res 2011;3:106–10.
360		doi:10.4021/jocmr551w.
361	[13]	Yamakawa H, Kosai K, Akamatsu N, Matsuda J, Kaku N, Uno N, et al.
362		Molecular and epidemiological analysis of IMP-1 metallo-β-lactamase-producing
363		Klebsiella pneumoniae in a tertiary care hospital in Japan. J Infect Chemother
364		2019;25:240–6. doi:10.1016/j.jiac.2018.11.012.
365	[14]	Hoover JL, Lewandowski TF, Mininger CL, Singley CM, Sucoloski S,
366		Rittenhouse S. A Robust Pneumonia Model in Immunocompetent Rodents to
367		Evaluate Antibacterial Efficacy against S. pneumoniae, H. influenzae, K.

368		pneumoniae, P. aeruginosa or A. baumannii . J Vis Exp
369		2017:1–14. doi:10.3791/55068.
370	[15]	Harada Y, Morinaga Y, Kaku N, Nakamura S, Uno N, Hasegawa H, et al. In
371		vitro and in vivo activities of piperacillin-tazobactam and meropenem at different
372		inoculum sizes of ESBL-producing Klebsiella pneumoniae. Clin Microbiol Infect
373		2014;20:O831–9. doi:10.1111/1469-0691.12677.
374	[16]	Andes D, Craig WA. Animal model pharmacokinetics and pharmacodynamics: a
375		critical review. Int J Antimicrob Agents 2002;19:261-8. doi:10.1016/S0924-
376		8579(02)00022-5.
377	[17]	Shindo Y, Ito R, Kobayashi D, Ando M, Ichikawa M, Shiraki A, et al. Risk
378		Factors for Drug-Resistant Pathogens in Community-acquired and Healthcare-
379		associated Pneumonia. Am J Respir Crit Care Med 2013;188:985–95.
380		doi:10.1164/rccm.201301-0079OC.
381	[18]	UMEKI K, TOKIMATSU I, YASUDA C, IWATA A, YOSHIOKA D, ISHII H,
382		et al. Clinical features of healthcare-associated pneumonia (HCAP) in a Japanese
383		community hospital: Comparisons among nursing home-acquired pneumonia

384		(NHAP), HCAP other than NHAP, and community-acquired pneumonia.
385		Respirology 2011;16:856–61. doi:10.1111/j.1440-1843.2011.01983.x.
386	[19]	Maruyama T, Fujisawa T, Okuno M, Toyoshima H, Tsutsui K, Maeda H, et al. A
387		New Strategy for Healthcare-Associated Pneumonia: A 2-Year Prospective
388		Multicenter Cohort Study Using Risk Factors for Multidrug-Resistant Pathogens
389		to Select Initial Empiric Therapy. Clin Infect Dis 2013;57:1373-83.
390		doi:10.1093/cid/cit571.
391	[20]	Daikos GL, Markogiannakis A. Carbapenemase-producing Klebsiella
392		pneumoniae: (when) might we still consider treating with carbapenems? Clin
393		Microbiol Infect 2011;17:1135–41. doi:10.1111/j.1469-0691.2011.03553.x.
394	[21]	Tumbarello M, Trecarichi EM, De Rosa FG, Giannella M, Giacobbe DR,
395		Bassetti M, et al. Infections caused by KPC-producing Klebsiella pneumoniae:
396		Differences in therapy and mortality in a multicentre study. J Antimicrob
397		Chemother 2015;70:2133–43. doi:10.1093/jac/dkv086.
398	[22]	Hirsch EB, Guo B, Chang K-T, Cao H, Ledesma KR, Singh M, et al. Assessment
399		of Antimicrobial Combinations for Klebsiella pneumoniae Carbapenemase-

400		Producing K. pneumoniae. J Infect Dis 2013;207:786–93.
401		doi:10.1093/infdis/jis766.
402	[23]	Paul M, Benuri-Silbiger I, Soares-Weiser K, Leibovici L. β lactam monotherapy
403		versus β lactam-aminoglycoside combination therapy for sepsis in
404		immunocompetent patients: systematic review and meta-analysis of randomised
405		trials. BMJ 2004;328:668. doi:10.1136/bmj.38028.520995.63.
406	[24]	Chow JW, Yu VL. Combination antibiotic therapy versus monotherapy for gram-
407		negative bacteraemia: a commentary. Int J Antimicrob Agents 1999;11:7-12.
408		doi:10.1016/S0924-8579(98)00060-0.
409	[25]	Pechère M, Letarte R, Pechère JC. Efficacy of different dosing schedules of
410		tobramycin for treating a murine klebsiella pneumoniae bronchopneumonia. J
411		Antimicrob Chemother 1987;19:487–91. doi:10.1093/jac/19.4.487.
412	[26]	Queenan AM, Shang W, Flamm R, Bush K. Hydrolysis and inhibition profiles of
413		β -lactamases from molecular classes A to D with doripenem, imipenem, and
414		meropenem. Antimicrob Agents Chemother 2010;54:565-9.
415		doi:10.1128/AAC.01004-09.

416	[27]	Livermore DM, Mushtaq S, Warner M, Zhang JC, Maharjan S, Doumith M, et al.
417		Activity of aminoglycosides, including ACHN-490, against carbapenem-resistant
418		Enterobacteriaceae isolates. J Antimicrob Chemother 2011;66:48-53.
419		doi:10.1093/jac/dkq408.
420		
421		

422 Figure legends

423	Figure 1. Evaluation of the CR-Kp mouse model of pneumonia. The effects of agar
424	based inoculum of 10^3 and 10^4 CR-Kp/mouse on mouse survival (A, n=5). The number
425	of viable bacteria in lungs over time (B, n=6). Pathological findings show inflammatory
426	cell accumulation, hemorrhaging in the lungs, and alveolar destruction (C).
427	
428	Figure 2. Treatment effect on survival rate (A, n=7) and bodyweight changes (B, n=7).
429	In bodyweight changes, the data are expressed as relative values, with day 0
430	being 100%. *, P<0.05 vs. MEPM group; **, P<0.01 vs. MEPM group; ***,
431	<i>P</i> <0.001 vs. MEPM group; †, <i>P</i> <0.05 vs. AMK group.
432	
433	Figure 3. Number of viable bacteria in lungs. Agar based inoculum of 10 ⁴ CR-
434	Kp/mouse with antibiotic treatment initiated 6 h post infection. The bacterial load in the
435	lungs (n=3 or 4 per group) was counted and analyzed at 18, 30, and 42 h post infection
436	(A). At 30 h (B), and 42 h (C), combination therapy (MEPM+AMK) significantly
437	reduced bacterial load when compared to each monotherapy. The bacterial load in the

438	blood was counted and analyzed at 42 h post infection (D). All of the control mouse had
439	bacteremia, bacteremia was not seen in the treatment groups, except for a few cases in
440	the monotherapy groups. Data are representative of three independent experiments.
441	*, <i>P</i> <0.05; ***, <i>P</i> <0.001; ****, <i>P</i> <0.0001.
442	
443	Figure 4. Histopathological examinations of the lungs of mice (A) and the total
444	numbers of neutrophils in the BALF (B). At 42 h after infection, the control group and
445	each treatment group were compared. Inflammatory cells infiltrating the alveolar
446	spaces, alveolar hemorrhage and alveolar destruction were observed in the control
447	group. Those findings were relatively limited in the treatment groups, and most limited
448	in the combination treatment group. BALF analysis demonstrates a decrease in
449	neutrophil counts in the treatment group, with significant reduction in the combination
450	treatment group. *, P<0.05; **, P<0.01.

A. Survival

B. Bodyweight

Figure 4

A. Histopathological findings of the lungs

