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Abstract: Nitrate pollution in groundwater is a serious problem in Shimabara Peninsula, Nagasaki,
Japan. A better understanding of the hydrogeochemical evolution of groundwater in vulnerable
aquifers is important for health and environment. In this study, groundwater samples were collected
at 12 residential and 57 municipal water supply wells and springs in July and August 2018. Nitrate
(NO3−N) concentration at eight sampling sites (12%) exceeded Japanese drinking water standard
for NO3 + NO2−N (10 mg L−1). The highest nitrate concentration was 19.9 mg L−1. Polluted
groundwater is distributed in northeastern, northwestern, and southwestern areas, where land is used
for intensive agriculture. Correlation analysis suggests that nitrate sources are agricultural fertilizers
and livestock waste. Dominant groundwater chemistry is (Ca+Mg)−HCO3 or (Ca+Mg)−(SO4+NO3)
type. Groundwater with higher nitrate concentration is of (Ca+Mg)−(SO4+NO3) type, indicating
nitrate pollution affecting water chemistry. Principal component analysis extracted two important
factors controlling water chemistry. The first principal component explained dissolved ions through
water–rock interaction and agricultural activities. The second principal component explained cation
exchange and dominant agricultural effects from fertilizers. Hierarchical cluster analysis classified
groundwater into four groups. One of these is related to the dissolution of major ions. The other
three represent nitrate pollution.

Keywords: groundwater; nitrate pollution; water chemistry; principal component analysis;
hierarchical cluster analysis

1. Introduction

Shimabara Peninsula in Nagasaki Prefecture, Japan is composed of three munici-
palities: Shimabara City, Unzen City, and Minami-Shimabara City. The peninsula is an
important agricultural and livestock region. The cultivated area occupies about 12,100 ha
of the total 45,962 ha of the peninsula [1]. Agricultural production areas for potatoes,
vegetables, industrial crops, and fruit farms represent about 62.7% of the cultivated area.
Crops such as carrots, lettuce and Chinese cabbage are main crops cultivated throughout
the year. In terms of livestock, the number of milk cattle and chicken (70% of all livestock)
is about 7000 and 1,236,000, respectively [1]. The peninsula includes an important envi-
ronment. Shimabara Peninsula was recognized as a UNESCO Global Geopark in 2009.
The Unzen Volcano, located in the center of the peninsula, has been active during the last
half a million years. Thus, the peninsula has been formed by continuous eruptions and
mountain collapses. The central part, surrounded by faults, began sinking 300,000 years
ago and the subsidence is ongoing. The subsidence zone is called Unzen Volcanic Graben,
which has a width of about 20 km in an east-west direction and 10 km in a north–south
direction [2]. Its subsidence rate is estimated at 2 mm/year. The graben stores large
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amounts of groundwater in the thick layers of Unzen pyroclastic rocks and alluvial fan
gravel that constitute the aquifer material [3]. Groundwater spring outflow occurs mainly
in the western part of the peninsula. Due to the abundance of groundwater, almost all
water uses in the Shimabara Peninsula for agriculture, industry, and drinking water are
from groundwater supply. The used drinking water reached 17.6 million m3 in 2014 [1].

Groundwater, however, is under stress due to increasing nitrate pollution. In 2014,
12 out of totally 157 tap water sources, displayed higher nitrate nitrogen (NO3−N) levels
than the Japanese drinking water standards of 10 mg L−1 [1]. The highest contents were
found in Shimabara City, where 6 out of 26 sources did not meet the Japanese standard.
Unzen City showed the second highest nitrate rates (4 out of 60 sources). The lowest rates
(2 out of 71 sources) were found in Minami-Shimabara City. The maximum NO3−N level
was 22.2 mg L−1. In the recent five-year period, nitrate pollution in groundwater has been
reported in many countries (e.g., Spain [4], Italy [5], Morocco [6], Tunisia [7], Syria [8],
Iran [9], Pakistan [10], Thailand [11], China [12], America [13], Mexico [14], and Brazil [15]).
For example, very high NO3−N concentrations were found in Italy (133 mg L−1) [5]. These
studies indicate that potential pollution sources are often domestic and industrial wastew-
ater, seepage water from cesspits and septic tanks, fertilizers, and manure. According to
Nakagawa et al. [16], in Shimabara City, nitrate pollution in groundwater is related to
intensive agriculture. Nitrate pollution is spreading not only in groundwater but also in
surface water [17]. These studies demonstrated that the pristine water chemistry of type
Ca−HCO3 is gradually changing to Ca−(SO4+NO3) due to the nitrate pollution. However,
detailed research on nitrate pollution, water chemistry, and hydrogeochemical processes
of groundwater is still mainly limited to Shimabara City [16,18–21]. For other locations
as well, a better understanding of the hydrogeochemical evolution of groundwater in
vulnerable aquifers is important for the protection of water resources, which is significantly
related to the health of citizens. Therefore, the aim of this study was to investigate and
improve the understanding of nitrate pollution and water chemistry of groundwater in
Unzen City. A further objective was to arrive at possibilities for improving the regional
groundwater situation.

2. Materials and Methods
2.1. Study Area

Unzen City is located in the western part of Shimabara Peninsula (Figure 1). Unzen
City is the largest city among 3 municipalities in the peninsula, with an area of 21,472 ha.
Forest occupies the largest parts of the area (Figure 2a). Cultivated agricultural areas
represent 5150 ha [1], which is the second largest land cover. Of these, 2170 ha correspond
to paddy fields. The remaining area of 2980 ha is agricultural fields for potatoes, vegetables,
industrial crops, and fruit farms. As seen from the figure, cultivated areas are located to
the north and south of the city. Urban areas are situated along the coastal line. The area
belongs to humid subtropical climate with an average temperature of 12.9 ◦C and annual
precipitation of 2939 mm (1988–2017; data from Unzen-dake observatory, 32◦44.2′ N,
130◦15.7′ E) [22]. The seasonal precipitation tends to be concentrated from June to August,
accounting for one third of the annual total.
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volcanos are overlapping and form the steep mountainous area. Pre-Unzen volcanic rocks 
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Since the groundwater flow is considered interrupted by the faults, the city, and ex-
perimental area, was divided into three regions. The unconfined groundwater level con-
tours were drawn using kriging with Surfer 13 (Golden Software) based on the natural 
water level of municipal waterwork wells (Figure 2b). Following the alluvial fan for-
mation, the groundwater flows from the center to the coastline in the northern region. In 
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valley, and the north-south region, which is outside the rift valley, are independent and 
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Figure 1. Study area and sampling locations.

The geological structure of Shimabara Peninsula was reported by Murakami [3].
The city mainly lies on volcanic rock. An alluvial fan constituted of pyroclastic rocks with a
gentle slope spreads from the northern parts of the city (Figures 2b and 3). The rock, which
cover Kuchinotsu Layer of basement rock, is called Pre-Unzen volcanic rocks. Above an
elevation of 300 m, Unzen volcanic rocks are predominant. The volcanic rocks are andesite
with large phenocryst of amphibole. Joints and fissures are well developed. As men-
tioned above, the central part is a depression zone formed by the Unzen Volcanic Graben.
The graben is partitioned by the Chijiwa and Kanahama faults. The old (300–150 ka) and
new volcanos are overlapping and form the steep mountainous area. Pre-Unzen volcanic
rocks are distributed on a limited area. As a result, most of the central part are covered
with Unzen volcanic rocks (Figures 2b and 3). In the south, the Kuchinotsu Formation
forms hills and plateaus. Tuff breccia/tuffaceous sand layer and pyroxene andesite lava
(Pre-Unzen volcanic rocks) cover the Kuchinotsu Layer over a large area (Figures 2b and 3).
The mineralogical data of volcanic rocks were summarized by Sugimoto [23] as follows.
The Pre-Unzen volcanic rocks are composed of olivine basalt and two-pyroxene andesite
lava flows and pyroclastic. The Unzen volcanic rocks are composed of hornblende an-
desite to dacite lava domes, lava flows, and pyroclastic. The rocks also include plagioclase,
hornblende, and biotite.

Since the groundwater flow is considered interrupted by the faults, the city, and
experimental area, was divided into three regions. The unconfined groundwater level
contours were drawn using kriging with Surfer 13 (Golden Software) based on the natural
water level of municipal waterwork wells (Figure 2b). Following the alluvial fan formation,
the groundwater flows from the center to the coastline in the northern region. In the
central region, the groundwater flow direction is from east to west. The groundwater level
contours are parallel to the coastline and the administrative boundary in the southern
region, indicating that the groundwater flows from south-east to north-west. Oxygen and
hydrogen stable isotope ratios indicate that groundwater-derived spring and river water
are recharged from 300 to 850, 450 to 900, and 300 to 850 m above mean sea level in the
northern, central, and southern region, respectively [24]. The isotope studies further show
that the groundwater flow systems in the central region, which is inside the rift valley,
and the north-south region, which is outside the rift valley, are independent and that the
shallow groundwater in the central region is well mixed during flow.
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where all ion concentrations are expressed in mmolc L−1. All CBEs were confirmed to be 
less than about 10% (0.2–8.3%). Hydrochemical parameters such as dissolved oxygen 
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2.2. Sampling and Analysis

Groundwater samples were collected from 12 residential wells and 57 municipal water
supply wells and springs (Figure 1) in July and August 2018. In Japan, wells are generally
divided into deep and shallow depending on if the depth is smaller or larger than 30 m.
Except for MW39 and MW41, all municipal wells have a depth of 50–150 m. Spring water
was sampled with a collection pipe or cut off wall at MW39 and MW41. Of the residential
wells, three wells (K14, K24, and K29) are shallow. Other wells are deep. All samples
were collected in pre-washed bottles and water from taps connected to the wells. Before
sampling, stagnant water in the pipes was removed. Major dissolved ions (Cl−, NO3

−,
SO4

2−, Na+, K+, Mg2+, and Ca2+) were measured by using ion chromatography (Metrohm
861 Advanced Compact IC and Eco IC). Titration using 0.1N HCl determined HCO3

−.
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Charge balance errors (CBE) were established for all groundwater samples according
to [27]:

CBE =

∣∣∣∣∑ cations−∑ anions
∑ cations + ∑ anions

∣∣∣∣× 100 (1)

where all ion concentrations are expressed in mmolc L−1. All CBEs were confirmed to be
less than about 10% (0.2–8.3%). Hydrochemical parameters such as dissolved oxygen (DO),
oxidant redox potential (ORP), electrical conductivity (EC), and pH were measured in-situ
by using a handy measure instrument (HORIBA D-51, and D-54).

Multivariate statistical techniques were used to analyze the hydrogeochemical status
of the groundwater in the study area [28]. Principal component analysis (PCA) identified
factors affecting groundwater chemistry such as anthropogenic and natural processes
(e.g., discharge of domestic sewage, application of chemical fertilizer, water–rock inter-
action, and evaporation). Hierarchical cluster analysis (HCA) can classify water types in
addition to traditional analysis methods such as Piper and Stiff diagrams. These methods
were applied to the groundwater samples in Unzen City to improve the understanding of
nitrate pollution and joint hydrogeochemical processes. The concentrations of eight major
dissolved ion concentrations (HCO3

−, Cl−, NO3
−, SO4

2−, Na+, K+, Mg2+, and Ca2+) were
selected as input data. The principal components were extracted based on the Kaiser crite-
rion to only retain components with eigenvalues greater than 1. The HCA was performed
based on Ward’s method. The statistical software JMP Pro 13 (SAS Institute Inc., Cary, NC,
USA) was used for these multivariate analyses.

3. Results and Discussion
3.1. Water Chemistry

To improve the understanding how the Chijiwa and Kanahama faults affect the water
chemistry in the experimental area, Hydrochemical components are summarized for the
three fault separated regions as follows. In general, mean DO of about 8.0 mg L−1 indicates
that groundwater is aerobic (Table 1). The lowest DO is 3.2 mg L−1; however, this is still
above 2.0 mg L−1 which is the limit for denitrification [29]. Thus, low nitrate levels are not
caused by denitrification. In general, there is a small difference regarding pH. Mean pH
represents moderate alkalinity (Table 1). A pH from weak acid to weak alkaline is noted in
the north and central regions. Unzen City is famous for volcanic hot spring water. One
of the hot springs (Obama Hot Spring) located close to MW39 displays weak alkalinity
(pH 7.9) [30]. Other hot spring water (Unzen Hot Spring) close to MW41 and MW42 has
a pH of less than 2.0 [31]. Two sampling sites (MW41 and MW42) display weak acidity
(pH 6.9 and 6.6, respectively).

Table 1. Descriptive statistics of hydrochemical components in the three regions.

Cl− NO3− SO42− HCO3− Na+ K+ Mg2+ Ca2+ NO3−N DO pH EC ORP

mg L−1 mg L−1 mg L−1 mg L−1 mg L−1 mg L−1 mg L−1 mg L−1 mg L−1 mg L−1 mS m−1 mV

North
region

Min 2.8 2.8 1.4 20.0 5.1 1.3 1.8 3.6 0.6 3.2 6.31 7.7 46
Max 18.6 88.0 44.0 80.2 19.1 6.2 15.9 37.4 19.9 9.9 9.13 34.0 522
Mean 7.8 26.2 10.1 44.4 10.3 3.1 6.4 13.6 5.9 8.3 7.37 17.5 304
S.D.1 4.3 21.2 10.2 13.9 3.3 1.5 3.8 8.0 4.8 1.3 0.59 8.1 71

Central
region

Min 2.8 5.2 1.5 28.9 4.9 1.3 2.2 5.5 1.2 5.3 6.44 7.4 264
Max 9.2 21.3 15.6 56.4 11.1 4.4 7.0 14.1 4.8 9.7 8.34 18.3 365
Mean 5.4 10.9 7.3 40.1 8.4 2.5 4.5 9.1 2.5 8.6 7.47 11.9 321
S.D.1 1.6 4.8 4.5 9.0 1.9 0.9 1.6 2.6 1.1 1.1 0.68 3.0 28

South
region

Min 2.5 9.4 1.5 34.6 4.7 1.4 3.0 7.7 2.1 7.3 7.02 8.4 288
Max 34.2 71.2 8.4 72.9 19.8 3.9 12.0 24.8 16.1 9.3 8.41 32.5 354
mean 11.0 25.6 5.0 56.2 10.0 2.9 7.2 16.5 5.8 8.1 7.70 19.5 318
S.D.1 9.6 18.8 2.4 12.8 4.4 0.7 2.8 5.6 4.3 0.6 0.59 7.4 23

1 S.D. = standard deviation.

Minimum EC is about the same in all regions (Table 1). On the other hand, the highest
EC is significantly lower in the central region than in the other two regions. This is
probably a consequence of differences in water–rock interaction time [32]. All ORP values
are positive, indicating that groundwater is in oxic conditions (Table 1). Groundwater age
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is often related to redox conditions [33]. In general, young groundwater is likely to be oxic,
and older groundwater (e.g., >100–1,000,000 years) is more likely to be anoxic [33]. Thus,
groundwater in the study area is relatively young. Minimum ORP of 46 mV was found at
MW46. In addition, compared to the two other regions, mean ORP is relatively small in the
northern region. According to groundwater levels, the groundwater flow is slower in the
northern region. Therefore, groundwater residence time is expected to be longer in this
region compared to the other two and as a result, the ORP is smaller.

The trilinear Piper diagram was applied to classify water types (Figure 4). With
respect to cations, groundwater samples are located close to the center in the cation triangle,
indicating that cations have no specific characteristics. For anions, there is a low content of
Cl, but HCO3 and SO4+NO3 contents vary. As a result, water samples are classified into
Group I or Group III in the central key diagram, suggesting that the dominant water types
are (Ca+Mg)−HCO3 or (Ca+Mg)−(SO4+NO3). Polluted water samples characteristically
move from Group I to Group III. In general, groundwater chemistry in Unzen City is
affected by nitrate pollution similar to Shimabara City [16].
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Evolution of groundwater chemistry is characterized by Stiff diagrams (Figure 5).
Along the groundwater flow from upstream to downstream in the northern region, all ion
concentrations show an increasing trend, i.e., Na+K and HCO3 tend to increase. A typical
evolution pattern with maximum concentrations of all ions is controlled by ion dissolution
from soil and rock during groundwater flow [16]. Another pattern is with Na+K and
HCO3 when groundwater recharge occurs from paddy fields. Recharge, however, probably
affected water chemistry because sampling was performed during the period when paddy
fields are flooded. In addition, cation exchange between Ca and Na+K and/or other kinds
of mineral dissolution are considered to adjust water chemistry [16]. In the central and
southern regions, the characteristics of water chemistry are similar to that in the northern
region, suggesting that the same factors as mentioned above control water chemistry. Near
the coast, however, the ion concentrations in the central region tend to be small compared
to that of the other regions. Since the EC is relatively low in the central region (Table 1),
the water–rock interaction time is short. Although, the nitrate ion sector of the diagrams is
noticeable only in the north and south regions, nitrate concentration in the north region
tends to be higher than that in the north region. Thus, the characteristics of the three
regions can be seen from nitrate and overall ion concentration.



Water 2021, 13, 426 7 of 12

Water 2021, 13, x FOR PEER REVIEW 7 of 13 
 

 

region, suggesting that the same factors as mentioned above control water chemistry. 
Near the coast, however, the ion concentrations in the central region tend to be small com-
pared to that of the other regions. Since the EC is relatively low in the central region (Table 
1), the water–rock interaction time is short. Although, the nitrate ion sector of the dia-
grams is noticeable only in the north and south regions, nitrate concentration in the north 
region tends to be higher than that in the north region. Thus, the characteristics of the 
three regions can be seen from nitrate and overall ion concentration. 

 
Figure 5. Major ion variation using stiff diagrams. 

3.2. Nitrate Pollution 
Nitrate levels (NO3−N) in Unzen City range from 0.6 to 19.9 mg L−1, with a mean of 

5.2 mg L−1. The highest concentration appeared in a residential well (Az659). Compared 
to Japanese drinking standard for NO3+NO2−N (10 mg L−1) 4 of 57 (7%) for municipal wells 
and 4 of 12 (33%) for residential wells, respectively, do not meet this standard. A threshold 
of 3 mg L−1 is generally considered to be polluted by human activities [34], and 25 of 57 
(44%) for municipal wells and 11 of 12 (92%) for residential wells exceeded this criterion. 
This means that most of the groundwater in the study area can be considered as polluted 
by nitrate. Nitrate levels in groundwater decrease with increasing sampling depth [35]. 
Since the depth of the most residential wells are shallower than that of municipal wells, 
the residential wells showed higher concentrations. The nitrate polluted wells are concen-
trated to the northern and southern regions (Figure 6). These locations coincide with the 
upland fields of Unzen City (Figure 2). This indicates that nitrate pollution in this area is 
associated with agricultural activities, especially crop production. 

The correlation matrix of eight dissolved ion concentrations are summarized as fol-
lows (Table 2). NO3− shows relatively high correlation with Cl−, SO42−, Mg2+, and Ca2+. Sim-
ilar correlation pattern was reported for Shimabara City [16]. Positive correlation between 
NO3− and Cl− (r = 0.62) indicates use of manure and livestock waste. Positive correlation (r 
= 0.51) between NO3− and SO42− reflects application of chemical fertilizers such as 
(NH4)2SO4. Chemical fertilizers MgCO3 and CaCO3 are applied with (NH4)2SO4 [16]. Thus, 
NO3− is positively correlated with Mg2+ (r = 0.80) and Ca2+ (r = 0.75), respectively. Applied 
calcareous material to modify soil acidification probably results in correlation between 
NO3− and Ca2+. Nitrogen load from livestock waste in Unzen City was estimated to be 4452 
kg day−1 in 2014 [1]. Total fertilizer application of nitrogen was estimated to 3740 kg day−1 

Figure 5. Major ion variation using stiff diagrams.

3.2. Nitrate Pollution

Nitrate levels (NO3−N) in Unzen City range from 0.6 to 19.9 mg L−1, with a mean of
5.2 mg L−1. The highest concentration appeared in a residential well (Az659). Compared
to Japanese drinking standard for NO3+NO2−N (10 mg L−1) 4 of 57 (7%) for municipal
wells and 4 of 12 (33%) for residential wells, respectively, do not meet this standard.
A threshold of 3 mg L−1 is generally considered to be polluted by human activities [34],
and 25 of 57 (44%) for municipal wells and 11 of 12 (92%) for residential wells exceeded
this criterion. This means that most of the groundwater in the study area can be considered
as polluted by nitrate. Nitrate levels in groundwater decrease with increasing sampling
depth [35]. Since the depth of the most residential wells are shallower than that of municipal
wells, the residential wells showed higher concentrations. The nitrate polluted wells are
concentrated to the northern and southern regions (Figure 6). These locations coincide
with the upland fields of Unzen City (Figure 2). This indicates that nitrate pollution in this
area is associated with agricultural activities, especially crop production.

The correlation matrix of eight dissolved ion concentrations are summarized as follows
(Table 2). NO3

− shows relatively high correlation with Cl−, SO4
2−, Mg2+, and Ca2+. Similar

correlation pattern was reported for Shimabara City [16]. Positive correlation between
NO3

− and Cl− (r = 0.62) indicates use of manure and livestock waste. Positive correlation
(r = 0.51) between NO3

− and SO4
2− reflects application of chemical fertilizers such as

(NH4)2SO4. Chemical fertilizers MgCO3 and CaCO3 are applied with (NH4)2SO4 [16].
Thus, NO3

− is positively correlated with Mg2+ (r = 0.80) and Ca2+ (r = 0.75), respectively.
Applied calcareous material to modify soil acidification probably results in correlation
between NO3

− and Ca2+. Nitrogen load from livestock waste in Unzen City was estimated
to be 4452 kg day−1 in 2014 [1]. Total fertilizer application of nitrogen was estimated to
3740 kg day−1 in 2013 [1]. Nitrogen load from domestic wastewater was estimated to
258 kg day−1 in 2014 [1]. Compared to livestock waste and fertilizers, domestic wastewater
load contains much less nitrogen. The relative difference in pollution load from livestock
waste and fertilizer can be seen in the observed SO4

2− concentration. For water samples
with NO3−N concentrations exceeding the Japanese drinking water standard, SO4

2−

concentrations are relatively small at MW9, MW32, and M12. SO4
2− concentrations ranged

from 3.2 to 5.4 mg L−1 at these locations. On the other hand, SO4
2− concentrations at

other locations (MW10, MW12, K35, Az659, and Ai29) are in the range between 18.6 and
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30.6 mg L−1. At locations with high NO3−N and SO4
2− concentrations, chemical fertilizers

such as (NH4)2SO4 are supposed to be a dominant pollution source.
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Table 2. Correlation matrix for eight dissolved ions.

Cl− NO3− SO42− HCO3− Na+ K+ Mg2+ Ca2+

Cl− 1.00 0.62 0.45 0.52 0.87 0.63 0.74 0.74
NO3

− - 1.00 0.51 0.16 0.64 0.48 0.80 0.75
SO4

2− - - 1.00 0.20 0.68 0.61 0.57 0.62
HCO3

− - - - 1.00 0.40 0.38 0.58 0.64
Na+ - - - - 1.00 0.70 0.72 0.68
K+ - - - - - 1.00 0.47 0.64

Mg2+ - - - - - - 1.00 0.80
Ca2+ - - - - - - - 1.00

3.3. Multivariate Analysis

According to the PCA results (Figure 7), eight chemical variables were reduced to the
significant two principal components based on the Kaiser criterion. Principal component
1 (PC1) with the eigenvalue of 5.23 explained 65.4% of the total variance. PC1 is clearly
related to the effect of all ions. The dissolution of minerals contained in Pre-Unzen and
Unzen volcanic rocks increase cations and HCO3

− concentrations [17,36]. Thus, the pos-
itive loadings for cations and HCO3

− indicate mineral dissolution through water–rock
interaction. Influence from fertilizer, manure and livestock waste loading as noticed in
the correlation analysis, is displayed in Cl−, NO3

−, SO4
2−, Mg2+, and Ca2+ positive load-

ings. PC 2 has an eigenvalue of 0.96, accounting for 12.0% of the total variance. PC2 has
a positive loading for HCO3

− and negative loading for NO3
− implying denitrification.

However, according to the DO content in groundwater, denitrification does not occur. Since
HCO3

− concentration decreases due to nitrification of NH4
+ [37], HCO3

− shows higher
concentration without nitrate pollution. PC2 has a negative loading for SO4

2− too. Thus,
PC2 is related to the effects of chemical fertilizer (NH4)2SO4. In addition, positive loading
for Ca2+ and negative loading for Na+ represent cation exchange [38].
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Applying HCA, 69 water chemistry samples were classified into four different groups
(Table 3). Depending on nitrate content, the four groups can be condensed into two groups:
non-polluted group (Group 1) and nitrate polluted group (Group 2–4). Furthermore, based
on the Japanese drinking water standard and the threshold of 3 mg L−1 indicating effects
of anthropogenic activities, nitrate affected samples can be classified into two main groups:
severely polluted by nitrate (Group 3) and moderately polluted by nitrate (Group 2 and 4).
Most samples (59%) belong to Group 1. Samples from this group are found at higher
altitudes in the central region (Figure 8), corresponding to the forested area (Figure 2).
Group 2–4 mainly cover the upland agricultural fields. A scatter plot of PC1 against
PC2 depends on pollution group (Figure 9). According to Figures 8 and 9, there are two
chemical evolution paths. One path is explained by evolution from Group 1 to Group 2,
and then to Group 4 with increase of PC1. The second path is from Group 1 to Group 2,
and then to Group 3. The difference between Group 3 and Group 4 is characterized by
PC2. PC2 for Group 3 tends to be negative, indicating that chemical fertilizers have a more
pronounced effect on nitrate pollution as compared to livestock waste. According to the
positive correlation, ion concentration (Cl−, SO4

2−, Mg2+, and Ca2+) increases as NO3
−

content increases. In spite that NO3
− concentration does not increase from Group 2 to

Group 4, the increase in cation concentration in Group 4 is higher than that of Group 3.
This indicates that water–rock interaction (mineral dissolution and cation exchange) is the
predominant factor controlling water chemistry in Group 4.

Table 3. Dissolved ion concentration depending on pollution group.

Samples
Cl− NO3− SO42− HCO3− Na+ K+ Mg2+ Ca2+ NO3−N

mg L−1 mg L−1 mg L−1 mg L−1 mg L−1 mg L−1 mg L−1 mg L−1 mg L−1

Group 1 41

Min 2.5 2.8 1.4 28.9 4.7 1.3 1.8 3.6 0.6
Max 7.4 27.1 15.6 58.0 10.7 4.4 6.5 13.1 6.1

Mean 4.7 11.0 5.2 39.6 8.0 2.3 4.0 8.2 2.5
S.D. 1.3 5.1 3.8 8.2 1.6 0.8 1.3 2.5 1.2

Group
2

14

Min 5.7 9.1 2.8 32.4 7.0 2.6 4.6 12.0 2.1
Max 13.4 47.3 13.7 74.9 14.3 4.3 12.3 24.2 10.7

Mean 9.9 29.6 6.9 53.4 10.7 3.4 7.7 16.2 6.7
S.D. 2.0 11.2 3.7 14.7 2.0 0.6 1.8 3.5 2.5

Group
3

8

Min 8.3 34.5 3.2 20.0 11.5 1.3 9.0 17.5 7.8
Max 16.3 88.0 44.0 56.4 17.4 5.4 15.9 29.8 19.9

Mean 12.2 63.4 20.8 40.6 13.9 3.8 11.0 22.1 14.3
S.D. 2.6 19.2 13.3 10.9 2.0 1.5 2.6 4.3 4.3

Group
4

6

Min 9.5 26.9 8.4 56.1 11.2 3.7 5.0 21.0 6.1
Max 34.2 45.1 30.6 80.2 19.8 6.2 15.3 37.4 10.2

Mean 18.0 35.5 22.5 69.2 15.4 5.5 10.6 26.6 8.0
S.D. 8.6 6.1 8.9 8.5 3.7 0.9 4.4 5.8 1.4
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4. Conclusions

To improve the understanding of hydrogeochemical evolution of groundwater in vul-
nerable aquifers and spatial characteristics of nitrate pollution and water chemistry in Un-
zen City, groundwater samples were collected from 12 residential and 57 municipal water
supply wells and springs, and major dissolved ions and hydrogeochemical variables were
analyzed. The general groundwater types are (Ca+Mg)−HCO3 or (Ca+Mg)−(SO4+NO3).
Dominant anions are transformed due to nitrate pollution. In total eight wells (four mu-
nicipal water supply wells and four residential wells), NO3−N levels were exceeding
Japanese drinking water standards. Land use and correlation analysis indicate that ex-
cessive NO3−N is related to application of chemical fertilizers and discharge of livestock
waste. Among water samples displaying high NO3−N concentrations exceeding Japanese
drinking water standard, relatively high SO4

2− concentrations of 18.6–30.6 mg L−1 were
observed at 5 out of 8 locations (MW10, MW12, K35, Az659, and Ai29) compared to the
others (MW9, MW32, and M12). Since NO3−N and SO4

2− concentrations increase si-
multaneously, the groundwater is significantly polluted by chemical fertilizers such as
(NH4)2SO4. PCA results show that factors controlling water chemistry in Unzen City
can be explained by two main PCs. PC1 accounts for mineral dissolution (water–rock
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interaction) and agricultural effects. PC2 explains the effects of chemical fertilizers and
cation-exchange. HCA classified water samples into four groups. Further, these groups
can be separated into a non-polluted group (Group 1), a moderately nitrate affected group
(Group 2 and 4), and severely polluted group (Group 3). Combination of PCA and HCA
reveals that Group 1 is evolving into Group 2 and eventually into Group 4 with the domi-
nant effect of water–rock interaction. Group 2 is evolving into Group 3 by the dominant
impacts of chemical fertilizers.

We confirmed that only specific wells in Unzen City are unsuitable for drinking
purposes. A similar situation has been found in Shimabara City. However, since sampling
was done during the rainy season in July and August, sampled groundwater may have
been affected by recharge and thus dilution. In any case, since most of the samples
exceed 3 mg/L, the groundwater in this area is clearly affected by anthropogenic activities.
To certify that no negative health effects occur in the area, it is important to continuously
monitor the nitrate concentrations in the groundwater.
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