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ABSTRACT 

    Peptidase family S46 consists of two types of dipeptidyl-peptidases (DPPs), DPP7 and DPP11, 

which liberate dipeptides from the N-termini of polypeptides along with the penultimate 

hydrophobic and acidic residues, respectively. Their specificities are primarily defined by a single 

amino acid residue, Gly673 in DPP7 and Arg673 in DPP11 (numbering for Porphyromonas gingivalis 

DPP11). Bacterial species in the phyla Proteobacteria and Bacteroidetes generally possess one gene 

for each, while Bacteroides species exceptionally possess three genes, one gene as DPP7 and two 

genes as DPP11, annotated based on the full-length similarities. In the present study, we aimed to 

characterize the above-mentioned Bacteroides S46 DPPs. A recombinant protein of the putative 

DPP11 gene BF9343_2924 from Bacteroides fragilis harboring Gly673 exhibited DPP7 activity by 

hydrolyzing Leu-Leu-4-methylcoumaryl-7-amide (MCA). Another gene, BF9343_2925, as well as 

the Bacteroides vulgatus gene (BVU_2252) with Arg673 was confirmed to encode DPP11. These 

results demonstrated that classification of S46 peptidase is enforceable by the S1 essential residues. 

Bacteroides DPP11 showed a decreased level of activity towards the substrates, especially with 

P1-position Glu. Findings of 3D structural modeling indicated three potential amino acid 

substitutions responsible for the reduction, one of which, Asn650Thr substitution, actually 

recovered the hydrolyzing activity of Leu-Glu-MCA. On the other hand, the gene currently 

annotated as DPP7 carrying Gly673 from B. fragilis (BF9343_0130) and Bacteroides ovatus 

(Bovatus_03382) did not hydrolyze any of the examined substrates. The existence of a phylogenic 

branch of these putative Bacteroides DPP7 genes classified by the C-terminal conserved region 

(Ser571-Leu700) strongly suggests that Bacteroides species expresses a DPP with an unknown 

property. In conclusion, the genus Bacteroides exceptionally expresses three S46-family members; 

authentic DPP7, a new subtype of DPP11 with substantially reduced specificity for Glu, and a third 

group of S46 family members. 
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Highlights 

• Classification by the S1 residue Arg673/Gly673 is reliable for S46 peptidase. 

• Three S46 DPPs are exceptionally present in the genus Bacteroides. 

• One of Bacteroides DPP with Gly673 represented authentic DPP7. 

• Another DPP with Gly673 is a third group of S46 members with an unknown property. 

• The Bacteroides DPP with Arg673 is a new type of DPP11. 

 

 

 

 

 

Keywords: Bacteroides, DPP7, DPP11, Porphyromonas gingivalis, S46 peptidase  
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Introduction 

 

    Dipeptidyl-peptidase (DPP) 7 and DPP11 were first discovered in Porphyromonas gingivalis [1, 

2] and Porphyromonas endodontalis [2], Gram-negative asaccharolytic anaerobes implicated as 

causative agents of chronic [3, 4] and acute [5, 6] periodontal diseases, respectively. These 

periodontal pathogens solely metabolize amino acids as carbon and energy sources, hence, their 

bulk degradation process of extracellular peptides is important for microorganism survival. In 

addition, another characteristic feature of Porphyromonas species is incorporation of amino acids 

mainly as dipeptides, not as single amino acids. These features seem to convey an advantage for 

Porphyromonas species to form subgingival periodontopathic microbial symbioses with other 

bacterial species, such as saccharolytic Aggregatibacter actinomycetemcomitans and Prevotella 

intermedia, and also Fusobacterium and Prevotella species that incorporate single amino acids. 

    In P. gingivalis, extracellular nutritional proteins are initially digested to oligopeptides by two 

potent types of cysteine endopeptidases, Arg-gingipain [7] and Lys-gingipain (C25.002) [8], then 

further degraded into di- and tri-peptides by exopeptidases, i.e., DPPs [1, 2, 9-11] and prolyl 

tripeptidyl-peptidase A (PTP-A) [12, 13], respectively, together with the dipeptide-releasing activity 

of Arg- and Lys-gingipains [11]. To date, five DPPs have been identified in P. gingivalis, i.e., DPP4, 

which mainly releases an Xaa-Pro (Xaa, any amino acid) dipeptide and also Xaa-Ala to a lesser 

extent [9, 10, 14, 15], DPP5, with a preference for Ala and aliphatic residues at the penultimate 

position from the N-terminus [11], DPP7 [1], and DPP11 [2]. Although the gene encoding DPP3 

(generally referred to as DPPIII) specific for Arg (M49.003) is also present, this DPP does not seem 

to be involved in extracellular protein metabolism, because DPP3 appears to be located in the 

cytoplasm [11]. Additionally, acylpeptidyl oligopeptidase (AOP) produces di- and tri-peptides 

preferentially from N-terminally acylated peptides [16]. Therefore, in consideration of the fact that 
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most extracellular polypeptides derived from human serum are N-terminally acylated, proteinaceous 

nutrients in gingival crevicular fluid should be effectively degraded into di- and tri-peptides, and 

then incorporated into P. gingivalis by co-operative actions of these peptidases [17]. DPP4, DPP5, 

PTP-A, and AOP belong to the peptidase family S9, and DPP7 and DPP11 are classified into the 

S46 peptidase. 

    Currently, the S46 family is composed of three members, DPP7 (S46.001), DPP11 (S46.002), 

characterized in P. gingivalis (PgDPP7, PgDPP11, respectively), and DAPBII from 

Pseudoxanthomonas mexicana (S46.003) [18, 19]. Since the biochemical property and substrate 

preference of DAPBII are nearly identical to those of PgDPP7, the S46 family should be composed 

solely of two members, i.e., DPP7 preferentially liberates dipeptides with both P1 and P2 

hydrophobic residues, and DPP11 is specific for P1 Asp and Glu. Interestingly, we previously found 

that each of their P1 substrate specificities is primarily defined by a single amino acid residue, 

Gly673 in DPP7 and Arg673 in DPP11 (numbering in PgDPP11) [20]. In Shewanella DPP11, Arg673 is 

substituted by Ser, then Lys680 plays the role of S1. Recently, the 3D structure of DPP11 was 

reported [21, 22], and analysis of the complex of di-, tri-, and tetra-peptides suggested that an 

increase in conformational entropy of DPP11 is the primary driving force for substrate recognition 

[22]. 

    Orthologs of DPP7 and DPP11 are widely distributed in the phyla Proteobacteria and 

Bacteroidetes, and these bacteria generally possess one each of the DPP7 and DPP11 genes. 

However, it was unexpectedly observed that the genus Bacteroides contain three members of the 

S46 family, one is DPP7 while the other two are DPP11 genes, annotated based on full-length 

similarity. In contrast, our previous proposal regarding classification by Gly673 and Arg673 indicates 

the existence of two DPP7 and one DPP11 gene in Bacteroides species. Accordingly, biochemical 

and enzymatic analyses are indispensable to determine these entities. 



 6 

    In the present study, recombinant forms of putative Bacteroides DPP7 and DPP11 genes were 

expressed exogenously, and their substrate specificities were determined for classification. Our 

results clearly show the validity of essential Gly673 and Arg673 residues, and the inappropriateness of 

full-length similarities for classification of the family of S46 DPPs. Furthermore, we found that 

Bacteroides DPP11 specifically exhibits decreased activity compared to authentic DPP11, 

especially for substrates with P1-position Glu. Also, 3D modeling and substitution analysis 

demonstrated that Asn650 is partially responsible for this phenomenon. Additionally, the present 

findings indicate the existence of the third S46 member, though its real role remains unknown. 

 

 

2. Materials and methods 

 

2.1. Materials 

 

    pQE60 (Qiagen Inc., Chatsworth, CA) and pTrcHis2-TOPO (Invitrogen, Carlsbad, CA) were 

used as expression vectors. Restriction and DNA-modifying enzymes were purchased from Takara 

Bio (Tokyo, Japan) and New England Biolabs (Ipswich, MA), respectively. Quick Taq HS DyeMix 

and KOD-Plus-Neo DNA polymerase came from Toyobo (Tokyo, Japan). Met-Leu- and 

Leu-Asp-MCA were obtained from the Peptide Institute (Osaka, Japan). Leu-Glu-, Leu-Leu-, 

Phe-Leu-, and His-Leu-MCA were synthesized by Thermo Fisher Scientific (Ulm, Germany) and 

Scrum (Tokyo, Japan). Oligonucleotide primers were synthesized by FASMAC (Atsugi, Japan). 

Low-molecular-weight marker was obtained from GE Healthcare (Little Chalfont, UK). Genomic 

DNA from B. fragilis strain NCTC 9343 (JCM 11019T), Bacteroides vulgatus JCM 5826T, 

Bacteroides thetaiotaomicron JCM 5827T, Bacteroides ovatus RDB 09006, and Bacteroides dorei 



 7 

JCM 13471 were provided by the RIKEN BRC through the National Bio-Resource Project of the 

MEXT, Japan. Bacterial strains B. fragilis YCH10, B. thetaiotaomicron KYU12, and Bacteroides 

uniformis KYU12 were generous gifts from Dr. Mariko Naito of Nagasaki University. 

 

2.2. Culture Conditions 

 

    P. gingivalis strain ATCC 33277, B. fragilis YCH10, B. thetaiotaomicron KYU12, B. 

uniformis KYU12, and B. dorei were grown anaerobically (80% N2, 10% CO2, 10% H2) in 

Anaerobic Bacterial Culture Medium broth (Eiken Chemical, Tokyo, Japan), supplemented with 0.5 

µg/ml of menadione. Following centrifugation, bacterial cells were suspended in phosphate-buffered 

saline (PBS) at pH 7.4, then centrifuged at 6000 x g for 15 min at 4 ˚C. Cell pellets were 

re-suspended in PBS to adjust absorbance at 600 nm to 5.0, then used for DPP assays. 

 

2.3. Construction of Expression Plasmids 

 

    The DNA fragment of BVU_2252, deduced as B. vulgatus S46 peptidase (Asp20-Glu728) 

(UniProtKB, YP_001299533.1/MEROPS code MER034614), was amplified by PCR using a set of 

primers (Table 1), with genomic DNA used as a template, then the PCR product was ligated with 

pTrcHis2-TOPO according to the manufacturer’s protocol. DNA fragments of the B. ovatus genes, 

Bovatus_00118 (Asn2-Glu719) (MEROPS code, MER109242) and Bovatus_03382 (Lys2-Arg713) 

(MER09141), were amplified by PCR using sets of primers. The former and latter fragments were 

digested by BamHI and BglII, respectively, then inserted into the BamHI site of pQE60. DNA 

fragments of the B. fragilis genes, BF9343_0130 (Asn2-Gly725, MEROPS code MER039992), and 

BF9343_2925 (Met2-Glu721, MER039991), were amplified by PCR using sets of primers. The PCR 
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fragments were digested by BamHI, then inserted into the BamHI site of pQE60. Expression 

plasmids of P. gingivalis DPP7 and DPP11, B. fragilis DPP7 (BF9343_2924), P. endodontalis, B. 

vulgatus, Capnocytophaga gingivalis, Flavobacterium psychrophilum, and Shewanella putrefaciens 

DPP11 have been reported [2, 11, 20, 23]. 

 

2.4. Amino Acid Numbering of DPP7 and DPP11 

 

    The amino acid numbers of all recombinant proteins were counted as those of PgDPP11 to 

avoid confusion. Accordingly, since Gly666 of PgDPP7, Gly678 of BF9343_0130, Gly674 of 

BF9343_2924, Arg674 of BF9343_2925, and Arg670 of P. endodontalis DPP11 (PeDPP11) are 

equivalent to Arg673 of PgDPP11, they were numbered as 673. In addition, Asn651, Gly671, and 

Leu679 of BfDPP11 are equivalent to PgDPP11 Thr650 Asn670, and Val678, respectively, therefore 

their numbers were unified to 650, 670, and 678, respectively. 

 

2.5. In vitro Mutagenesis 

 

    PCR-based in vitro mutagenesis was carried out to substitute Gly673 to Arg in the expression 

plasmids of B. fragilis BF9343_0130 and BF9343_2924 using primer sets (Table 1), as previously 

reported [2, 20]. Substitutions of Asn650Thr, Gly670Asn, and Leu678Val in BfDPP11 

(BF9343_2925) were performed, and Thr650Asn and Asn670Gly in the plasmid for PgDPP11 were 

inversely produced using sets of primers. Additionally, the double mutations of Asn650Thr and 

Leu678Val were introduced into the plasmid for BfDPP11. 

 

2.6. Expression and Purification of Recombinant Proteins 
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    Escherichia coli XL-1 Blue cells carrying respective expression plasmids were cultured in 

Luria-Bertani broth supplemented with 75 µg/ml of ampicillin at 37 ˚C. Recombinant proteins were 

induced with 0.2 mM isopropyl-β-thiogalactopyranoside at 30 ˚C for 4 h, then purified from cell 

lysates using Talon affinity chromatography, as previously reported [2]. Purified samples were 

stored at -80 ˚C until use. 

 

2.7. Measurement of DPP Activity 

 

    DPP7 activity was measured with Phe-Leu- and Leu-Leu-MCA, and DPP11 activity was 

determined using Leu-Asp- and Leu-Glu-MCA, as previously reported [11]. Briefly, the reaction 

was started by addition of recombinant proteins (4 ‒ 200 ng) or bacterial cell suspensions (4 µl of 

A600 = 5) in a reaction mixture (200 µl) composed of 50 mM sodium phosphate (pH 7.0), 5 mM 

EDTA, and 20 µM dipeptidyl MCA. After 30 min at 37 ˚C, fluorescence intensity was measured 

with excitation at 380 nm and emission at 460 nm. Activity is expressed as pmol min-1 µg-1 of 

protein. 

    To determine enzymatic parameters, recombinant proteins were incubated with various 

concentrations of dipeptidyl MCA. Data were analyzed using a nonlinear regression curve fitted to 

the Michaelis-Menten equation with the GraphPad Prism software program (San Diego, CA). 

Values were calculated from three independent measurements and are shown as average ± S.D. 

 

2.8. 3D Modeling of BfDPP11 

 

     In order to obtain insight regarding the 3-dimensional structure of BfDPP11 and particularly 
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its active site, we employed homology modeling. The model was generated via the server Phyre2 

(Protein Homology/Analogy Recognition Engine) [24] using the one-to-one threading tool in expert 

mode. Similar to PeDPP11, BfDPP11 is expected to undergo a conformational change upon peptide 

binding, resulting in complete formation of the active site. Therefore, PeDPP11 in complex with a 

peptide was chosen as a template for the modeling routine. The coordinates of PeDPP11 in complex 

with the dipeptide Arg-Asp (PDB code: 5JWG) [22] were subjected to structural alignment and 

further model building. 

 

2.9. Construction of Phylogenic Trees 

 

    In the MEROPS database (release 9.6), 264 members of the S46 family were chosen for 

construction of phylogenic trees, with ClustalX software [25] used to align the sequences. The 

conserved amino acid sequence at the C-terminal region (Pro571-Leu700 of PgDPP11) was used for 

generating the phylogenic trees. Phylogenic analysis with the neighbor-joining (NJ) algorithm [26] 

was conducted using MEGA version 5 [27]. 

 

2.10. Miscellaneous 

 

    Recombinant proteins (0.4 µg) were separated by PAGE in the presence of 0.1% (w/v) of SDS 

with a polyacrylamide concentration of 10% (w/v). Separated proteins were stained with Coomassie 

Brilliant Blue. Protein concentrations were determined by the Coomassie Brilliant Blue dye method 

(Bio-Rad) using bovine albumin as a standard. 
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3. Results 

 

3.1. Characterization of Three S46-Family Members in the Genus Bacteroides 

 

    To date, commercially available synthetic substrates, Ala-Phe-p-nitroanilide [1], and Lys-Ala- 

and Met-Leu-MCA [28], had been used for measuring DPP7 activity. However, since we 

established that DPP7 prefers hydrophobic residues at the P2 as well as P1 position [23], we initially 

synthesized Leu-Leu- and Phe-Leu-MCA with hydrophobic residues at both positions to test the 

potentials as DPP7 substrates. The kcat/Km values of PgDPP7 were 37.7 µM-1 sec-1 for 

Leu-Leu-MCA and 15.3 µM-1 sec-1 for Phe-Leu-MCA, which were much higher than those for 

Met-Leu-, His-Ala- (Table 2), and Lys-Ala-MCA (data not shown). Thus, Leu-Leu- and 

Phe-Leu-MCA were used in the present study for measurement of DPP7 activity. 

    Species of the genus Bacteroides frequently contain three genes of the S46 family 

(Supplemental Table S1), and their annotation based on the full-length similarity to PgDPP7 and 

PgDPP11 was confusing. For example, two genes (BF9343_2924, BF9343_2925) in B. fragilis are 

annotated as DPP11 (Table 3); BF9343_2925 with Arg673 seemed to be DPP11, while BF9343_2924 

carrying Gly673 could be DPP7 according to the classification of DPP7 with the S1 Gly673 residue. 

Similarly, the B. ovatus putative DPP11 gene (Bovatus_00118) with Gly673 was considered to be 

DPP7. To determine the enzymatic characteristics, three S46-family members of B. fragilis and two 

from B. ovatus were expressed in E. coli, and purified to homogeneity (Fig. 1). One of the putative 

DPP11 genes, BF9343_2925 (MER039991) (Arg673), expressed a protein truly hydrolyzing 

Leu-Asp-MCA efficiently and Leu-Glu-MCA weakly, confirming its DPP11 entity (BfDPP11). 

Meanwhile, another DPP11 gene, BF9343_2924 (MER039993) with Gly673, expressed a protein 

specifically hydrolyzing Leu-Leu-MCA and not Leu-Asp/Glu-MCA, exhibiting its entity as DPP7 
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(BfDPP7). These findings demonstrated that the presence of Gly673 is a definitive feature of DPP7, 

while the annotation based on the full-length amino acid sequence similarity misled the 

identification. 

    In addition, the enzymatic property of the putative DPP7 gene BF9343_0130 (MER039992) 

(Gly673) was examined. BF9343_0130, which shows approximately 43% amino acid similarity to 

PgDPP7, was successfully expressed and purified (Fig. 1). However, the purified protein hydrolyzed 

neither Leu-Leu- nor Leu-Asp/Glu-MCA, and did not hydrolyze any other synthetic substrates for 

DPPs, such as Gly-Pro-, Ser-Tyr-, Gly-Phe-, Met-Leu-, Lys-Leu-, and Lys-Val-MCA (data not 

shown). Since we previously demonstrated that PgDPP7 bearing the mutation Gly673Arg partially 

acquired a DPP11-like property [20], the Gly673Arg substitution was introduced into BF9343_0130 

as well as BF9343_2924/BfDPP7. As a result, BF9343_2924/BfDPP7 Gly673Arg slowly 

hydrolyzed Leu-Glu-MCA, showing a change into the DPP11 type. However, BF9343_0130 

Gly673Arg was still not able to hydrolyze any substrates. These results further suggested a distant 

relationship of BF9343_0130 (Gly673) with BF9343_2924/BfDPP7 (Gly673) as well as 

BF9343_2925/BfDPP11 (Arg673). 

    As another DPP7 gene in Bacteroides species carrying Gly673, we examined Bovatus_00118, 

annotated as DPP11, and Bovatus_03382, annotated as DPP7, in B. ovatus. As shown in Fig. 1, 

Bovatus_00118 (Gly673) was not correctly annotated, but was truly DPP7 (BvDPP7) and selectively 

hydrolyzed Leu-Leu-MCA. In addition, similar to B. fragilis BF9343_0130 (Gly673), putative B. 

ovatus DPP7 (Bovatus_03382, Gly673) did not hydrolyze any synthetic MCA substrates. The 

sequence similarity between Bovatus_03382 and BF9343_0130 was close to 77%, and that between 

BF9343_2924/BfDPP7 and Bovatus_00118/BvDPP7 was around 84%, while the similarities 

between all other combinations of two proteins within the species were lower (Table 3). Therefore, 

BF9343_0130 from B. fragilis and Bovatus_03382 from B. ovatus are not DPP7, and considered 
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classifiable as novel DPP. Taken together, our findings revealed that gene annotation based on 

full-length amino acid similarities did not match biochemical identification of the S46 peptidases 

DPP7 and DPP11. In addition, the Bacteroides S46 DPP genes carrying Gly673, which are currently 

classified as DPP7, should be considered as a third group of S46 family members. 

 

3.2. Hydrolyzing Properties of DPP11 from Genus Bacteroides 

 

    We previously reported the presence of two types of DPP11 in respect to substrate specificity; 

DPP11 with Arg673 from P. gingivalis, P. endodontalis, C. gingivalis, and F. psychrophilum, with 

higher kcat/Km values for Leu-Asp-MCA, and DPP11 with Ser673/Lys680 from S. putrefaciens with a 

higher kcat/Km value for Leu-Glu-MCA [20]. In order to comprehensively understand the Asp/Glu 

preference in DPP11, we reexamined the enzymatic characteristics of DPP11s from P. gingivalis, P. 

endodontalis, C. gingivalis, F. psychrophilum, S. putrefaciens B. fragilis, and B. vulgatus (Fig. 2). 

Purified recombinant DPP11s were found to migrate at 70- to 85-kDa positions on SDS-PAGE, 

reflecting their calculated molecular masses. All DPP11 molecules except for S. putrefaciens DPP11 

showed hydrolyzing activities more preferential for Leu-Asp- to Leu-Glu-MCA, though B. vulgatus 

DPP11 (BvDPP11) displayed extremely low activities. The ratios of activity toward Leu-Glu-MCA 

per those for Leu-Asp-MCA of P. gingivalis, P. endodontalis, and C. gingivalis DPP11 were 0.47, 

0.34, and 0.34, respectively, while the ratios of BfDPP11 and BvDPP11 were substantially lower 

(0.014 and 0.018, respectively). The kcat/Km value of BfDPP11 for Leu-Asp-MCA was 40.9 ± 4.4 

(µM-1 sec-1) and for Leu-Glu-MCA was 0.87 ± 0.04 (µM-1 sec-1), indicating that BfDPP11 cleaves 

Leu-Asp-MCA at a level 47-fold more efficiently as compared to Leu-Glu-MCA. Hence, even 

though the substantially low kcat/Km value of BfDPP11 for Leu-Glu-MCA was caused by both a 

decrease in kcat and an increase in Km, it was evident that the increase in Km had a larger impact on 
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that change (Table 2). 

    Next, we investigated DPP11 activity in Bacteroides cells. In P. gingivalis, Leu-Asp- and 

Leu-Glu-MCA were shown to be primarily hydrolyzed by DPP11. If the same is also true for 

Bacteroides species, the inefficient Leu-Glu-MCA hydrolysis could be reproduced in these cells. 

Hence, we compared cellular activities toward the two substrates, and found that the ratio of 

hydrolysis of Leu-Glu-MCA per hydrolysis of Leu-Asp-MCA in P. gingivalis cells (0.496) was 

comparable to that of recombinant PgDPP11 (0.468) (Fig. 3). On the other hand, the ratio with B. 

fragilis cells was 0.17, which was larger than that of BfDPP11 (0.014), though substantially smaller 

than the ratio of PgDPP11 and P. gingivalis cells. Accordingly, it was confirmed that the ratio 

determined with bacterial cells principally reflected that of DPP11, though the differential extent 

was rather neutralized, possibly by the presence of minor Asp- and Glu-hydrolyzing activities in the 

cells. Similarly, the cellular ratios of B. thetaiotaomicron, B. uniformis, and B. dorei ranged at 

0.09-0.23, which indicated that Bacteroides DPP11 commonly possesses very low activities for 

Leu-Glu-MCA. 

 

3.3. BfDPP11 3D Structural Modeling and Mechanism of its Inefficient Hydrolysis 

 

    We performed 3D modeling of BfDPP11 using the structure of PeDPP11 (PDB code: 5JXK) 

[22], which indicated that BfDPP11 also has a bilobal architecture with an entirely helical domain 

capping the catalytic domain bearing a typical chymotrypsin double β-barrel fold. PeDPP11 3D 

structures in complexes with peptides (5JY0, 5JWG, 5JWI, 4XZY) and PgDPP11 showed that the 

S1 subsite is formed by Arg337, His649, Thr650, Gly652, Asn670, Arg673, Gly677, Gly680, Asp681, and 

Ser691 (PgDPP11 numbering) [21, 22]. Among the ten residues, Gly652, Arg673, Gly677, Gly680, and 

Asp681 are conserved, while the others, i.e., Arg337, His649, Thr650, Asn670, and Ser691 are substituted 
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by Asn, Asp, Asn, Gly, and Ala, respectively, in BfDPP11 (Fig. 4). Hence, we subsequently 

analyzed our model of BfDPP11 in order to structurally explain the inefficient cleavage of 

Leu-Glu-MCA. 

    The role of Arg337 of PgDPP11 has been extensively examined [21] and its substitution to Asn, 

Ala, and Gly was shown to lead to a significant increase in enzymatic activity. Thus, the Arg337Asn 

substitution of BfDPP11 could not explain the activity reduction of BfDPP11. Furthermore, His649 

and Ser691 appear to be rather distant from the P1-position of a dipeptide, thus the influence of the 

two substitutions seems to be limited. In the rest two residues, Thr650 in PgDPP11 stabilizes the 

glutamic acid of incoming peptides via a hydrogen bond (Fig. 5). By superimposing BfDPP11 to 

PeDPP11 in a complex with Arg-Glu, we verified that the substitution Thr650 of PgDPP11 to Asn in 

BfDPP11 results in steric clashes according to the side chain orientation. In this manner, binding of 

incoming peptides with glutamic acid in the P1 position would be unfavorable in BfDPP11. Asn670 

in PgDPP11 also stabilizes the Glu of incoming peptides via a hydrogen bond. However, Asn670 is 

replaced by Gly in BfDPP11, preventing the stabilization of the substrate Glu, resulting in decrease 

of the activity verified for Leu-Glu-MCA. On the other hand, Val678 in PgDPP11 is replaced by Leu 

in BfDPP11. Although Val678 does not directly form an S1 subsite, we speculate that the larger side 

chain of Leu of BfDPP11 influences the conformation of Arg673, which would explain the decrease 

in activity for Leu-Glu-MCA. 

    To verify our hypothesis, we expressed PgDPP11 and BfDPP11 with these substitutions (Fig. 

6). The activity of BfDPP11 Asn650Thr displayed a 3.1-fold increase in Leu-Asp-MCA, with a 

further increase (8.1-fold) observed for the activity of Leu-Glu-MCA. As a result, the Glu/Asp ratio 

of the activity was increased by 2.6-fold in BfDPP11 Asn650Thr. In contrast, BfDPP11 Gly670Asn 

revealed little change. The third mutant, BfDPP11 Leu678Val, lost the activity for the two 

substrates, while the double mutation (Asn650Thr/Leu678Val) showed an intermediate amount of 
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activity between those of the respective mutants. We also performed two reverse mutations with 

PgDPP11, Thr650Asn, and Asn670Gly. As a result, PgDPP11 Thr650Asn completely lost the 

activities for Leu-Asp-MCA and Leu-Glu-MCA, and PgDPP11 Asn670Gly revealed extremely low 

activities for those (0.53% and 0.18%, respectively). Therefore, all mutations except for Gly670Asn 

in BfDPP11 had effects on the activities of BfDPP11 or PgDPP11. In particular, it should be 

emphasized that mutual exchanges between Thr650 of PgDPP11 and Asn650 of BfDPP11 partially 

mimicked the change between PgDPP11 and BfDPP11. 

    When the amino acid substitutions at positions 650, 670, and 678 were reexamined in the 

sequences, only Thr650 and Asn650 were found to be strictly distributed in non-Bacteroides and 

Bacteroides DPP11, respectively (Fig. 4). In contrast, residues at positions 670 and 678 had 

variations even among listed DPP11s, findings compatible with our biochemical data (Fig. 6). 

Nevertheless, it should be noted that the Leu-Glu-MCA/Leu-Asp-MCA ratio of PgDPP11 (0.468) 

was still much greater than that of BfDPP11 Asn650Thr (0.038), suggesting that other factors may 

be involved in this phenomenon. 

 

 

4. Discussion 

    To date, the enzymatic properties of both DPP7 and DPP11 have been characterized in only 

three bacterial species, i.e., P. gingivalis [1, 2], P. endodontalis [2, 28], and C. gingivalis [20], while 

either one of DPP7 or DPP11 has been characterized in B. fragilis, B. vulgatus, F. psychrophilum, S. 

putrefaciens [20], P. mexicana [18], and Capnocytophaga canimorsus [29]. At present, though their 

homologues are widely distributed among eubacteria, most S46-family members are tentatively 

classified by their sequence similarity to authentic S46 members of P. gingivalis, and their 

enzymatic characteristics remain to be elucidated. 
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    In the present study, we confirmed the validity of the classification criteria for the S1 amino 

acid residues Gly673/Arg673 for identification of DPP7 and DPP11, and found that classification of 

the S46 peptidase based on full-length similarity misleads the annotation. For example, putative 

Bacteroides DPP11 genes (BF9343_0130, Bovatus_00118), which exhibit a higher similarity to 

PgDPP11 than PgDPP7 but carry Gly673, encode DPP7. Similarly, Hack et al. [29] recently reported 

that the gene Ccan_08540 from C. canimorsus encoding a DPP with Gly673 convincingly exhibited 

DPP7 activity, though the gene was tentatively annotated as DPP11. 

    We also demonstrated that Bacteroides DPP11 exhibited decreased hydrolyzing activity, 

especially toward the substrate with P1-position Glu. Accordingly, there are three types of DPP11 

based on substrate specificity, with the first being Arg673 possessing greater preference for the 

P1-position Asp of a substrate (Asp>Glu type) represented by P. gingivalis, the second Shewanella 

type DPP11 possessing Ser673 and Lys684, and exhibiting a higher Glu preference (Glu>Asp type), 

and the third Bacteroides type carrying Arg673, which is much less potent for Glu (Asp>>Glu). The 

present and previous 3D structural modeling and substitution analyses revealed that alterations in 

the P1-position preference among the three types appeared to be mediated by a few amino acid 

substitutions. Hence, essential amino acid residues can be used for simple discrimination of the 3 

DPP11 types; Thr650 and Arg673 for the Asp>Glu type, Asn650 and Arg673 for the Asp>>Glu type, 

and Thr650, Ser673, and Lys684 for the Glu>Asp type. 

    The present findings also indicate the existence of the third group in S46 peptidase, which has 

been annotated simply as DPP7 in Bacteroides species. Although these putative DPP7 genes, such 

as BF9343_0130 and Bovatus_03382, showed more than 40% sequence similarity to PgDPP7 and 

carrying Gly673, they showed no hydrolytic activity for the dipeptidyl MCA currently available in 

our laboratory. In vitro mutagenesis analysis further indicated that BF9343_0130 and 

Bovatus_03382 are substantially distant from DPP7 as well as DPP11. The possibility of a 



 18 

pseudogene cannot be excluded in this entity, however, general distribution of the third S46 gene in 

the genus Bacteroides strongly suggests its physiological significance. Among previously reported 

DPPs, DPPX/DPP10, possessing structural similarity to DPP4, has no peptidase activity due to a 

point mutation in its active site [30]. In this analogy, the third group of S46 members might have no 

peptidase activity. A further study should be needed for characterization of this group. 

    Taken together, we propose that there are three members of the S46 family, DPP7, DPP11, and 

an uncharacterized group. We previously reported that the phylogenic tree of the S46 family, with 

construction based on the C-terminal conserved region (Ser571-Leu700) rather than the tree based on 

the full-length form, matches the distribution of DPP7 and DPP11 [20]. Since the present analysis 

demonstrated the presence of Bacteroides-type DPP11 and the third S46 group members, we 

reexamined the phylogenic tree. As shown in Fig. 7, S46 peptidases have two branches of DPP7, 

one that includes Porphyromonas and Bacteroides species, and the other with Shewanella and 

Xanthomonas species. DPP7 and DPP11 of the genus Bacteroides form branching links independent 

of other DPP7 and DPP11 groups, respectively, and the third group is arranged at the opposite end 

from Bacteroides DPP7. As a result, classification of most parts of S46 peptidases was ascertained 

in the present study, except for Group 1, which is composed of an unassigned S46 peptidase 

possessing Gly673 or Ser673. The members of this branch seem to have sequence variations, and 

compose a mixture of DPP7 and DPP11. 

    In P. gingivalis, the two S46-family genes are localized at separate loci as PGN_0607 (DPP11) 

and PGN_1479 (DPP7). In contrast, two of the three S46 family genes of Bacteroides species are 

adjacently located, i.e., BF9343_2924/DPP7 and BF9343_2925/DPP11 in B. fragilis are one-base 

overlapped at the stop codon TAA of the former and start codon, ATG, of the latter (overlap 

underlined). Moreover, the genes of Bovatus_00117/BfDPP11 and Bovatus_00118/BfDPP7 in B. 

ovatus are directly connected without a gap. Hence, these two genes form an operon. These 
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observations suggest that the gene duplication possibly occurred in an S46-family ancestor gene, 

then became to the DPP7 and DPP11 genes. In contrast, the third S46-family gene is separately 

localized from the other two S46-family genes on the genome, and amino acid identity between 

BfDPP7 and BfDPP11 (42.8%) was found to be higher than that between BF9343_0130 

(unidentified group) and BfDPP7 (37.5%), as well as that between BF9343_0130 (unidentified 

group) and BfDPP11 (35.7%) (Table 3). 

    Finally, it is important to emphasize that newly synthesized Phe-Leu- and Leu-Leu-MCA are 

more potent DPP7 substrates compared to Lys-Ala- and Met-Leu-MCA, which were previously 

used. These substrates should be valuable for examining the DPP7 activities of oral and intestinal 

bacterial cells. However, we would like to note that kcat/Km of PgDPP7 for Leu-Leu-MCA was still 

at a one to 34 ratio of that of P. gingivalis DPP4 for Gly-Pro-MCA [15] and one to 14.5 of that of 

PgDPP11 for Leu-Asp-MCA. We suppose that this may be due to the necessity in DPP7 for exertion 

of the broad specificity. In other words, in contrast to DPP4 and DPP11, which are highly specific 

for Pro and Asp/Glu, respectively, DPP7 is able to accept P1-position hydrophobic residues with 

various residual groups. This redundancy of DPP7 may be achieved by a sacrifice in kcat/Km value. 
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Table 1 

 

Primers and plasmids used in this study. Restriction and mutated sites are shown by italics and 

underlining, respectively. 

 

Name Sequence 

Plasmid (substituted 

nucleotides) 

5BF9343_0130N2Bam TTTATAGGATCCAATAAAATGAAAGTGATTA pTrcHis2BF0130 

 3BF9343_0130G725Bam GTGATGGGATCCCCCCTCTATTTTCAGTTCT 

5BF9343_2925M2Bam ATATAGGATCCATGAAAAGAAACTTATTATC pQE60BF2925 

 3BF9343_2925E721Bam TCTGTGGATCCTTCTTCTACAATATCCAGCT 

5BVU_2252D20 GACGAGGGGATGTGGATGCTGACTGA pTrcHis2BV2252 

 3BVU_2252E728 TTCCACAATGGTCATTTCATCTACCA 

5BF9343_0130G673R CGAAACTGGGAAGCCATGAGCAG pTrcHis2BF0130Gly673Ar

g (GGA>CGA) 3BF9343_0130D672 ATCGAACGCCAATCCCAGCAATT 

5BF9343_2924G673R CGTAACTGGGAATCACTGAGCGG pTrcHis2BF2924Gly673Ar

g (GGT>CGT) 3BF9343_2924D672 ATCGAATGCACAACCGATCAATT 

5 PgDPP11T650N AATACCGGCGGCAACTCAGGCAGTCCGGTC pQPgDPP11Thr650Asn 

(ACA>AAT) 3 PgDPP11H649 ATGTGTGGTGGCACAAAAGGCGACAGG 

5PgDPP11N670G GGATTCGATCGTAACTGGGAGGGAGTCGG pQPgDPP11Asn670Gly 

(AAC>GGA) 3PgDPP11L669 GAGACCGATCAGTTCGCCGTTGGCATTCA 

5BfDPP11N650T ACAACAGGAGGAAATTCCGGAAGCC pQBF2925Asn650Thr 

(AAT>ACA) 3BfDPP11D649 GTCTGTATTGACAATGAAGCAAACAGGCA 

5BfDPP11G670N AACTTCGATCGTAATTATGAAGGCCTGAC pQBF2925Gly670Asn 

(GGA>AAC) 3BfDPP11T669 GTCCCGATCAATTGCCCTTTTCCATTGA 

5BfDPP11L678V GTCACAGGAGACATTGCTTTCCGG pQBF2925Leu678Val 

(CTG>GTC) 3BfDPP11G677 GCCTTCATCATTACGATCGAATCCGGTC  
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Table 2 

 

Enzymatic parameters of P. gingivalis and B. fragilis DPPs.

 

Dipeptidyl 

peptidase 

MCA 

peptide kcat (sec-1) Km (µM) 

 kcat/Km 

(µM-1 sec-1) Reference 

P. gingivalis      

   DPP4 Gly-Pro- 121,752 ± 2,974 94.9 ± 2.1 1,283.3 ± 22.5 [15] 

   DPP5 Lys-Ala- 1,948 ± 165 185 ± 21 10.5 [11]  

   DPP7 Met-Leu- 394 ± 79 39.6 ± 16.0 10.6 ± 2.5 [23] 

Leu-Leu- 753.9 ± 1.9 20.0 ± 0.6 37.7 ± 1.1 this study 

Phe-Leu- 2,044 ± 254 134.2 ± 18.9 15.3 ± 0.6 this study 

His-Leu- 1,137 ± 203 648 ± 136 1.73 ± 0.05 this study 

   DPP11 Leu-Asp- 10,707 ± 140 19.5 ± 0.4 547.4 ± 6.3 [17] 

Leu-Glu- 13,587 ± 577 80.9 ± 5.7 167.7 ± 5.3 this study 

B. fragilis      

   DPP11 Leu-Asp- 7,379 ± 994 183.3 ± 41.1 40.9 ± 4.4 this study 

Leu-Glu- 25,865 ± 2,473     

         x103 

29,710 ± 1,629   

        x103 

0.87 ± 0.04 this study 
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Table 3 

Essential amino acids, sequence identity, and identification of Bacteroides S46 DPP members. 

 

     Similarity  (%)   

Species Gene MEROPS ID Annotation
a
 Xaa673 

2924  

(BfDPP7) 

2925 

(BfDPP11) 

00118 

(BoDPP7) 

03382 

(Bo-third)b PgDPP7 PgDPP11 Identification 

Reference 

B. fragilis 

 

0130 039992 DPP7 Gly 37.5 35.7 37.1 76.9 43.0 34.2 third groupb this study 

2924 039993 DPP11 Gly 100 45.8 84.3 38.2 39.5 44.7 DPP7 [20] 

2925 039991 DPP11 Arg  100 44.9 35.3 37.2 45.1 DPP11 this study 

B. ovatus 

 

00118 0109242 DPP11 Gly   100 37.6 37.5 44.5 DPP7 this study 

03382 0109141 DPP7 Gly    100 40.5 34.9 third groupb this study 

P. gingivalis 1479 0014366 DPP7 Gly     100 36.7 DPP7 [1] 

0607 0034628 DPP11 Arg      100 DPP11 [2] 

 

aBased on comparison of full-length amino acid sequence (MEROPS). Genomic sequence data shown are from B. fragilis ATCC 25285 (BF9343), 

B. ovatus ATCC 8483 (Bovatus), and P. gingivalis ATCC 33277 (PGN). bSee text in detail.
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Fig. 1. Activities of B. fragilis and B. ovatus DPPs in S46 family. 

(A) Putative S46 peptidase genes from B. fragilis (130, BF9343_0130; 2925, BF9343_2925; 

2924, BF2925_2924), B. ovatus (3382, Bovatus_03382; 118, Bovatus_03382), and Gly673Arg 

mutants of BF9343_0130 and BF2925_2924 were expressed. Purified DPPs and their mutants 

(0.4 µg) were separated on SDS-PAGE. M, low-molecular-weight marker. (B) DPP activities 

were measured with Leu-Leu-, Leu-Asp-, and Leu-Glu-MCA. Values are shown as the mean ± 

S.D. (n = 3). 
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Fig. 2. Expression and characterization of three types of DPP11s. 

(A) Recombinant forms of DPP11 (0.4 µg) from P. gingivalis (Pg), P. endodontalis (Pe), C. 

gingivalis (Cg), and F. psychrophilum (Fp), which carry Arg673, that from S. putrefaciens (Sp) 

with Ser673 and Lys680, and putative DPP11 from B. fragilis (Bf) (BF9343_2925) and B. 

vulgatus (Bv) (BVU_2252) with Arg673 were separated on SDS-PAGE. M, 

low-molecular-weight marker. (B) Activities of recombinant DPP11s were measured with 

Leu-Asp- and Leu-Glu-MCA. Values are shown as the mean ± S.D. (n = 3). Data for B. fragilis 

(Bf) and B. vulgatus (Bv) DPP11 are expanded in the right panel. (C) Ratio of activity for 

Leu-Glu-MCA to that for Leu-Asp-MCA is plotted, except for S. putrefaciens DPP11. 
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Fig. 3. DPP11 activity in Bacteroides cells. 

(A) Hydrolyses for Leu-Asp- and Leu-Glu-MCA were determined using bacterial cell 

suspensions (4 µl, A600  = 5). Values are shown as the mean ± S.D. (n = 3). (B) Ratio of activity 

for Leu-Glu-MCA to that for Leu-Asp-MCA is plotted. P. gingivalis ATCC 33277, B. fragilis 

YCH10, B. thetaiotaomicron KYU12, B. uniformis ATCC 8492, and B. dorei JCM 13471 cells 

were used. 
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Fig. 4. Comparison of amino acid sequences around essential serine residue in DPP11s. 

The amino acid sequences at Met640-Asp681 of 7 DPP11s expressed in this study are shown at 

the top, 2 Bacteroides DPP11 are shown at the middle, of which cell activities were measured, 

and 5 other Bacteroides DPP11s are shown at the bottom, and were compared. Identical amino 

acid residues are indicated by asterisks and those with a conserved property are indicated by 

colons under the sequences. The β-strand and 3/10-helix regions are indicated at the bottom. 

Ser655 composing the charge relay system, and Arg673 and Lys680, essential for the P1 Asp/Glu 

specificity of DPP11, are shown in red. His649, Thr650, Asn670, and Val678 (blue) of PgDPP11 are 

substituted by other amino acids (green) in Bacteroides, and other bacterial DPP11s. Among 

them, Thr650, Asn670, and Val678 are potentially responsible for the alteration in the activity in 

Bacteroides DPP11 (see text).  

640        650  655            670673  678  680
P. gingivalis         MPVAFCATTHTTGGNSGSPVMNANGELIGL FDRNWEGVGGD
P. endodontalis     MPVNFCATTHTTGGNSGSPVMNARGELIGL FDRNWEGVGGD
F. psychrophilum    LPVCFIGTNHTTGGNSGSPAVDAQGNLIGL FDRVWEGTMSD
C. gingivalis        MPLCFLSTCHTTGGNSGSPAIDANGNLIGL FDRVWEGTMSD
S. putrefaciens     VPVNFLSSVDTTGGNSGSPVFNGKGELVGL FDSTYEAIT
B. fragilis          MPVCFIVNTDNTGGNSGSPVFNGKGQLIGT FDRNYEGLTGD
B. vulgatus         MPICFVTGTDNTGGNSGSPVFNNKGELIGT FDRNYEGLTGD

B. thetaiotaomicron  MPVCFIVNTDNTGGNSGSPVFNSKGQLVGT FDRNYEGLTGD
B. uniformis        MPICFIVNTDNTGGNSGSPVFNAKGELIGT FDRNYEGLTGD

B. caccae           MPVCFIVNTDNTGGNSGSPVFNSKGQLIGT FDRNFEGLTGD
B. finegoldii        MPVCFIVNTDNTGGNSGSPVFNGKGQLVGT FDRNFEGLTGD
B. clarus           MPVCFIVNTDNTGGNSGSPVFNAKGELIGT FDRNYEGLTGD
B. eggerthii        MPVCFIVNTDNTGGNSGSPVFNAKGELIGT FDRNYEGLTGD
B.coprocola        MPVCFVTATDNTGGNSGSPVFNSKGELIGV FDRNYEGLTGD
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Fig. 5. 3D-homology model of BfDPP11. 

(A) The catalytic fold in the overall structure of BfDPP11 is represented in blue and the helical 

fold in pink. The location of the catalytic triad is shown in red. (B-D) BfDPP11 is superimposed 

to PeDPP11 in the complex with Arg-Glu (magenta). The catalytic triad (His85, Asp227, Ser655) 

is shown as green sticks. Nitrogen and oxygen are represented by blue and red, respectively. (B) 

Thr650, (C) Asn670, and (D) Val678 are substituted by Asn, Gly, and Leu (yellow), respectively, 

in BfDPP11. All amino acid numbers are indicated as those of PgDPP11.  
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Fig. 6. Effect of in vitro mutagenesis of PgDPP11 and BfDPP11 at positions 650, 670, and 678. 

(A) Purified proteins (0.4 µg) of BfDPP11 and PgDPP11, and their mutants were separated on 

SDS-PAGE. M, low-molecular-weight marker. (B) Activities of BfDPP11 and its mutants, and 

(C) those of PgDPP11 and its mutants were determined with Leu-Asp- and Leu-Glu-MCA. 

Values are shown as the mean ± S.D. (n = 3).  
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Fig. 7. Phylogenic tree of S46 family based on sequences of C-terminal conserved region. 

A phylogenic tree was constructed using the NJ method [25] with ClustalX software [26] based 

on the C-terminal conserved region (Ser571-Leu700 of PgDPP11). Basic information for DPPs is 

included in the names, as follows: first 7 (DPP7), 11 (DPP11), or u (unassigned) in the 

MEROPS database (Release 9.6), followed by G (Gly673), R (Arg673), or S (Ser673), then finally 

the MEROPS codes. For example, PgDPP11 with Arg673 is written as 11RMER034628. DPPs 

Figure 7
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expressed in the present study are boxed in brown (PgDPP7), orange (Bacteroides DPP7), red 

(DPP11), pink (Bacteroides-type DPP11), and blue (third group). P. endodontalis 

(7GMER27890) and C. gingivalis (uGMER218135) DPP7, boxed in black, were previously 

characterized [20]. DPP7 (light yellow), DPP11 (light pink), Bacteroides DPP as the third 

group of S46 members (blue), Bacteroides DPP7 (cream), and Bacteroides-type DPP11 (red) 

clusters are indicated by circles. 


