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environmental Remediation of the 
difficult-to-return zone in Tomioka 
Town, Fukushima Prefecture
Limeng Cui, Yasuyuki taira✉, Masahiko Matsuo, Makiko orita, Yumiko Yamada & 
Noboru Takamura

Temporal variations in ambient dose rates in a restricted area designated as “difficult-to-return” for 
residents of Tomioka Town, Fukushima Prefecture were evaluated in a car-borne survey during 2018–
2019. The median dose rates in the “Decontaminated area” in the difficult-to-return zone decreased 
rapidly from 1.0 μSv/h to 0.32 μSv/h; however, the median dose rates in the “Non-decontaminated 
area” and “Radioactive waste storage area” fluctuated between 1.1–1.4 μSv/h and 0.46–0.61 μSv/h, 
respectively. The detected rate of the cesium-137 (137Cs) (137Cs-detected points per all measuring 
points) in the “Decontaminated area” also decreased rapidly from 64% to 6.7%, accompany with 
decreasing in ambient dose rates. On the other hand, the detection of 137Cs in the “Radioactive 
waste storage area” and “Non-decontaminated area” decreased from 53% to 17% and 93% to 88%, 
respectively. We confirmed that the dose rates in the Decontaminated area dramatically decreased 
due to decontamination work aiming to help residents return home. Moreover, the estimated external 
exposure dose of workers during the present survey was 0.66 mSv/y in the Decontaminated area and 
0.55 mSv/y in the Radioactive waste storage area, respectively. This case of Tomioka Town within 
the “difficult-to-return zone” may be the first reconstruction model for evaluating environmental 
contamination and radiation exposure dose rates due to artificial radionuclides derived from the nuclear 
disaster.

The Great East Japan Earthquake (magnitude 9.0) and subsequent tsunami on March 11, 2011 caused an acci-
dent at the Fukushima Daiichi Nuclear Power Station (FDNPS) that resulted in various radionuclides including 
cesium-134 (134Cs), cesium-137 (137Cs) and iodine-131(131I) being released into the atmosphere and eventually 
depositing on land and at sea in the surrounding areas1. The United Nations Scientific Committee on the Effects 
of Atomic Radiation estimated the total release of 134Cs (half-life: 2.1 y), 137Cs (half-life: 30 y) and 131I (half-life: 
8 d) to be 9.0, 8.8 and 120.0 petabecquerels (PBq), respectively1. The Japanese government, municipalities and 
private companies have carried out environmental and individual radiation monitoring programs to confirm the 
radiation levels in the affected areas2,3. More than 8 years have passed since the accident and it has been confirmed 
that artificial radionuclides with a relatively long half-life such as 134Cs and 137Cs still exist in soil and plant sam-
ples collected around the FDNPS1–3.

Environmental monitoring in Fukushima Prefecture have been carried out by many methods (the airborne 
survey by monitor stations and personnel, vehicle-borne survey, aerial-vehicle survey and radionuclide anal-
ysis of the environmental samples such as soils, sediments and foodstuffs)3–9. These surveys and the collected 
data are extremely important to precise evaluation of environmental remediation in the affected areas. Following 
the FDNPS accident, residential areas, farmlands, forests close to residential areas, and roads within the evac-
uation order areas were extensively decontaminated by March 19, 2018. This excluded an area designated as 
“difficult-to-return” for residents, an area in which entry and lodging are basically still prohibited10. According to 
the Act on Special Measures for the Reconstruction and Revitalization of Fukushima outlined in 2017, six munici-
palities, including Tomioka Town, are making plans to construct a Special Reconstruction and Revitalization Base 
aiming to lift evacuation orders and allow the residents to return to home10.

The National government established areas estimated more than 50 mSv/y in the annual cumulative 
dose, as of March 2012 as the difficult-to-return zone. Tomioka Town was rearranged into a residential zone 
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and the difficult-to-return zone depending on contrasted levels of the annual cumulative dose (Fig. 1). The 
difficult-to-return zone is about 8.5 km2 and about 4,800 people were living there before the disaster11.

Long-term environmental monitoring as well as further decontamination efforts should continue around 
the FDNPS, including Tomioka Town. On the other hand, the external exposure level and the decontamination 
effects on landscape within the difficult-to-return zone have not been evaluated concretely, although data from 
the literature, databases and websites have been reported by the national and local governments4–9,12,13. Especially, 
recent reports on the decontamination effect on landscape are not sufficiently published14.

Therefore, in the present study, we carried out a detailed and high-frequency radiation monitoring program 
using a car-borne survey to provide relatively high-density data. We also evaluated the effects of decontamina-
tion efforts, such as reductions in ambient and radiocesium dose rates, in three areas (“Decontaminated area”, 
“Radioactive waste storage area” and “Non-decontaminated area”) with markedly different characteristics in the 
difficult-to-return zone in Tomioka Town.

Results
Ambient dose rates. The frequency distributions of the ambient dose rates within the difficult-to-return 
zone of Tomioka town were illustrated in Fig. 2. In the decontaminated area, the proportion of the locations with 
dose rates more than 0.95 μSv/h largely dropped from 59.2% in July 2018 to 0% in July 2019. The dose rates mainly 
concentrated range from 0.38 to 0.95 μSv/h (61%-81%) in the radioactive waste storage area. In the non-decon-
taminated area, from 72% to 93% measurement points were higher than 0.95 μSv/h during the research period.

Relatively higher dose rates were observed in the Non-decontaminated area with median dose rates rang-
ing from 1.1 to 1.4 μSv/h during the research period (Table 1). Likewise, the median dose rates ranged from 
0.46 to 0.61 μSv/h in the Radioactive waste storage area. On the other hand, the ambient dose rates of the 
Decontaminated area dramatically decreased from 1.0 μSv/h in July 2018 to 0.32 μSv/h in July 2019. On the basis 
of the slope of the regression line, ambient dose rates in the last surveys decreased to 28.1%, 78.9% and 72.1% of 
those in the first surveys in the Decontaminated area, Radioactive waste storage area and Non-decontaminated 
area, respectively (Table 1).

Ambient dose rates were significantly higher in the Non-decontaminated area than in the other two areas 
(p < 0.001). In the surveys during 2018 and on January 24, 2019, the dose rates in the Decontaminated area 
were significantly higher than those in Radioactive waste storage area (p < 0.001). However, in the survey on 
January 12, 2019 and the four surveys after March 2019, the statistical results indicated the dose rates in the 
Decontaminated area fell below those of the Radioactive waste storage area (p < 0.001).

Furthermore, we analyzed the spectrum of the ambient gamma-ray flux (mainly artificial radionuclides such 
as radiocesium) using the Radi-probe system. The proportion of measurement points where radionuclides could 
be detected compared to all measurement points is shown in Fig. 3. The number of be detected points of 137Cs 
ranged from 64% (588 in 922 points) to 6.7% (80 in 1188 points), 53% (313 in 592 points) to 17% (98 in 586 
points) and 93% (148 in 159 points) to 88% (121 in 138 points) in the Decontaminated area, Radioactive waste 
storage area, and Non-decontaminated area, respectively, and those of 134Cs ranged from 63% (579 in 922 points) 
to 3.8% (45 in 1188 points), 44% (260 in 592 points) to 10% (57 in 586 points), 89% (142 in 159 points) to 
83% (114 in 138 points), respectively (Fig. 3). In the present study, radiocesium fallout driven from the FDNPS 
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Figure 1. Location of Tomioka Town, Fukushima Prefecture, Japan. The second author (Y.T.) created the 
map using GIS software (Green Map III, Tokyo Syoseki, Tokyo, Japan. https://shop.tokyo-shoseki.co.jp/map). 
Reprinted from Green Map III under a CC BY license, with permission from Tokyo Shoseki Co., Ltd.; original 
copyright 2003.
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Figure 2. Relative frequencies of ambient dose rates in the Difficult-to-return zone in Tomioka Town, Fukushima 
Prefecture from July 2018 to July 2019. (a) Yonomori District (Decontaminated area); (b) Oragahama District 
(Radioactive waste storage area); (c) Forest area (Non-decontaminated area).

Yonomori district (Decontaminated 
area)

Oragahama district (Radioactive 
waste storage area)

Forest area (Non-decontaminated 
area)

Pointsa
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max) (μSv/h)
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(%) Points

Median(min-
max) (μSv/h)

Decreasing 
proportion 
(%)

2018/7/18 922 1.0 (0.24–2.82) 100 592 0.54 (0.15–1.1) 100 N/Ab N/A N/A

2018/9/27 748 0.70 (0.19–1.3) 56.7 622 0.59 (0.11–1.1) 91.1 N/A N/A N/A

2018/10/13 N/A N/A N/A 510 0.55 (0.13–1.8) 109.5 159 1.4 (0.43–2.4) 100

2018/12/19 1034 0.57 (0.13–1.3) 49.6 638 0.54 (0.12–1.9) 91.5 157 1.2 (0.39–2.4) 80.4

2019/1/12 1408 0.53 (0.14–1.5) 44.6 744 0.61 (0.17–1.7) 106.6 189 1.4 (0.53–2.7) 92.8

2019/1/24 942 0.62 (0.15–1.5) 49.6 600 0.57 (0.15–1.2) 95.3 148 1.4 (0.52–2.6) 93.3

2019/2/27 826 0.51 (0.13–1.4) 42.8 525 0.50 (0.14–1.0) 85.5 127 1.3 (0.40–2.2) 85.4

2019/3/16 1508 0.46 (0.14–1.5) 37.7 849 0.51 (0.12–1.3) 85.4 145 1.3 (0.43–2.2) 79.4

2019/4/25 1187 0.41 (0.12–1.5) 39.2 725 0.52 (0.14–1.2) 84.0 121 1.3 (0.44–2.0) 79.7

2019/5/23 1102 0.36 (0.12–1.1) 35.0 597 0.46 (0.16–1.0) 76.9 155 1.1 (0.38–2.1) 73.1

2019/7/4 1188 0.32 
(0.12–0.94) 28.1 586 0.46 (0.13–1.2) 78.9 138 1.1 (0.39–1.8) 72.1

Table 1. Ambient dose rates in the three districts of the Difficult-to-return zone in Tomioka Town from July 
2018 to July 2019. ameasurement points. bunable to survey.

Figure 3. Proportion of localities where radiocesium could be detected in the Difficult-to-return zone in 
Tomioka Town from July 2018 to July 2019. Percentage is shown to the rate of detected points.
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accident was clearly detected by this car-borne survey system as one source of the ambient dose rate, even after 8 
years from the Accident.

External effective doses. We calculated the annual external effective doses of decontamination work-
ers and estimated that the median doses from July 2018 to July 2019 were 0.66 mSv/y for those working in the 
Decontaminated area and 0.55 mSv/y in the Radioactive waste storage area, respectively. Also, for residents who 
are going to return to the Decontaminated area, on the basis of the ambient rates in July 2019, we estimated that 
the median external effective dose of indoor workers was 0.69 mSv/y and that of outdoor workers was 0.87 mSv/y, 
respectively.

Discussion
In the present study, the median dose rate in the whole difficult-to-return zone was 0.46 µSv/h in July 2019, which 
showed a clear decrease. One car-borne survey in the difficult-to-return zone of Namie Town near Tomioka Town 
(within the 20 km of the FDNPS) reported absorbed dose rates ranging from 1 to 5 μGy/h in 201715. Our previous 
handheld measurements showed the median dose rate was 2.3 µSv/h in the difficult-to-return zone of Tomioka 
Town in 201716.

The dose rates in the Decontaminated area decreased faster than those in the Radioactive waste stor-
age area and Non-decontaminated area from July 2018 to July 2019. Significant differences in ambient 
dose rates were observed among surveys in the Decontaminated area, Radioactive waste storage area and 
Non-decontaminated area (p < 0.001). Noticeable fluctuations in dose rates in the Radioactive waste storage 
area and Non-decontaminated area were observed. Also, a relatively stable downward trend was observed in the 
Decontaminated area.

The main reason for the decrease in dose rates over this 1-year period in Yonomori District is the decontami-
nation efforts which have focused on removing deposits from roofs, decks and gutters; wiping off roofs and walls; 
high-pressure washing of houses and buildings; mowing lawns; removing fallen leaves and stripping topsoil in 
gardens; removing deposits in ditches and high-pressure washing of roads10,17,18 (Supplementary Fig. S1). In our 
previous report, the effectiveness of removing topsoil for decontamination, and the positive relationship between 
soil radioactivity and air dose rates have been reported previously16. One report suggested that the total 137Cs 
content in soils was 1200 Bq/kg on average (value range: 20–4400 Bq/kg), which was an 80% decrease from the 
values determined before the decontamination within agricultural fields in Tomioka Town19. The Ministry of 
the Environment, Japan reported that due to decontamination, the ambient rate 1 m above the ground surface 
was reduced by 60% in residential areas, and 42% on the roads20. Another report suggested that the average dose 
rate in the Decontaminated area was about 20% lower than that in the Non-decontaminated area21. Our study 
also showed that the dose decreased by 71.9% within 1 year of decontamination efforts in areas where the initial 
dose rate was 1.0 μSv/h (median) in the Decontaminated area (Yonomori District). In the present study, the small 
range and high frequency of sampling points with the Radi-probe system could concretely estimate the effects of 
decontamination.

Moreover, the physical decay of the ambient dose rates was calculated using dose conversion coefficients 
under the assumption that the depth profile of radiocesium did not change with time and the initial radioactivity 
of 134Cs and 137Cs were 9.0 and 8.8 PBq, respectively1,22. In the present study, the physical decay of radiocesium 
was estimated to be 7.5% from July 2018 to July 2019 (Supplementary Table S1). The reduction rates during 
research period in the Radioactive waste storage area and Non-decontaminated area were 21.1% and 27.9%, 
respectively. Our results showed that the reduction rates of radiocesium in all three districts were noticeably faster 
than its physical decay.

In Yonomori District, the decreasing time trends of the confidence levels of radiocesium were con-
sistent with the decreasing time trends of the ambient dose rates. Furthermore, the distribution of 137Cs 
in the Non-decontaminated area remained at a high level (Fig. 3). The confidence level of 137Cs in the 
Non-decontaminated area, which is mainly covered by forest, showed a relatively slower decreasing trend com-
pared with other areas. Previous studies also reported a longer ecological half-life in forested areas and suggested 
that the accumulation of radiocesium in association with the self-decontamination processes of forest canopies 
affects the temporal evolution of the ambient dose rate at the forest floor23–26.

Previous studies indicated that the dose rates decreased due to radioactive decay, natural weathering effects, 
penetration of radiocesium into the ground, land use and decontamination15,27–29. The forest ecosystem also 
retains radionuclides; decreases in dose rates are typically slower than those in urban areas and annual doses can 
be very high23,30–32. Some studies have suggested that the rate of the decrease in radiocesium doses in Fukushima 
was faster than that in the forests contaminated by the Chernobyl nuclear accident33. Furthermore, Kato et 
al. reported that the rate of the decrease in radiocesium doses in mixed broad-leaved forests and deciduous 
broad-leaved forests during 2011–2016 was approximately 20% higher than the physical decay rate of radioce-
sium, which corroborates our findings (20.4%)24.

In the Radioactive waste storage area, the ambient dose rates were sometimes higher in later surveys than 
in the first survey, which might result from radiocesium being resuspended in the air with dust particles due to 
dump truck traffic performing decontamination work and/or meteorological events34,35. The decreasing propor-
tion of ambient dose rates in the Radioactive waste storage area suggested that human activities such as a contam-
inant waste storage project may lead to a 0–10% fluctuation in ambient dose rates (Table 1).

In the present study, the estimated annual effective dose of decontamination workers, as well as the residents 
of decontaminated areas, was lower than the annual effective dose limits recommended by the Japanese gov-
ernment36. Nevertheless, radiation safety education for workers is needed to appropriately protect them from 
radiation.
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We could not carry out all of the car surveys on the same routes because the Decontaminated area was 
expanding with progression of the decontamination efforts and some roads were temporarily blocked during the 
decontamination work. Furthermore, the dose rate transition with the season and weather was difficult to identify 
through horizontal comparison over 11 surveys. However, the main artificial radionuclides, such as 137Cs, derived 
from the FDNPS accident could be analyzed to sufficiently low levels using the Radi-probe system. Moreover, the 
long-term follow-up monitoring in combination with various analytical apparatus and system such as car-borne 
survey and nuclides analysis of the environmental samples could be accurately evaluate the decontamination 
effects, external and internal radiation levels. These monitoring is extremely important for the reconstruction of 
affected areas around the FDNPS.

Materials and Methods
Survey location. The FDNPS (37°25′ N, 141°02’ E) is located on the east coast of Honshu Island, approxi-
mately 200 km northeast of Tokyo. Tomioka Town (public office: 37°20’ N, 141°0’ E) is located 8.5 km south of the 
FDNPS. In the present study, we measured ambient dose rates and artificial radionuclides (mainly radiocesium) 
derived from the FDNPS accident in the difficult-to-return zone of Tomioka Town from July 2018 to July 2019 
(Fig. 4).

The different-to-return zone of Tomioka Town was divided by the main road between Yonomori District 
and Oragahama District, both of which are located within 10 km of the FDNPS (Fig. 3). Yonomori District was 
designated by the government as a reconstruction and revitalization area and main decontamination efforts 
started in July 201837. The decontamination work involved cleaning paved surfaces and roadsides and street 
drains, topsoil removal, weeding and pruning trees, washing building surfaces and demolish building17,38. Part of 
Oragahama District was designated a radioactive waste storage area and was decontaminated in 2014; however, 
the forested area of this district has not been decontaminated since the accident. In the present study, Yonomori 
District is referred to as the Decontaminated area, the radioactive waste storage area in Oragahama District is 
referred to as the Radioactive waste storage area, and the forested area of Oragahama District is referred to as the 
Non-decontaminated area.

Survey of ambient rates and radionuclides. We regularly measured the ambient dose rate from July 
2018 to July 2019 (10 times in the Decontaminated area; 11 times in the Radioactive waste storage area; nine 
times in the Non-decontaminated area). The difficult-to-return zone of Tomioka Town was surveyed using a 
car-borne survey system, Radi-probe (Chiyoda Technology Corp., Tokyo, Japan. The handheld radiation detector 
model: HDS-101GN, Mirion Technologies, Inc., Japan)6,39. The Radi-probe system was installed in a vehicle and 
the meter’s detector was set on the front passenger seat about 1 m above the ground. The ambient dose rates were 
measured and position coordinates and a photo were automatically taken every 5 seconds in addition to spectrum 

Figure 4. Real-time map of color-scaled ambient dose rates in the Difficult-to-return zone in Tomioka Town 
(May 2019). This map was modified by using PowerPoint software, from the map obtained by the car-borne survey 
using the Radi-probe system made in May 2019 (GIS software: Shobunsha Publications, Inc., Tokyo, Japan. https://
www.mapple.co.jp/en/. The Radi-probe system: Chiyoda Technology Corp., Tokyo, Japan. http://www.c-technol.
co.jp/eng). Blue lines show the three districts (Yonomori District: Decontaminated area; Oragahama District: 
Radioactive waste storage area, and Forested area: Non-decontaminated area). Reprinted from the map software 
for the Radi-probe system under a CC BY license, with permission (No. 61-G-081) from Shobunsha Publications, 
Inc., Tokyo, Japan; original copyright 2017 and Chiyoda Technology Corp., Tokyo, Japan.
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segments every 0.2 seconds. Gamma detection was performed by a large Thallium doped Cesium Iodide scintilla-
tor with high sensitivity (Typical 1400 cps per µSv/h for 137Cs source). The measurable energy range of gamma-ray 
energy was 30 keV to 6 MeV, using a multichannel analyzer with 512 channels. Real-time maps with color-scaled 
ambient dose rates and gamma-ray energy spectra can be output. The detected energy peaks of radiocesium (134Cs 
and 137Cs) registered in the nuclear library (i.e., detected net count values) and their associated confidence inter-
vals were obtained for the region of interest (with levels 1–10 used as reference values)7,39.

Generally, the car chassis and wall acted as a shield to radiation from outside. The shielding factors were esti-
mated by taking measurements inside and outside the car in open and flat areas at a high of 1 m above the ground. 
Since many factors such as the type of car and the number of passengers could influence the shielding factors40, 
we calculated the shielding effects before each vehicle survey and the shielding factors were found to range from 
1.1 to 1.6. For all surveys, vehicles were driven by the same person at a steady speed. The number of measurement 
points fluctuated due to restricted access to roads as decontamination efforts progressed. Combined with the 
output photos, the three districts were precisely divided. The measurement points ranged from 748 to 1408, 510 
to 849 and 127 to 189 in the Decontaminated area, Radioactive waste storage area and Non-decontaminated area, 
respectively.

Effective dose. Effective doses were determined for external exposure based on the following formula:

E (D D ) T R (1)i out BG= − ⋅ ⋅

∑= = EE (2)i iw 1
12

= +E E E (3)out in

= −E (D D ) T F R (4)out/in out/in BG · · ·

= ·rD D (5)in out

where Ei is the estimated external effective dose (mSv/month by median); Ew is the external effective dose for 
decontamination workers (mSv/y); E is the external effective dose for residents who are going to return to the 
Decontaminated area (mSv/y); Eout/in is the external effective dose for outdoor and indoor workers; Dout/in is the 
dose rate for a height of 1 m above ground outside and inside the house (μSv/h); DBG is 0.04 μSv/h, which was 
measured in the area of interest before the accident41; T is the work time, 240 d × 8 h (normal labor standards in 
Japan); F is the occupancy factor1; R is the age-dependent dose conversion coefficient for adults (0.6)22,42, and, r is 
the deposited gamma location factor for a wooden house (0.4)43.

Statistical methods. All of the data were not normally distributed. The Mann-Whitney U and 
Kruskal-Wallis H tests were used to compare differences among the three areas in the same period and the 
time-trend within the same district. Regression lines were used to calculate the reduction rate of the average 
ambient dose rates.
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