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The improvement of phase synchronization between two coupled 
chaotic oscillators achieved using a pulse as the external force in a 
glow discharge plasma is experimentally demonstrated. The effect 
of coupling and pulse application on the dynamic behaviors of 
systems is investigated. From the viewpoint of the phase of 
oscillations, experimental results show that phase synchronization 
between two coupled chaotic oscillators is improved by applying a 
pulse. 

Plasma is considered an ideal medium for investigating the properties of nonlinear 

phenomena. Consequently, a whole range of studies on chaos in plasma have been conducted, 

such as the observation of chaos,1,2) control of chaos,3,4) and synchronization of chaos.5,6) The 

various stages of the phenomenon of chaos synchronization, such as complete 

synchronization,7,8) lag synchronization,9,10) and phase synchronization,11,12) have been 

investigated theoretically and experimentally. Chaos synchronization in coupled nonlinear 

oscillators13) as well as chaotic behaviors has been observed in a laboratory plasma.5,6,14,15) In 

complete synchronization, amplitudes and phases are completely synchronized between two 

oscillators. On the other hand, in phase synchronization, only phases are synchronized 

between two oscillators. Because of the sensitivity of coupled chaotic oscillators toward 

external perturbation, there is a possibility that applying an external force changes the phase 

correlation of coupled systems from disorder to order. In this note, experimental findings on 

the improvements of phase synchronization between two coupled chaotic oscillators achieved 

by using an external force in a laboratory plasma are reported. 

The schematic of the experimental setup is shown in Fig. 1. Experiments are performed 

using two glass tubes with a diameter and length of 0.02 m and 0.75 m, respectively. Neon gas 

is confined in the two tubes at a pressure of approximately 478 Pa after evacuating each tube 

to a high vacuum. When a high dc potential is applied to the electrodes, Ne plasma is 

produced as a glow discharge between the electrodes. A resistor with a resistance of 9.4 kΩ  



is incorporated in the circuit of tube 1 in order to sustain the discharge. The transformer 

incorporated in the circuit of tube 2 has a resistance of 8.0 kΩ . Time series signals for the 

analysis are obtained as fluctuations in the light intensity of Ne plasma using photodiodes 

(S6775, HAMAMATSU) and are sampled using a digital oscilloscope (GDS-1072A-U, 

GWINSTEK). The photodiodes on tubes 1 and 2 are placed at a distance of 0.17 m from the 

anode. High dc voltages are generated using a regulated dc power source (TMK 1.0-50, 

TAKASAGO for discharge in tube 1 and HV1.5-0.3, TAKASAGO for discharge in tube 2). 

The external force, which is a pulse in this study, is generated using a function generator 

(33220A, AGILENT). The pulse is amplified using an amplifier (4015, NF ELECTRONIC 

INSTRUMENTS) and superimposed using a transformer (EF-4N, SHIMADZU) incorporated 

in the circuit of tube 2. Ionization waves16) are self-excited and unstable owing to the ionized 

instability in Ne plasma produced as a glow discharge.15,17-20) Typical electron and ion 

temperatures in plasma are 10 eV and 0.025 eV, respectively. The discharge currents in tubes 

1 and 2 are changed to govern the states of the systems. Waves 1 and 2 are sampled from 

tubes 1 and 2, respectively. Two nonlinear waves interact with each other through electric 

coupling. “Before coupling’’ refers to the state in which two waves do not interact, and “after 

coupling’’ refers to the state in which two waves interact. The ionization waves exhibit a wide 

variety of oscillations such as periodic and chaotic oscillations when the values of the 

discharge current I and gas pressure are changed. In our experiment, the gas pressure is fixed 

at 478 Pa. When the discharge currents in tubes 1 and 2 are fixed at 29.0 mA and 19.0 mA, 

respectively, each wave has a broad spectrum that exhibits chaotic oscillations. A pulse 

(square wave) provided as an external force has a fundamental frequency of 1.1 kHz. The 

intensity of the pulse is comparable with the electric potential and sustains discharge in tubes 

1 and 2. A pulse has all the components of sine waves. Therefore, it works effectively as an 

external force to perturb systems compared to waves of other shapes. 

The effect of coupling and pulse application on the dynamic behaviors of systems is 

investigated. The Lyapunov exponents are calculated to perform chaotic analysis to examine 

the effect quantitatively. The largest Lyapunov exponents are calculated from the time series 

of waves 1 and 2 sampled from the photodiodes on tubes 1 and 2, based on the algorithm 

reported in reference21) and by using a time series obtained in a string of experiments. The 

value of the largest Lyapunov exponent is positive for chaotic oscillations; this value is higher 

for a more chaotic system. The value becomes close to zero for a system with periodic 

oscillations. Table 1 lists the values of the largest Lyapunov exponents of waves 1 and 2, and 

their total value. With coupling, the value increases from 0.380 to 0.474 when no pulse is 



applied, and it increases from 0.375 to 0.463 on application of the pulse. Therefore, the 

system attains a more chaotic state on coupling. With pulse application, the value changes 

from 0.380 to 0.375 before coupling, and it changes from 0.474 to 0.463 after coupling. 

Therefore, the turbulence of systems is not largely altered on applying a pulse. From the 

results of calculating the largest Lyapunov exponents, it is found that coupling and pulse 

application do not work to suppress the amplifier turbulence of systems. 

We shift the perspective to focus from the amplitude to phase of oscillations. Figure 2 

shows the time evolution of the phase difference || 12 Φ−Φ  between waves 1 and 2. It shows 

|| 12 Φ−Φ  in the case of ◇, which represents the state before coupling and before applying 

the pulse; ●, which represents the state after coupling and before applying the pulse; △, 

which represents the state before coupling and after applying the pulse; and ×, which 

represents the state after coupling and after applying the pulse. The phase difference 

|| 12 Φ−Φ  is calculated using the following method. One period is defined as the time from a 

certain maximum value to the next maximum of the amplitude in a time series, following 

which only maximum value points are extracted. The times corresponding to the maximum 

values of waves 1 and 2 are compared in series, following which the phase difference 

|| 12 Φ−Φ  is calculated from these results. From the viewpoint of coupling, the slope of 

phase differences between waves 1 and 2 becomes more gradual owing to the coupling in 

both cases without and with the application of the pulse. 

Furthermore, when the discharge currents in both tubes 1 and 2 are set to the same value, 

the time evolutions of the phase difference in the cases after coupling and before applying the 

pulse as well as after coupling and after applying the pulse are compared in order to examine 

the effect of applying the pulse on phase synchronization. Two tubes are electrically 

connected in series, and the fundamental frequency of pules is fixed at 2.3 kHz. Figure 3(a) 

shows the relationship between the value of discharge current and the slope of the phase 

difference between waves 1 and 2, tΔΔ /|| 12 Φ−Φ . The slope of the phase difference is 

calculated by the least squares method. Figure 3(b) shows the relationship between the value 

of discharge current and the largest Lyapunov exponents. ● represents the state after 

coupling and before applying the pulse, and × represents the state after coupling and after 

applying the pulse. The error bars are calculated using the standard deviation. The values of 

slopes (● and ×) approach each other with increasing discharge current. The results of 

calculating the largest Lyapunov exponents show that pulse application does not work to 



suppress the amplifier turbulence of systems. It is shown that the phases of coupled systems 

are stabilized by applying a pulse when the discharge current is greater than 26 mA. Therefore, 

experimental results demonstrate that phase synchronization between two chaotic oscillators 

is improved when an appropriate discharge current is selected and a pulse is used as an 

external force. 

The findings are summarized as follows. We investigated the improvement of phase 

synchronization between two coupled chaotic oscillators achieved using an external force in a 

glow discharge plasma. The effect of coupling and pulse application on the dynamic 

behaviors of systems was investigated. The Lyapunov exponents were calculated to perform 

chaotic analysis. The results indicated that coupling and pulse application failed to suppress 

the amplifier turbulence of systems. Next, the focus was shifted from the amplitude to the 

phase of oscillations. From the results, it was observed experimentally that phase 

synchronization between the two chaotic oscillators improved when using a pulse as an 

external force. 
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Table 1.  Values of the largest Lyapunov exponents maxλ  of waves 1 and 2, as well as their 

total value. Here, max1λ  denotes the maxλ  of wave 1 and max2λ  denotes the maxλ  of wave 

2. 

 

Coupling Pulse application max1λ  max2λ  maxmax 21 λλ +  
before before 0.213 0.166 0.380 
after before 0.251 0.223 0.474 

before after 0.199 0.176 0.375 
after after 0.250 0.213 0.463 

 

 

 

 

 

 
 

Fig. 1.  Schematic configuration of the experimental setup. 
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Fig. 2.  Time evolution of the phase difference || 12 Φ−Φ  between waves 1 and 2. ◇ 

represents the state before coupling and before applying the pulse, ● represents the state 

after coupling and before applying the pulse, △ represents the state before coupling and 

after applying the pulse, and × represents the state after coupling and after applying the 

pulse. 
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Fig. 3. (a) Relationship between the value of discharge current and the slope of the phase 

difference between waves 1 and 2; (b) relationship between the value of discharge current and 

the largest Lyapunov exponents. ● represents the state after coupling and before applying 

the pulse, and × represents the state after coupling and after applying the pulse. 
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