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Abstract 

Steel structures are famous for its lightweight, high strength, good ductility, easy 

construction and aesthetics, therefore, widely used in actual engineering. Steel 

compression members made from thin plates accounts for a larger proportion of these 

kind of structures. For a wish of full utilization of the cross section and strength, they are 

usually made into thin-walled structures. However, such kind of structure are susceptible 

to loss of load-bearing capacity at the point far away lower than the yield resistance due 

to buckling. After buckling phenomenon occurs, load-bearing capacity of the structures 

significantly decreases and the deformation intensely increases, which will result in 

disaster in practical engineering.  

Since the post-buckling strength behavior of the plate is stable, high width-thickness 

ratios exceeding the limit value are usually used in medium or long columns for a wish 

of economic benefit. It should be mentioned that although the structures satisfy with the 

requirement of local and overall buckling individually, the triggering of both local and 

overall buckling simultaneously will result in severe instability behavior. Aiming at 

stability design, many researches were conducted, and various countries have drawn up 

their own codes for design of this kind of structures. However, the stability design 

methods differ greatly among different codes. 

On the other hand, initial deflections, which are unavoidable during the 

manufacturing and assembling procedure, will result in significant decrease on the load-

bearing capacity of steel compression members. So far, many experiments and numerical 

analysis on load-bearing capacity of steel columns with both welded unstiffened and 

stiffened box cross section under axial compression have been conducted. And it is 

revealed that the local and overall initial deflections will significantly deteriorate the load-

bearing capacity of the structures. However, the quantitative influence caused by initial 

deflections on load-bearing capacity for such structure is still not clear. 

In this dissertation, in order to provide a reference to the revision of the specification 

and improve the stability design of steel compression members with welded box cross 

section, the author carried out the comparison on the stability design among various codes 

and developed formulae for the quantitative influence of initial deflections on the load-

bearing capacity. The dissertation consists of six chapters as follows: 
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In Chapter 1, it gives the background and objectives of the research together with 

the overview of the previous researches carried out in the related field. In addition, the 

layout was given. 

In Chapter 2, provisions concerning about stability design of steel compression 

member for steel bridge in those codes adopting the Partial Factor Design Method 

including Chinese code Specification for Design of Highway Steel Bridge, Japanese code 

Specification for Highway Bridges, American code AASHTO LRFD Bridge Design 

Specification, European code Eurocode 3: Design of Steel Structures - Part 2: Steel 

Bridges, are outlined first. Nominal strengths related to the buckling parameters 

slenderness and width-thickness ratios following these codes are calculated and compared 

with each other. Safety factor performed as a function of ratio of live load to dead load is 

developed. In addition, design strength defined as nominal strength divided by resistance 

factor and allowable strength defined as nominal strength divided by safety factor are also 

discussed. The results may offer a reference for the revision of the design criteria for steel 

compression member in steel bridges. 

In Chapter 3, previous experiments relating to the load-bearing capacity of steel 

columns with welded box cross section under compression were collected. The FE 

models to analyze the load-bearing capacity of this kind of columns with residual stress 

as well as local and overall initial deflections into consideration were developed. 

Evaluation on accuracy of the developed FE models are carried out by comparing with 

the experimental results. The FEA results show good agreement with experimental results. 

Therefore, the developed FE models can be used for further parametrical analysis. 

In Chapter 4, it concentrated on the quantitative influence caused by local and overall 

initial deflections on the load-bearing capacity of steel columns with welded unstiffened 

box cross section under compression. A variety of the normalized width-thickness and 

slenderness ratios were considered to cover the possible diverse range of columns. 

Various combinations of amplitude of the local and overall initial deflections were 

prepared for FE models. Based on the results of parametric analyses, initial deflection 

influence coefficient is proposed as a function of the initial deflections and the normalized 

width-thickness and slenderness ratios to describe the quantitative influence caused by 

the difference in amplitude of the local and overall initial deflections on the load-bearing 
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capacity. The accuracy of proposed formulae was verified by comparing with the 

experimental and FEA results.  

In Chapter 5, it focused on the quantitative influence caused by local and overall 

initial deflections on the load-bearing capacity of steel columns with welded stiffened box 

cross section under compression. Stiffened box section columns under axial compression 

were chosen as a target for FE analysis with a wide range of the normalized width-

thickness and slenderness ratios into consideration. Furthermore, various combinations 

of amplitude of the local and the overall initial deflections are analyzed. In addition, 

applicability of the formulae developed to predict their influence on ultimate strength of 

unstiffened box section columns to stiffened box section columns was discussed. 

In Chapter 6, the main conclusions of this dissertation are summarized. In addition, 

the points which worth to be studied in the future work are figured out. 
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1.1 Background 

Steel structures are famous for its lightweight, high strength, good ductility, easy 

construction and aesthetics, therefore, widely used in actual engineering. Steel 

compression members made from thin plates accounts for a larger proportion of these 

kind of structures. For example, they are used for bars of truss girder as well as arch ribs 

or columns in cable bent tower and industrial building as shown in Fig.1.1. For a wish of 

full utilization of the cross section and strength, they are usually made into thin-walled 

structures.  

However, such kind of structure are susceptible to loss of load-bearing capacity at 

the point far away lower than the yield resistance due to buckling [1,2,3]. After buckling 

phenomenon occurs, load-bearing capacity of the structures significantly decreases and 

the deformation intensely increases, which will result in disaster in practical engineering 

[4]. In general, buckling problem for the steel compression members can be divided into 

three kinds including overall buckling, local buckling and coupled buckling. For the 

columns with high slenderness ratio while low width-thickness ratio, the failure mode is 

mainly controlled by overall buckling. In the condition of short column with high width-

thickness ratio, out-of-plane buckling tend to occur on the plate and hence result in local 

buckling failure. Considering the medium or long columns with high width-thickness 

ratio, local buckling is likely to occur at the early loading stage and the columns can 

continue to work due to the existing of the post-buckling strength. With the increasing of 

the external force, the columns will failed in the interaction of local and overall buckling.  

Since the post-buckling strength behavior of the plate is stable [5,6], high width-

thickness ratios exceeding the limit value are usually used in medium or long columns 

for a wish of economic benefit. It should be mentioned that although the structures satisfy 

with the requirement of local and overall buckling individually, the triggering of both 

local and overall buckling simultaneously will result in severe instability behavior 

[7,8,9,10,11]. Aiming at stability design, many researches were conducted, and various 

countries have drawn up their own codes for design of this kind of structures. However, 

the stability design methods differ greatly among different codes. 

On the other hand, initial deflections, which are unavoidable during the 

manufacturing and assembling procedure, will result in significant decrease on the load-
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bearing capacity of steel compression members. Initial deflections consist of local initial 

deflection on the plate and overall initial deflection along the member length. So far, many 

experiments and numerical analysis on load-bearing capacity of steel columns with both 

welded unstiffened and stiffened box cross section under axial compression have been 

conducted. And it is revealed that the local and overall initial deflections will significantly 

deteriorate the load-bearing capacity of the structures [12 ,13 ,14 ,15 ,16 ]. However, the 

quantitative influence caused by initial deflections on load-bearing capacity for such 

structure is still not clear. 

 

  

(a) Truss bridge (b) Arch bridge 

  

(c) Suspension bridge (d) Industrial building 

Fig. 1.1 Structures including steel compression members 

1.2 Literature Review 

1.2.1 Stability design for steel compression member 

1.2.1.1 Development of stability theory for overall stability 

For a purpose of full use of strength and improving utilization of cross section, steel 

structures are always made into thin-walled structures, which make them so competitive 

in engineering such as long span bridges. However, the stability problems, which is the 

controlled factor of load-bearing capacity, appears and need to be considered in the steel 

structure design. 
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The critical load formula [17] for the elastic buckling of ideal axial compression 

members without initial imperfections taken into consideration was first proposed by 

Euler L and performed as follows: 

2 2/crP EI L                                (1.1) 

where E is the Young’s modulus, I is the moment of inertia, L is the column length. 

Based on the yield criterion of cross-sectional edge stress, the Perry-Robertson 

formula was proposed and used to calculate the stability coefficient for the columns failed 

in overall buckling. This formula is the basic for the overall buckling formulation adopted 

in EC3 as well as JTG and can be expressed as follows: 

2
2 2 2

0 0/ 1 (1 ) / / 2 1 (1 ) / / 4 1/cr y                  
          (1.2) 

where λ is the normalized slenderness ratio, ε0 is a factor relating to overall initial 

deflection. 

Since the residual stress is not considered, the Perry Formula is more suitable to 

cold-formed thin-walled structures. However, for the welded steel compression columns, 

not only the initial deflections but also the residual stress need to be considered. Due to 

the influence of initial deflections and residual stress, the column tend to failed in the 

elastic-plastic stage and the failure belongs to limit load instability.  

European Convention for Constructional Steelwork had carried out experimental 

study [18,19] on the load-bearing capacity of 1067 columns with different cross section. 

Finally, with L/1000 considered for the overall initial deflection and five kinds of cross-

sectional residual stress distribution taken into consideration, five column curves were 

summarized. Based on the Perry-Roberson formula combined with experimental study, 

the formulae for overall buckling reduction adopted in EC3 [20] were proposed. 

On the other hand, Li and Xiao et al. [21,22]. used the contrary calculation segment 

length method calculate ninety-six curves for the columns with overall initial deflection 

of L/1000 and residual stress distribution relating to several typical cross section 

considered. Finally, three column curves were summarized and based on Perry-Roberson 

formula, the design formulae against overall buckling were provided for Chinese design 

code, GB 50017 [23].  

Based on experimental data of 1665 columns from West Europe, North America and  
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Japan with various cross section taken into consideration, Fukumoto and Itoh [24,25,26] 

had proposed three column curves. In JRA-2002 [27], only one column curve, which is 

on the conservative side of the column curves proposed in ECCS and closed to the Curve 

d, was adopted for the design against overall buckling. 

Bjorhovde [ 28 ] had conducted research on fifty-six columns with different 

combinations of shape, steel grade and residual stress. With overall initial deflection of 

L/1000 taken into consideration, 112 maximum strength column curves were generated. 

In 1976, based on Bjorhovde’s research, Structural Stability Research Council proposed 

three column curves. In AISC-1986 [29], one column curve with overall initial deflection 

of L/1500 taken into consideration was provided for both allowable strength design and 

load and resistance factor design.  

So far, the formulae for the overall buckling design have been revised several times 

according to feedback in practice and further theoretical research. The formulae in recent 

codes for design of steel bridge are listed in Table.1.1, including Chinese code: 

Specification for Design of Highway Steel Bridge [30], Japanese code Specification for 

Highway Bridges [31], American code: AASHTO LRFD Bridge Design Specification [32] 

and European code: Eurocode 3: Design of Steel Structures - Part 2: Steel Bridges [33]. 

 

Table.1.1 Design formulae for overall buckling 

Design code Non-dimensional nominal strength 

Ref [30] 2, 2 2 2
0 0

1
0.2

/
0.21 (1 ) / / 2 1 (1 ) / / 4 1/

cr o y


 

    




 
           

 

Ref [31] 
2

,

2

1 0.2

/ 1.059 0.258 0.19 0.2 1.0

1.01.427 1.039 0.223

cr o y



    

 

 


    
  

 

Ref [32] 

2

,
2

1.50.658
/

1.50.877 /
cr o y

 
 



 
 



 

Ref [33] ,

2 2

0.21

/ 1

0.2

cr o y

Φ Φ



 






 
  
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1.2.1.2 Development of stability theory for local stability 

For a plate simply supported along all edges and subjected to uniform compression, 

Bryan [34] developed a solution for the elastic critical stress performed as follows: 

2
2

2
( )

12(1 )
cr el

E t
k

b








，

                      (1.3) 

where k is the buckling efficient, ν is the Poisson’s ratio, b is the plate width, t is the plate 

thickness. 

In 1932, the concept of effective width was first proposed by von Kármán et al. [35]. 

It is defined that two strips with total width, be, on the both sides of the plate supported 

along all edges can reach the yield stress. The approximate formula was proposed as 

follows: 

1.9e

y

E
b t


                           (1.4) 

However, due to the exiting of initial deflection and residual stress in practice, the 

theoretical formula failed to provide accurate results for actual plate. According to many 

experimental studies, Winter [36 ] proposed the modified effective width formula as 

follows: 

1.9 1 0.574( )e

y y

E t E
b t

b 

 
  

  

                   (1.5) 

Based on Winter formula, EC3 has developed formula after several times revision. 

As for design following JTG D64, the concept of effective width was also used. The 

difference is that the calculation of the local buckling reduction is based on the Perry-

Roberson formula with normalized width-thickness ratio as parameter replacing the 

normalized slenderness ratio.  

With respect to design in Japanese code, the design formula for local buckling 

reduction factor was proposed according to Euler critical stress formula. In JRA-2002, 

the design formula was performed as half of the Euler critical stress. In recent version of 

code, JRA-2017, the design formula was revised on the basis of Euler critical stress 

combined with experimental data and located at the conservative side of the experimental 

data. 
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In the 2012 version of AASHTO [37], the Q-factor Method was adopted to account 

for the local buckling reduction while in 2017 version, the Effective Width Method was 

adopted to replace the Q-factor Method. In addition, Direct Strength Method, which was 

proposed by Schafer and Pekoz [38] and extended by many researchers [39,40,41], was 

adopted in AISI [42] as an alternative to Effective Width Method for the design of cold-

formed steel compression members under coupled buckling. To develop Direct Strength 

Method for welded box section compression member, many experimental and numerical 

studies have been contributed. Kwon et al [43,44,45] have conducted researches on the 

welded compression members with different and the modified Direct Strength Method 

was proposed based on the original one. In addition, Shen [46 ] extended the Direct 

Strength Method to the welded compression members made of high strength steel. 

However, the Direct Strength Method adopted in recent design code is only suitable for 

cold-formed compression member. The design formula against the local buckling in 

various codes are summarized in Table. 1.2. 

 

Table.1.2 Reduction factor for local buckling 

Design code Reduction factor ρ 

Ref [30] 2
2 2 2

0 0

1
0.4

0.41 (1 ) / / 2 1 (1 ) / / 4 1/

e
Rb

Rb R R R 




 
           

 

Ref [31] 1.19

1 0.7

0.7

0.7

crl

R

RR






  
   

 

Ref [32] 
1

/ /1

1
/ /

y crr

e

el el

cr cr y crr

b t F F

b
F F

cb
F F b t F F







  
  

 

 

Ref [33] 
2

0.5 0.085 0.0551

0.055(3 )

0.5 0.085 0.055

R

R

R R



 



  


  

   
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1.2.2 Influence of initial deflections for steel compression members 

Many researches have revealed that steel compression members consist of thin plate 

were susceptible to buckling instability due to high slenderness and width-thickness. It is 

also well known that such kind of structures are sensitive to the initial deflections 

[47,48,49,50]. However, initial deflections are unavoidable during manufacturing and 

assembling procedure and their value are random in a wide range. Even a tiny initial 

deflection will result in significant decrease on the load-bearing capacity 

[51,52,53,54,55,56]. 

In previous researches focusing on unstiffened box section columns, the amplitude of 

initial deflections was measured prior to the experiments. In Usami’s experiment [57], 

amplitudes of overall initial deflection on 19 welded box section columns were measured. 

The maximum overall initial deflection was L/1590 and the average was L/3850, where 

L was the column length. In Rasmussen’s research [58] with six welded box section 

columns measured, their maximum and average amplitudes were L/546 and L/1172, 

respectively. Somodi and Kövesdi [59] had measured initial deflections on 49 welded 

steel columns made of various steel grades. The results show that a total of 23 columns 

had overall initial deflection amplitudes larger than L/1000 and the average value of total 

49 columns is L/945. In Shi’s experiment [60], amplitudes of local initial deflection on 

four welded stub columns were measured. The maximum and average were b/341 and 

b/512, respectively, where b was the width of the plate.  

However, these values are much different from those allowed in some specifications 

such as overall initial deflection of L/1000 in JTG D64, JRA and EC3, L/1500 in 

AASHTO. As for amplitude of local initial deflection, b/150 is adopted in JRA while 

EN1993-1-5 [61] suggests b/200 in the numerical analysis. In addition, b/200 is also 

adopted in GB50205 [62] as construction tolerance. 

On the other hand, many numerical studies aimed at investigating the influence of 

the initial deflections have been also contributed. By means of numerical analysis, Degée 

[63] investigated the influence of residual stress, local and overall initial deflection on the 

load-bearing capacity of rectangular box section columns. It was found that FE model 

with residual stress, local initial deflection of b/1000 and overall initial deflection of 

L/1000 into consideration could provide an accurate replication to experimental results. 
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In addition, the FE model considering local initial deflection of b/250 and overall initial 

deflection of L/725 gave close load-bearing capacity as that of FE model with residue 

stress. 

Kwon [64] investigated the effect of local initial deflection on load-bearing capacity 

of welded RHS columns undergoing coupled buckling. The increase of the local initial 

deflection from b/2000 to b/100 resulted in the reduction of the load-bearing capacity 

corresponding to 28.5%. In Inose’s study [65], the increase of the initial deflection from 

b/450 to b/150 led to the reduction of load-bearing capacity of welded box section 

columns up to 11.4%.  

Ban [66] studied the influence of the overall initial deflection on the overall buckling 

behavior of welded box section steel columns. The increase of overall initial deflection 

from L/2500 to L/1000 resulted in a decrease of load-bearing capacity by about 7% on 

average. Coelho [ 67 ] conducted a series of numerical analyses to investigate the 

sensitivity of the load-bearing capacity to imperfection. Models with four different 

amplitude of the overall initial deflection, which are L/1000, L/500, L/250 and L/125, 

were analyzed. The increase of the overall initial deflection resulted in the 40% decrease 

of load-bearing capacity.  

Kang [68] studied the effect of overall initial deflection on load-bearing capacity of 

welded steel box columns by selecting two different values i.e. L/1000 and L/500 with 

the normalized slenderness ratios from 0.8 to 1.8. The results revealed that with the 

increase of the overall initial deflection, the average and maximum of reduction on load-

bearing capacity were about 7.2% and 9.4% respectively. Moreover, the influence of the 

overall initial deflection showed to be related to the normalized slenderness ratio. The 

maximum reduction appeared at the normalized slenderness ratio of 1.25. Lu Yang [69] 

carried out numerical analysis on load-bearing capacity of box section columns with 

normalized slenderness ratio from 0.2 to 1.6 and ratio of width to thickness equal to 20 

and 60. The value of L/2000, L/1000 and L/500 were prepared for the overall initial 

deflection while b/500, b/200 and b/100 were introduced to local initial deflection. Finally, 

maximum influence of 10% was found with the different amplitude of initial deflections. 

More importantly, Lu Yang emphasized that the local initial deflection have the more 

obvious influence on the structure with high normalized width-thickness ratio while 

overall initial deflection affects the slender column more obviously. 
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Wang et al. [70] conducted a research on initial deflection sensitivity of the column 

due to different steel grade. Overall initial deflection of L/1000 was prepared for columns 

made of Steel Q235 and Q460. The results indicate that the columns made of high strength 

steel tends to be less sensitive to the influence of initial deflection than the columns made 

of the normal strength steel. 

With respect to the stiffened box section columns, measurement targeting on the 

initial deflections had also been contributed. In Nakai’s tests conducted on 9 columns 

[71], amplitudes of overall initial deflection on test specimens were measured. Their 

maximum is L/333 and average is L/661. Usami [72] conducted experiment on 14 

stiffened box section columns, their maximum is L/550 and average is L/867 for the overall 

initial deflection; the maximum value is b/330 and average is b/534 for the local initial 

deflection. In previous research conducted by Murakoshi. et.al [73] three kinds of amplitude 

(i.e. L/1000, L/3000, L /5000) of the overall initial deflection were considered on the 

columns with different normalized slenderness ratio. It is found that the amplitude of the 

initial deflection has great influence on the ultimate strength of the stiffened box section 

columns. As the amplitude of the initial deflection increases from L/5000 to L/1000, the 

ultimate strength decreases at most 11.7%. In addition, the decrement on ultimate strength 

caused by initial deflection becomes more severe with the increase of the normalized 

slenderness ratio. 

1.3 Objectives and layout of the dissertation 

The main objective conducted in this dissertation is to make a comparison on the 

stability design of steel compression members with welded box cross section among 

major codes and develop formulae on the quantitative influence of initial deflections on 

load-bearing capacity for such kind of structures. The dissertation consists of six chapters 

as follows: 

Chapter 1 gives the background and objectives of the research together with the 

overview of the previous researches carried out in the related field. In addition, the layout 

was given. 

In Chapter 2, provisions concerning about stability design of steel compression 

member for steel bridge in those codes adopting the Partial Factor Design Method 

including Chinese code Specification for Design of Highway Steel Bridge, Japanese code 



11 
 

Specification for Highway Bridges, American code AASHTO LRFD Bridge Design 

Specification, European code Eurocode 3: Design of Steel Structures - Part 2: Steel 

Bridges, are outlined first. Nominal strengths related to the buckling parameters 

slenderness and width-thickness ratios following these codes are calculated and compared 

with each other. Safety factor performed as a function of ratio of live load to dead load is 

developed. In addition, design strength defined as nominal strength divided by resistance 

factor and allowable strength defined as nominal strength divided by safety factor are also 

discussed. The results may offer a reference for the revision of the design criteria for steel 

compression member in steel bridges. 

In Chapter 3, previous experiments relating to the load-bearing capacity of steel 

columns with welded box cross section under compression were collected. The FE 

models to analyze the load-bearing capacity of this kind of columns with residual stress 

as well as local and overall initial deflections into consideration were developed. 

Evaluation on accuracy of the developed FE models are carried out by comparing with 

the experimental results. The FEA results show good agreement with experimental results. 

Therefore, the developed FE models can be used for further parametrical analysis. 

In Chapter 4, it concentrated on the quantitative influence caused by local and overall 

initial deflections on the load-bearing capacity of steel columns with welded unstiffened 

box cross section under compression. A variety of the normalized width-thickness and 

slenderness ratios were considered to cover the possible diverse range of columns. 

Various combinations of amplitude of the local and overall initial deflections were 

prepared for FE models. Based on the results of parametric analyses, initial deflection 

influence coefficient is proposed as a function of the initial deflections and the normalized 

width-thickness and slenderness ratios to describe the quantitative influence caused by 

the difference in amplitude of the local and overall initial deflections on the load-bearing 

capacity. The accuracy of proposed formulae was verified by comparing with the 

experimental and FEA results.  

In Chapter 5, it focused on the quantitative influence caused by local and overall 

initial deflections on the load-bearing capacity of steel columns with welded stiffened box 

cross section under compression. Stiffened box section columns under axial compression 

were chosen as a target for FE analysis with a wide range of the normalized width-

thickness and slenderness ratios into consideration. Furthermore, various combinations 
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of amplitude of the local and the overall initial deflections are analyzed. In addition, 

applicability of the formulae developed to predict their influence on ultimate strength of 

unstiffened box section columns to stiffened box section columns was discussed. 

In Chapter 6, the main conclusions of this dissertation are summarized. In addition, 

the points which worth to be studied in the future work are figured out. 

The layout of this dissertation is given in Fig.1.2. 
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2.1 Introduction 

Steel compression members are widely used in the actual bridge construction such 

as bars of truss girder or arch ribs [74]. However, due to high slenderness and width-

thickness ratios, these kind of structures are more susceptible to buckling instability 

failure than strength failure.  

To prevent buckling instability failure, both overall stability [75,76] of the columns 

and local stability [77] of the plate need to be considered during the design procedure. 

Based on a number of experiment and numerical analysis, various countries have drawn 

up their own design codes for stability of steel bridge. However, the calculation methods 

of stability design differ greatly among different codes.  

In this chapter, provisions concerning about stability design of steel compression 

member for steel bridge in those codes adopting the Partial Factor Design Method 

including Chinese code Specification for Design of Highway Steel Bridge, Japanese code 

Specification for Highway Bridges, American code AASHTO LRFD Bridge Design 

Specification, European code Eurocode 3: Design of Steel Structures - Part 2: Steel 

Bridges, are outlined first. Nominal strengths related to the buckling parameters 

slenderness and width-thickness ratios following these codes are calculated and compared 

with each other. Safety factor performed as a function of ratio of live load to dead load is 

developed. In addition, design strength defined as nominal strength divided by resistance 

factor and allowable strength defined as nominal strength divided by safety factor are also 

discussed. The results may offer a reference for the revision of the design criteria for steel 

compression member in steel bridges. 

2.2 Outline of design for nominal strength in each code  

2.2.1 Chinese code: Specification for Design of Highway Steel Bridge 

Against the instability, nominal strength in JTG D64 can be expressed by two parts 

with local and overall buckling taken into consideration. One is the overall buckling 

stability coefficient expressed by the normalized slenderness ratio. The other is the 

potential reduction in capacity due to local buckling, which is considered through 

effective width. To make a definitive comparison among codes listed in this research, the 

non-dimensional nominal strength, which is the nominal strength normalized by the 
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compressive strength is used as follows, 

 ( ) e
cr

g

A

A
                                    (2.1) 

where 𝜎̅𝑐𝑟 is the non-dimensional nominal strength, Ag is the gross area of the cross-

section, Ae is the effective cross-sectional area, φ is overall buckling stability coefficient, 

λ is the normalized slenderness ratio.  

2.2.2 Japanese code: Specification for Highway Bridges 

Design in JRA for the nominal strength can be performed as a product format 

consisting of the non-dimensional local buckling stress determined by the normalized 

width-thickness ratio and the non-dimensional overall buckling stress expressed by the 

normalized slenderness ratio without local buckling as follows, 

cr crg crlp p                                   (2.2) 

where pcrg is the non-dimensional buckling stress without local buckling, pcrl is the non-

dimensional local buckling stress.  

2.2.3 American code: AASHTO LRFD Bridge Design Specification 

With respect to Design in AASHTO, the non-dimensional overall buckling stress is 

related to the normalized slenderness ratio. On the other hand, the reduction factor caused 

by the local buckling is considered through the ratio of effective area to gross area as 

follows, 

0

cr e
cr

g

P A

P A
                                    (2.3) 

where Pcr is the nominal compressive resistance, P0 is the nominal yield resistance.   

2.2.4 European code: Design of Steel Structures - Part 2: Steel Bridges 

In EC3, the effective width method is employed in the design of steel structure. With 

respect to the calculation of reduction factor due to overall buckling, the ratio of effective 

area to gross area is used to modify the normalized slenderness to account for the 

interaction between local and overall buckling as shown in Eq. (5). Furthermore, the ratio 
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of effective area to gross area is multiplied by the reduction factor to determine the final 

non-dimensional nominal strength as follows, 

( )cr                                     (2.4) 

                                      (2.5) 

where, ρ is the reduction factor for local buckling which can be performed as the ratio of 

effective area to the gross area, χ is the reduction factor for overall buckling, 𝜆̅  is a 

modified slenderness ratio. 

2.2.5 Comparison on overall and local buckling reduction factor among those codes 

To provide a definitive comparison among the four codes, the formulae are detailed 

in the subsequent sections for a column with welded square cross section. The non-

dimensional nominal strengths according to those formulae listed in those codes are 

plotted in Fig. 2.1 (a) to (d) with the horizontal and vertical axis set as the normalized 

slenderness and width-thickness ratios, respectively. The parameters λ and R are defined 

as follows, 

 

  1 y L

E r





                                 (2.6) 

2

2

12(1 ) yb
R

t Ek






                              (2.7) 

where, σy is the nominal yield stress, E is Young’s Modulus, L is the length of the column, 

r is the radius of gyration, b is the width of the plate, t is the thickness of the plate, ν is 

the Poisson’s ratio, and k is the buckling coefficient. 
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(a) Chinese code: JTG D64                    (b) Japanese code: JRA 

    
 (c) American code: AASHTO                 (d) European code: EC3 

Fig.2.1 Non-dimensional nominal strength based on the four codes 

 

As investigated in previous research, the initial deflections are unavoidable in 

practice and have significant effect on the ultimate strength of the structures. The initial 

deflections can be divided into two parts. One is the overall initial deflection along the 

columns length; the other is the local initial deflection on the plate. Referred to practice 

in different country, different initial deflections were considered in the strength formulae 

mentioned above. Among these codes, 1/1000 of the length is adopted as allowable 

overall initial deflection in JRA, JTG D64 and EC3, while 1/1500 of the length is adopted 

in AASHTO. The buckling curves for the box section columns, in which only overall 

buckling is considered, are compared in Fig. 2.2(a). It can be found that when the 

normalized slenderness ratio λ is lower than 0.2, the EC3 and JTG D64 provide the highest 

estimate of nominal strength. In the range of λ from 0.2 to 1.5, nominal strength calculated 

by AASHTO is slightly higher than other three codes. A possible reason is that the 
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allowable overall initial deflection is smaller than other codes. When λ≥1.0, the JRA 

give higher nominal strength than EC3 and JTG D64. 

To consider the influence of local buckling, the notion of effective width is adopted 

in the AASHTO, EC3 and JTG D64. The design formulae following AASHTO and EC3 

are developed based on Winter formula [78 ] and then slightly modified. Although in 

Winter formula, initial deflection and residual stress are considered, the detailed value is 

unknown. On the other hand, design following JTG D64 uses the Perry formula to 

calculate the local buckling reduction factor. In JRA, local buckling reduction factor is 

obtained based on the Euler curve and located at the conservative side of the experimental 

results. As for the local initial deflection in FE model, it is recommended as 1/200 of the 

plate width in JTG D64 and EC3, while 1/150 of plate width is allowed in JRA. In this 

part, the load buckling reduction factor is defined as the ratio of effective area to gross 

area for JTG D64, AASHTO and EC3. The local buckling reduction factor is plotted with 

normalized width-thickness ratio in Fig. 2.2(b). It can be observed the local buckling 

reduction factors following AASHTO and EC3 are approximately the same and higher 

than that following JRA and JTG D64. On the other hand, in the range of R from 0.4 to 

1.0, JRA provides higher value than JTG D64 while it will be contrary with R larger than 

1.0. 

 

    
(a) Overall buckling                          (b) Local buckling 

Fig. 2.2 Comparison among the four codes on reduction factor 
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2.2.6. Comparison of nominal strength among these codes 

The non-dimensional nominal strength calculated by the design codes are plotted 

with normalized slenderness and width-thickness ratios as shown in Fig. 2.3. It can be 

seen that in general, the nominal strength generally decreases with the increase of 

normalized slenderness ratio λ. When the R-value is at low level(i.e. 0.5≤R≤0.7), the 

nominal strengths following JRA, AASHTO and EC3 show good agreement with each 

other, while the calculation following JTG D64 provide lower results than others. The 

reason is that local buckling reduction is considered in JTG D64 when R-value exceeds 

0.4. With the increase of R-value, the nominal strengths calculated according to AASHTO, 

EC3 and JRA are different since the local buckling is taken into consideration. In the 

range of R-value from 0.9 to 1.5, for compression member with low or high λ-value (i.e. 

λ≤0.5 or λ>1.5), AASHTO gives nominal strength closed to that in EC3. This 

phenomenon is similar to that as shown in Fig.2.2 since the failure mode is controlled by 

local buckling in the low level of λ-value while overall buckling plays a more important 

role in the area of high λ-value. With respect to the area of medium λ-value (i.e. 

0.5<λ≤1.5), AASHTO provides the highest nominal strength. The results following EC3 

are lower than that of AASHTO while higher than JRA and JTG D64. When the R-value 

goes to exceed 1.5, AASHTO gives nominal strength closed to that in EC3. With R-value 

equal to 0.9, nominal strength following JRA is higher than that of JTG D64. As the R-

value exceeds 0.9, nominal strengths based on the two codes show agreement with each 

other. 

In addition, FE analysis concerning about the nominal strength for the steel 

compression member was conducted. The steel column with unstiffened box cross section 

was chosen as a target in FE model with 0.25 of yield stress for residual stress, 1/150 of 

plate width for local initial deflection and 1/1000 of column length for the overall initial 

deflection into consideration. The FE model building would be described in detail in 

Chapter 3. In this part, the FEA results were plotted and compared with formulae results 

as shown in Fig. 2.3. It can be seen that for the stage that local buckling is not supposed 

to occur (i.e. R=0.5), therefore, FEA results show good agreement with the formula results 

based on AASHTO, EC3 and JRA while higher than that of JTG D64. At the point of R-

value equal to 0.7, the formula results start to be different with the FEA results. For the λ 
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<1.0, design following AASHTO, EC3 and JRA provide higher nominal strength than the 

FEA results. In the range of R-value from 0.9 to 2.1 and λ-value from 0.2 to 2.1, the results 

calculated according to AASHTO and EC3 are higher than the FEA results. JRA and JTG 

D64, on the other hand, offer the lower strength than the FE analysis. In general, the 

results based on EC3 correspond better with the FEA results than others. 

 

    
(a) R=0.5                                (b) λ=0.1 

    
(c) R=0.7                                (d) λ=0.2 

    
(e) R=0.9                               (f) λ=0.5 
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(g) R=1.2                                (h) λ=1.0 

    
(i) R=1.5                                (j) λ=1.4 

    
(k) R=1.8                               (l) λ=1.8 

    
(m) R=2.1                        (n) λ=2.1 

Fig. 2.3 Comparison of the nominal strength among the codes 
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2.3 Outline of Partial Factors Design in these codes  

Design following the provisions by the partial factor design method satisfies the 

requirement when the design strength equals or exceeds the required strength based on 

the combination of actions. In addition, the resistance is scaled down while actions are 

scaled up against the uncertainties of material property, variable action, design error,  

construction errors and so on. The design shall be performed as: 

  
DS R                                    (2.8) 

where S is the required strength using the actions combination following the Partial Factor 

Design Method, RD is design strength. 

So far, the partial factor design method has been widely adopted in many national 

design codes to replace the allowable design method. However, the provisions for the 

partial factors differ greatly in different design codes. Therefore, four codes adopted the 

partial factor design method were listed and compared with each other to investigate their 

difference on partial factors. 

2.3.1 Design following the four codes  

In Chinese code JTG D64, the partial factor design method is provided for the steel 

bridge design. It should be mentioned that the partial factors follow the provisions of JTG 

D60: General Specifications for Design of Highway Bridges and Culverts [79] and the 

formula shall be performed as follows, 

0 1 1 1

1 2

( )
m n

K
Gi ik Q L k c Qj Lj jk

i j R

R
G Q Q      

 

                     (2.9) 

where, Gik is the characteristic value of permanent action, Q1k and Qjk are the 

characteristic values of primary variable action and subsidiary variable action, 

respectively; γ0 is the structural importance factor, γGi is the permanent action partial 

factor, γQ1 and γQj are the primary and subsidiary variable action partial factor, 

respectively; γL1 and γLj are the primary and subsidiary action modifying coefficient 

according to design working life, respectively; ψc is the combination factor for variable 

action, Rk is the nominal strength of structural resistance, γR is the resistance partial factor. 

In JRA, design for limit state condition 3 shall be performed as follows, 
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1 2( )i pi qi i RU US P R                             (2.10) 

where, Si is the required strength based on the combination of the actions, RU is the 

nominal strength of structural resistance, respectively; γpi is the action combination factor, 

γqi is the action partial factor, Pi is the characteristic value of action, ξ1 is the investigation 

and analysis factor, ξ2 is the member and structure partial factor, ΦRU is the resistance 

factor. 

In AASHTO, design shall be performed as follows, 

i i i nQ R                               (2.11) 

where, ηi is the load modifier equal to 1.0 for conventional design, γi is the action partial 

factor, Qi is the characteristic value of action, Φ is the resistance factor, Rn is the nominal 

strength of structural resistance. 

In EC3, the design shall be performed as follows, 

2

n
K

G k Q k Qi i ki

i M

R
G Q Q   



                       (2.12) 

where, Gk is the characteristic value of permanent action, Qk and Qki are the characteristic 

value of primary variable action and subsidiary variable action, respectively; Rk is the 

nominal strength of structural resistance, γG is the permanent action partial factor, γQ and 

γQi are the primary variable action partial factor and subsidiary variable action partial 

factor, respectively; ψi is the combined factor for variable action, γM is the resistance 

partial factor.  

2.3.2 Comparison of safety factors  

Considering that the design theory and the formula format in the codes are similar, 

the load and resistance partial factors can be formulated as a unified format, which is 

similar to the allowable stress design method. In this study, the combination of a 

permanent action and the primary variable action (i.e. dead load and live load) is 

considered for simplicity. Therefore, the safety factor K can be formulated as follows, 

0 0( ) ( )
1

SD D L
D L D

D S

R
S D L D L R

  
   

 


     


             (2.13) 
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                                  (2.14) 

0
1

D D L
S

D

K
  

 



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
                            (2.15) 

where, D is the dead load, L is the live load, ρD is the ratio of live load to dead load, RS is 

nominal strength, γS is the resistance partial factor, RS/γS is the design strength, RS/K is the 

allowable strength. 

It should be mentioned that RS is the unified symbol concerning about the nominal 

strength which is performed as Rk, RU and Rn in Eqs. (2.9)-(2.12). In addition, non-

dimensional nominal strength 𝜎𝑐𝑟 can be obtained through the RS-value normalized by 

the gross area compressive strength (i.e. fyA). γS is unified symbol concerning about the 

resistance factor which is performed as γR, 1/ξ1ξ2ΦRU, 1/Φ and γM in Eqs. (2.9)-(2.12). 

The partial factors in the codes are listed in Table.2.1. In addition, two structural 

importance factors (i.e. 1.1 and 1.0), which considered for two design levels according to 

the severe extent if the bridge is damaged, are introduced to the calculation of safety 

factors. They are safety level I (abbreviate as JTG D64 I) and safety level II (abbreviate 

as JTG D64 II) correspond to very severe extent and relatively severe extent. 

 

Table.2.1 The partial factors in the four codes 

 Partial factors 

Country γ0 γD γL γs 

JRA 1.0 1.05 1.25 1.307 

AASHTO 1.0 1.25 1.75 1.053 

EC3 1.0 1.05 1.35 1.1 

JTG D64 I 1.1 1.2 1.4 1. 25 

JTG D64 II 1.0 1.2 1.4 1. 25 

 

To make a definitive comparison on the safety factors, an appropriate range of ratio 

of live load to dead load ρD should be considered. Hansell and Viest [80] reported that the 

ρD is a function of dynamic load allowance IM and bridge span length, and proposed the 

following equation for the estimation of ρD: 
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1

0.0433(1 )
D

IM L
 


                           (2.16) 

where IM is the dynamic load allowance equal to 0.33 in AASHTO, L is the bridge span. 

Considering the bridge with the span larger than 5m, 𝜌𝐷 would be less than 3.47. 

Therefore, the ratios of live to dead load ρD ranging from 0.1 to 3.5 were considered for 

safety factors and their influence is illustrated in Fig.2.4. It can be seen that the safety 

factor increases as the ρD-value increases from 0.1 to 3.5 for all codes. The increasing 

tendency is approximately the same among JTG D64, JRA and EC3. Moreover, The JTG 

D64 I provides the highest safety factors than others, and then is JTG D64 II and JRA in 

the order, while the EC3 offers lowest safety factors than other codes. Safety factors 

following AASHTO increase more quickly along with the increase of ρD-value than other 

codes. With ρD-value less than 0.25, safety factors according to AASHTO is lower than 

JRA. In the range from 0.25 to 2.0, safety factor following AASHTO locates between 

JTG D64 II and JRA. When the ρD-value exceeds 2.0, safety factor according to AASHTO 

is higher than that of JTG D64 II while lower than JTG D64 I. 

 

 

Fig. 2.4 Comparison of safety factors 

2.4 Comparison of nominal strength combined with partial factors 

2.4.1 Comparison of design strength 

Design strength following the design codes is defined as the nominal strength 

divided by the resistance factor, which the value is larger than 1.0 as listed in Table. 2.1. 
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Among those codes, JRA offers the highest resistance factor, and then is JTG D64 and 

EC3 in the order, while AASHTO gives a lower value than other codes. The design 

strength is plotted with λ-value and R-value as shown in Fig. 2.5. When the resistance 

factor is considered, the decreasing tendency of design strength related to the increase of 

λ-value and R-value is similar to that of nominal strength as shown in Fig. 2.3. The 

difference occurs on the value of design strength. The figures show that in the whole range 

of λ-value (0.1 to 2.1) and R-value (0.5 to 2.1) considered in this research, generally, the 

AASHTO provides the higher design strength than that calculated according to EC3. In 

addition, the difference on design strength following AASHTO and EC3 becomes more 

obvious than that in nominal strength. JRA and JTG D64 offer conservative results than 

AASHTO and EC3. In the range of R≤ 0.9, JRA provides higher design strength than JTG 

D64. When the R-value equal or exceeds 1.2, with λ≤1.0 JTG D64 gives higher design 

strength than JRA. In the range of λ>1.0, design strengths following JRA and JTG D64 

show good agreement with each other. 

 

    
(a) R=0.5                                 (b) λ=0.1 

    
(c) R=0.7                                (d) λ=0.2 
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(e) R=0.9                                 (f) λ=0.5 

     
(g) R=1.2                                 (h) λ=1.0 

     
(i) R=1.5                                  (j) λ=1.4 

    
(k) R=1.8                                (l) λ=1.8 
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(m) R=2.1                                 (n) λ=2.1 

Fig. 2.5 Comparison of the design strength in the codes 

2.4.2 Comparison of allowable strength 

To provide a definitive comparison among these codes, the format in the Partial 

Factor Design Method has been transformed into that in Allowable Strength Design 

Method as shown in Eqs. 2.13-2.15. Allowable strength in this study is defined as the 

nominal strength divided by the safety factor performed as Eq. 2.15. The ratios of live to 

dead load ρD equal to 0.3 and 1.2 are considered in this part. According to Eq. 2.16, ρD-

values of 0.3 and 1.2 correspond to the span lengths of near 60m and 15m, respectively, 

which is frequently used. The safety factors K0.3 and K1.2 are listed in Table. 2.2. 

 

Table. 2.2 The safety factors in the four codes 

 Country 

ρD  JRA AASHTO EC3 JTG D64 I JTG D64 II 

0.3 1.433  1.437  1.231  1.713  1.558  

1.2 1.515  1.603  1.335  1.800  1.636  

 

The allowable strength under safety factor K0.3 is plotted in Fig. 2.6. It can be seen 

that the decreasing tendency of allowable strength related to the increase of λ-value and 

R-value is similar to that of nominal strength as shown in Fig. 2.3. The difference occurs 

on the value of allowable strength among four codes. In the range of λ-value less than 1.0, 

EC3 provides the highest allowable strength than others due to the lower safety factor 

value while JTG D64 gives a higher safety factor resulting conservative allowable 

strength. In the range of R≤0.9, allowable strengths following AASHTO and JRA locate 



31 
 

between EC3 and JTG D64. In addition, AASHTO and JRA offer closed allowable 

strength with R≤0.7, while in the range of R≥0.9 JRA gives a lower allowable strength 

than AASHTO due to high local buckling reduction considered in JRA. With respect to 

the area of R≥1.2, allowable strengths following JRA and JTG D64 show good agreement 

with each other. 

When the λ-value goes to exceed 1.0, in the range of R≤1.5, closed allowable strength 

can be obtained from EC3 and AASHTO. In the range of R>1.5, however, EC3 gives 

slightly higher allowable strength than that of AASHTO. On the other hand, allowable 

strength following JRA is approximately equal to that of AASHTO and EC3 with R≤0.7 

and lower than the two codes with R>0.7. When R-value goes to exceed 1.2, JRA offers 

allowable strength closed to JTG D64, which is conservative in the four codes. 

 

    
(a) R=0.5                              (b) λ=0.1 

    
(c) R=0.7                              (d) λ=0.2 
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(e) R=0.9                              (f) λ=0.5 

    
(g) R=1.2                              (h) λ=1.0 

    
(i) R=1.5                               (j) λ=1.4 

    
(k) R=1.8                              (l) λ=1.8 
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(m) R=2.1                             (n) λ=2.1 

Fig. 2.6 Comparison among codes on the nominal strength combined with safety factor K0.3 

 

The allowable strength with safety factors K1.2 is shown in Fig. 2.7, respectively. 

Generally, when the increasing safety factors are considered, the allowable strength 

continue to decrease than that under K0.3. The tendencies of comparison among the four 

codes are similar with each other. 

 

    
(a) R=0.5                              (b) λ=0.1 

    
(c) R=0.7                              (d) λ=0.2 
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(e) R=0.9                              (f) λ=0.5 

    
(g) R=1.2                              (h) λ=1.0 

    
(i) R=1.5                               (j) λ=1.4 

    
(k) R=1.8                              (l) λ=1.8 
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(m) R=2.1                             (n) λ=2.1 

Fig. 2.7 Comparison among codes on the nominal strength combined with safety factor K1.2 

2.5 Summary 

In this chapter, the provision for the stability of steel compression member in the 

four codes adopting the Partial Factor Design Method are investigated. To provide a 

definitive comparison, the formulae are detailed into the case of the column with an 

unstiffened welded square box-section. The nominal strength of this structure based on 

the design codes is calculated and compared with the FEA results. The design strengths 

and safety factors among the four codes are discussed. Further, the allowable strength is 

compared to investigate the difference among those codes. The main conclusions can be 

summarized as follows. 

(1) In the range of 0.5≤R ≤ 0.7, closed nominal strengths can be obtained from 

AASHTO, EC3 and JRA, while JTG D64 gives a lower nominal strength due to local 

buckling reduction considered from R >0.4. 

(2) When the local buckling reduction is considered (i.e. R ≥ 0.9), the nominal 

strength following AASHTO is higher than that of EC3, while the results in JRA and JTG 

D64 are on the conservative side of EC3. In addition, the results following EC3 

correspond with the FEA results better than others. 

(3) Safety factor increases along with the increase of ρD-value. JTG D64 I provides 

the highest safety factors, and then is JTG D64 II and JRA in the order, while EC3 offers 

lowest safety factors.  

(4) In the case of ρD-value less than 0.25, safety factors based on AASHTO is smaller 

than JRA. In the range from 0.25 to 2.0, safety factor following AASHTO locates between 

JTG D64 II and JRA. When the ρD-value exceeds 2.0, AASHTO gives higher safety 
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factors than JTG D64 II. 

(5) Design strength following AASHTO is highest, and then is that of EC3 in the 

order, while JRA and JTG D64 offer conservative results.  

(6) Allowable strength following EC3 is higher than that in AASHTO in major part 

due to lower safety factor considered in EC3, while high safety factor in JTG D64 results 

in further conservative allowable strength than other codes.  

(7) Considering ρD of 0.3 and 1.2, it does not change the comparison tendency of 

allowable strength among the four codes. 
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Compression 
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3.1 Introduction  

Although many researchers have conducted experimental and numerical analysis on 

the load-bearing capacity of steel compression members, the quantitative influence of 

local and overall initial deflections on load-bearing capacity is still not clear. To reveal 

the quantitative influence, a large amount of FE models needs to be carried out. Therefore, 

FE model, in which the residual stress and initial deflections is considered, to replicate 

accurate load-bearing capacity of the structure similar to that in experiment need to be 

developed. 

In this chapter, previous experiments relating to the load-bearing capacity of the 

unstiffened box section columns were collected. The general-purpose FEA software 

MSC.Marc [81] was applied to the numerical analyses with the measured residual stress 

and initial deflections into consideration. The validation of the developed FE model was 

verified by comparison between FEA and experimental results. Therefore, the developed 

FE model will be used for further parametrical analysis. 

3.2 Previous experiments 

Many researches focus on the load-bearing capacity of unstiffened box section 

columns under axial compression have been conducted. Part of the experimental columns 

were collected in this part. Degée et al. conducted the experiments of six columns (S-

series) [63]. Two specimens (W-series) were tested by Pavlovčič et al. [82]. Somodi and 

Kövesdi [59] also carried out twelve column tests; ten of them (W3-series) were 

introduced in this paper except two columns due to unknown residual stress value. All of 

the above-mentioned specimens were made of S355 steel. To further cover wider ranges 

of width-thickness and slenderness ratios, eight specimens (R-series) made of HT80 steel 

having high width-thickness and slenderness ratios tested by Usami [57] were also 

considered in FE model validation. Cross-section is presented in Fig. 3.1 and dimensions 

of all specimens are listed in Table. 3.1. Two specimens were prepared for each dimension 

except Pavlovčič’s test. It should be noted that in Somodi’s test, plate thickness of some 

A-specimen is a little different from B-specimen, the upper value is for the A-specimen 

and the other is for the B-specimen. 

 

https://www.sciencedirect.com/science/article/pii/S0965997811001566#!
https://www.sciencedirect.com/science/article/pii/S0965997811001566#!
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Fig. 3.1 Test specimens 

 

Table. 3.1 Dimensions of experimental specimens 

Specimen 
B 

(mm) 

D 

(mm) 

t 

(mm) 

L 

(mm) 

LB 

(mm)  

𝜎𝑦 

(MPa) 

E 

(GPa) 
λ R 

S1a/b  282 230 6 2200 2500 390 187 0.35 0.9 

S2a/b  282 230 6 3700 4000 0.55 0.9 

S3a/b  282 230 6 4900 5200 0.72 0.9 

W-S 200 152 4 3650 4000 373.4 205 0.82 0.95 

W-L 200 152 4 4850 5200 1.07 0.95 

W3-120-6-

1800A/B 
120 120 6.2 1800 1940 411 

210 

0.60 0.43 

W3-120-6-2500 

A/B 
120 120 

6.2 

/6.1 
2500 2640 411 0.80 

0.43 

/0.44 

W3-120-6-2800 

A/B  
120 120 6.3 2800 2940 411 0.90 0.42 

W3-150-6-2800 

A/B 
150 150 6.1 2800 2940 393 0.70 0.55 

W3-80-5-2000 

A/B 
80 80 

5.1 

/5.3 
2000 2140 415 0.99 

0.34 

/0.33 

R-50-22 151 94.2 6 2090 - 741 215 0.91 0.69 

D

B

t

Endplate

C
o
lu

m
n
 l

en
g
th

 L

D

B

t

Ref.9)

Ref.7) 10) 21)
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R-50-27 181 116 6 2570 0.93 0.84 

R-50-33 217 144 6 3140 0.92 1.03 

R-50-38 247 166 6 3610 0.92 1.18 

R-50-44 283 193 6 4180 0.93 1.36 

R-65-22 151 94.4 6 2720 1.19 0.68 

R-65-27 181 116 6 3340 1.20 0.84 

R-65-33 217 143 6 4080 1.20 1.03 

 

The initial deflection was measured prior to the experiment as listed in Table.2. The 

maximum measured local initial deflection on the plate was b/250 in Degée’s test, b/520 

in Pavlovčič’s test while local initial deflection was not measured for W3-series and R-

series specimens. The overall initial deflection for W3-series specimens listed in Table. 

3.2 is the sum of out-of-straightness deflection and load eccentricity. The columns were 

tested under the pin-ended condition which can rotate only around one axis. 

 

Table. 3.2 Measured initial deflections 

Specimen wl0 wg0  Specimen wl0 wg0 

S1a  b/250 L/2800  R-50-22 - L/2538 

S1b  L/2500  R-50-27 L/1938  

S2a L/4000  R-50-33 L/20833 

S2b L/4000  R-50-38 L/4081  

S3a L/4350  R-50-44 L/7246  

S3b L/3700  R-65-22 L/4132  

W-S b/520 L/1825  R-65-27 L/2604 

W-L L/1426  R-65-33 L/8928 

W3-120-6-1800A - L/534  W3-120-6-2800B - L/387 

W3-120-6-1800B L/416  W3-150-6-2800A L/733 

W3-120-6-2500A L/1068  W3-150-6-2800B L/475 

W3-120-6-2500B L/1740  W3-80-5-2000A L/1159 

W3-120-6-2800A L/491  W3-80-5-2000B L/721 

Where wg0 and wl0 are the amplitudes of overall and local initial deflections, respectively. 

https://www.sciencedirect.com/science/article/pii/S0965997811001566#!
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3.3 Validation of FE modelling 

3.2.1 FE modelling 

The general-purpose FEA software MSC.Marc was applied to the numerical 

analyses of load-bearing capacity of unstiffened box section columns. There are so many 

element type in Marc. Different elements possess different stiffness matrix. With 

reasonable element type accurate simulation can be carried out. Under numerical analysis, 

geometry and material nonlinear need to be considered. Meanwhile initial deflection and 

residual stress should be considered. Given by different slenderness and thickness, the 

interaction between local and global buckling will occur in some specimens. And the use 

of post buckling strength needs to be considered. Therefore, thick shell element (No.75) 

was used in the model. Since the meshing size and the shape of the elements have an 

influence on the accuracy of the calculation [83], the shape of the elements was made to 

be as square as possible and meshing size was made to be small enough. Moreover, 

considering the convenience of residual stress setting, plates were divided into twenty 

elements for parametric analysis as shown in Fig. 3.2 (a). The von Mises yield criterion 

was adopted in the analysis. Bilinear model with strain hardening coefficient of E/100 

was used to describe the material property of S355, and trilinear model based on measured 

material property was used for R-series specimens. The Poisson ratio was set to 0.3 and 

0.24 for S355 and H80, respectively. 

In order to set the boundary conditions, two nodes were set at the midpoint of the 

top and bottom cross-sections. The central node was set as the main node and the other 

nodes in the cross-section as subordinate nodes. Then the “RBE2” function was used to 

connect the central node (master node) with the whole nodes at the cross-section (slave 

nodes). The RBE2 function can make a rigid link between the master node and a list of 

slave nodes. The nodes were located away from the column in order to take the dimension 

of the test equipment into consideration as shown in Fig. 3.2 (b). Considering that the 

columns were tested with pin-ended supports around the weak axis “y”, the rotation Y 

was free at both top and the bottom node as shown in Table. 3.3. At the top node, 

displacement Z was set free so that the displacement loading can be applied to the top 

main node. 
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(a) Meshing profile 

 
(b) Geometry and boundary condition of specimen 

Fig. 3.2 FE model 

 

Table. 3.3 Boundary conditions 

DOF TX TY TZ RX RY RZ 

Mov Fix Fix Free Fix Free Fix 

Fix Fix Fix Fix Fix Free Fix 

 

Residual stress is also one of the most important factors to the stability behavior of 

compression members. It was assumed to exist in every plate with compression in the 

middle area and tension at both sides of the plate as shown in Fig. 3.3 to be in self-

equilibrium condition.  
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Fig. 3.3 Distribution of residual stress in the cross-section 

 

Values of tensile and compressive residual stresses for each specimen were set as 

listed in Table. 3.4. Since less of conclusive residual stress value in Degée’s research, a 

calibrated distribution (i.e. Model 6 in [10]), which resulted in the closest load-bearing 

capacity to experimental results, was used for specimens S1, S2 and S3. For the specimens 

tested by Somodi [9] (W3 series), the tensile and compressive residual stresses were 

determined referring to the values measured for specimens with the same cross section 

by Somodi [ 84 ]. For W-series specimens, measured compressive residual stress of 

130MPa (0.35σy) and 160MPa (0.43σy) for flange and web, respectively, were used. For 

R-series specimens, based on measurement, 0.6 and 0.1 of yield strength was arranged 

for tensile and compressive residual stress, respectively. Although it is known that 

residual stresses are b/t ratio dependent values, one residual stress distribution is assumed 

in the parametric analysis in order to independently evaluate the influence of initial 

deflections on load-bearing capacity. Referring to Fukumoto’s statistics [85], assumed 

compressive stress was set to 0.25σy, which is the average value of 216 cases.  

 

 

 

 

 

 

σrc

σrt σrt

σrt σrt

σrc
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Table. 3.4 Residual stress used in FE model validation 

Specimen rt /y rc /y  Specimen rt /y rc /y 

S1a  0.6 0.04  R-50-22 0.6 0.1 

S1b   R-50-27 

S2a  R-50-33 

S2b  R-50-38 

S3a  R-50-44 

S3b  R-65-22 

W-S 1.0 0.35  R-65-27 

W-L 1.0 0.43  R-65-33 

W3-120-6-1800A 1.0 0.27  W3-120-6-2800B 1.0 0.27 

W3-120-6-1800B  W3-150-6-2800A 0.38 

W3-120-6-2500A  W3-150-6-2800B 

W3-120-6-2500B  W3-80-5-2000A 0.45 

W3-120-6-2800A  W3-80-5-2000B 

 

With respect to initial deflections, local and overall initial deflections were 

separately replicated. Images of overall along with the column length and local initial 

deflection on the plate are shown in Fig. 3.4 and Fig. 3.5, respectively.  

 

 

Fig. 3.4 Overall initial deflection shape 

wg0
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(a) Along plate width           (b) On cross section 

Fig. 3.5 Local initial deflection shape 

 

When it goes to input the initial deflections into the model, the double trigonometric 

function shown in Eq. 3.1 was assumed for the local initial deflection. The number of 

half-wave m were determined by the aspect ratio of the plate to give the minimum 

buckling strength according to the elastic buckling theory. Schematic illustration of initial 

deflections in the case of the specimen with m=3 is shown in Fig. 3.6 as an example. Half-

sinusoidal wave shape expressed by Eq. 3.2 was assumed for the overall initial deflection. 

The measured amplitude of the initial deflections is used for the FE modelling. For W3-

series and R-series specimens, the local initial deflection was assumed to be b/200 

according to EC3 since it had not been measured. 

0
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where wg0 is the amplitude of overall initial deflection; wl0 is the amplitude of local initial 

deflection; m is the number of half-sinusoidal wave giving the minimum buckling 

strength determined by the aspect ratio of the plate. 
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(a) Local initial deflection on one plate (m=3 as an example) 

 

(b) Local initial deflection for half sin-wave 

Fig. 3.6 Local initial deflection shape 

 

For specimen with big width-thickness ratio, local buckling will appear under axial 

compression. When the specimen is locally buckled, it still possesses bearing capacity. 

The post buckle strength need to be considered. In elastic stage, stress versus strain is 

linear. Both load loading and displacement loading can be used. However, in plastic stage, 

few load increment may result in big displacement. In order to get accurate result, 

displacement loading is exerted to solve the problem in this model.  

For the solution of equilibrium equation, incremental-interactive method is usually 

used to get accurate displacement increment. The arch length method which arch length 

serves as increment and interaction will reach convergence along the arch length can lead 

to more accurate solution. Fig. 3.7 shows how arch length method works [86]. So arch 

length method is chosen in stepping procedure. Then initial fraction is set small enough 

to prevent from overlarge convergence ratio at the first loading step. And in nonlinear 

b

wl0

L
/m

y

x

z
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procedure, large strain function is on. 

 

 

Fig. 3.7 Arch length method 

3.2.2 Validation of the modelling 

All the 26 columns listed in Table. 3.1 were modeled, and their ultimate strengths 

were obtained. The comparison between experiment and FEA results is shown in Fig. 3.8 

and Table. 3.5. It can be seen that most of the FEA results for Degée’s test (S-series) were 

a little lower than experimental results. The possible reason is that local initial deflection 

used in FE models is the measured maximum, which is greater than the real value for 

most of the specimens. For Pavlovčič test (W-series), the FEA results shows good 

agreement with test results. For Smodi’s test (W3-series), numerical analysis provides 

good prediction on load-bearing capacity with a little larger deviation than that of 

Pavlovčič test. It can be observed that the difference between FEA and test results of W3-

80-5-2000A reached up to 11.89% while difference on W3-80-5-2000B was small. 

Possible reason is that the same residual stresses and assumed local initial deflection were 

introduced for these two specimens, while their values may be different in tested 

specimens which resulted in 15.6% difference on load-bearing capacity (0.74 and 0.64) 

between them. For R-series specimens with high width-thickness ratios, it can be 

observed that FE results are slightly lower than test results due to the relatively large local 

initial deflection assumed. The average and standard deviation of errors for all specimens 

are 2.50% and 4.07%, respectively. Based on the above discussion, it was concluded that 

the model could be used in the following parametric analysis with sufficient accuracy. 

F

F1

F2

F3

r1

r2

r3

r1-reference arch length radius

r2,r3-subsequent arch length radius

F1,F2,F3-convenged result

https://www.sciencedirect.com/science/article/pii/S0965997811001566#!
https://www.sciencedirect.com/science/article/pii/S0965997811001566#!
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Fig. 3.8 Comparison of load-bearing capacity between experimental and FEA results 

Table. 3.5 load-bearing capacity obtained by the experimental and FEA results 

Specimen σT/σy σFEA/σy Errors(%)  Specimen σT/σy σFEA/σy Errors(%) 

S1a  0.857 0.850  -0.82  R-50-22 0.743 0.711  -4.31  

S1b  0.893 0.849  -4.93  R-50-27 0.731 0.707  -3.28  

S2a 0.862 0.842  -2.32  R-50-33 0.709 0.675  -4.80  

S2b 0.861 0.842  -2.21  R-50-38 0.639 0.609  -4.69  

S3a 0.882 0.829  -6.01  R-50-44 0.579 0.552  -4.66  

S3b 0.853 0.827  -3.05  R-65-22 0.593 0.622  4.89  

W-S 0.671 0.689  2.68  R-65-27 0.637 0.605  -5.02  

W-L 0.536 0.530  -1.12  R-65-33 0.585 0.552  -5.64  

W3-120-6-

1800A 

0.86  0.839  -2.44   W3-120-6-

2800B 

0.639 0.609  -4.69  

W3-120-6-

1800B 

0.87  0.824  -5.29   W3-150-6-

2800A 

0.579 0.552  -4.66  

W3-120-6-

2500A 

0.73 0.762  4.38   W3-150-6-

2800B 

0.593 0.622  4.89  

W3-120-6-

2500B 

0.84 0.785  -6.55   W3-80-5-

2000A 

0.637 0.605  -5.02  

W3-120-6-

2800A 

0.63 0.659  4.60  W3-80-5-

2000B 

0.585 0.552  -5.64  

Average Errors(%) -2.50 

Standard DEV(%) 4.07 
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3.4 Summary 

In this chapter, a precise FE model to replicate the load-bearing capacity of unstiffened box 

section columns with a wide range of normalized slenderness and width-thickness ratios into 

consideration was developed. Its accuracy was proved by comparing with the experimental results. 

The main conclusions can be summarized as follows. 

(1) Reasonable postbuckled results can be obtained by means of arc length method. 

(2) Reasonbale element type, intensive meshing size as well as inputing measured residual 

stress and initial deflection will results in accurate prediction on the load-bearing capacity of 

unstiffened box section columns.  
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CHAPTER 4 

 

 

 

 

 

 

 

Formulation of the quantitative influence of local and overall 

initial deflections on load-bearing capacity of unstiffened 

welded square box section columns under axial compression 
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4.1 Introduction 

Through many researches including experimental and numerical analysis on the 

load-bearing capacity of unstiffened box section columns done before, it is well known 

that initial deflection will significantly decrease the load-bearing capacity of this kind of 

structures. However, the quantitative influence of initial deflections is still not clear. 

So far, amplitude of initial deflections have been taken as determined value in 

various design codes. For example, overall initial deflection is taken as 1/1000 of column 

length in Japanese code Specifications for Highway Bridges, Part II Steel Bridges and 

Members while 1/150 of plate width is adopted for local initial deflection. However, 

amplitude of initial deflections could differ greatly due to different manufacturing and 

assembling method. Therefore, parametrical formulae, which targets on estimating the 

quantitative influence of initial deflections on load-bearing capacity for unstiffened box 

section columns, are worth investigating.  

In this chapter, unstiffened welded square box section columns with S355 steel under 

axial compression were chosen as a target. Nonlinear finite element models were 

developed to analyze their load-bearing capacity. A variety of the normalized width-

thickness and slenderness ratios were considered to cover the possible diverse range of 

columns. Various combinations of amplitude of the local and overall initial deflections 

were prepared for FE models. Based on the results of parametric analyses, initial 

deflection influence coefficient is proposed as a function of the initial deflections and the 

normalized width-thickness and slenderness ratios to describe the quantitative influence 

caused by the different local and overall initial deflections on the load-bearing capacity. 

4.2 FE model for parametrical analysis 

4.2.1 Geometric parameters 

The basic FE modeling procedure was similar to the description in Chapter 3. In 

parametrical analysis, square cross section of 500x500mm was prepared for FE model as 

shown in Fig. 4.1. Seven different normalized slenderness and six width-thickness ratios 

are adopted with the range from 0.3 to 1.8 and from 0.3 to 1.5, respectively, to cover a 

main part of the practice. The dimension of FE models, the normalized slenderness ratio 

λ and normalized width-thickness ratio R are listed in Table 4.1. The 42 combinations of 
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slenderness and width-thickness ratios were listed in Table. 4.2. 

 

 

Fig. 4.1 Cross section for FE model 

 

Table 4.1 Variable main properties of the numerical model 

Parameter Range of variable 

Dimension of cross-section 500 × 500 mm 

Normalized slenderness ratio λ 0.3, 0.5, 0.7, 1.0, 1.4, 1.6, 1.8 

Normalized width-thickness ratio R 0.3, 0.5, 0.7, 0.9, 1.2, 1.5 

Length of the column L 4572-27432 mm 

Thickness of plate t 7.39-36.93 mm 

 

Table 4.2 Combination of normalized slenderness and width-thickness ratios 

R λ 

0.3 0.5 0.7 1.0 1.4 1.6 1.8 

0.3 R03λ03 R03λ05 R03λ07 R03λ10 R03λ14 R03λ16 R03λ18 

0.5 R05λ03 R05λ05 R05λ07 R05λ10 R05λ14 R05λ16 R05λ18 

0.7 R07λ03 R07λ05 R07λ07 R07λ10 R07λ14 R07λ16 R07λ18 

0.9 R09λ03 R09λ05 R09λ07 R09λ10 R09λ14 R09λ16 R09λ18 

1.2 R12λ03 R12λ05 R12λ07 R12λ10 R12λ14 R12λ16 R12λ18 

1.5 R15λ03 R15λ05 R15λ07 R15λ10 R15λ14 R15λ16 R15λ18 

 

4.2.2 Residual stress and initial deflections 

It should be mentioned that to independently investigate the influence caused by 

local and overall initial deflections, compressive residual stress is taken as a determined 

value of 0.25 yield stress, which is a the average value referring to Fukumoto’s statistics 

t
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[85] relating to residual stress about 216 cases. The tensile residua stress, on the other 

hand, was taken equal to yield stress. The residual stress distribution input in every plate 

assumed for FE model in parametric analysis is shown in Fig. 4.2. 

 

 

Fig. 4.2 Distribution of residual stress in every plate 

 

To evaluate the quantitative influence of the initial deflections on the load-bearing 

capacity, various combinations of local and overall initial deflections were prepared for 

the parametrical analysis. Amplitudes of b/75, b/150 and b/450 were taken as local initial 

deflection, while amplitudes of L/500, L /1000 and L/3000 were set for overall initial 

deflection, in which nine combinations of initial deflections as shown in Table. 4.3 result 

in 378 FE models for parametrical analysis. It should be mentioned that the Com5 

corresponds to the combination of the allowable initial deflections in the Japanese 

specification.  

 

Table. 4.3 Combinations of amplitude of initial deflections 

 Com1 Com2 Com3 Com4 Com5 Com6 Com7 Com8 Com9 

Local b/75 b/75 b/75 b/150 b/150 b/150 b/450 b/450 b/450 

Overall  L/500 L/1000 L/3000 L/500 L/1000 L/3000 L/500 L/1000 L/3000 
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4.3 Parametrical analysis results and discussion 

4.3.1 Influence of local initial deflection 

Results of models with the normalized width-thickness ratio R from 0.3 to 1.5 and 

constant normalized slenderness ratio λ of 1.0 are set as examples to show the influence 

of the local initial deflection. The comparison of load-bearing capacities for different local 

initial deflection are shown in Fig. 4.3. In the range of R0.5, the reduction on load-

bearing capacity caused by increasing local initial deflection is less than 5%. In the range 

of R from 0.7 to 1.5, it reaches up to 19.2% at most with the increase of the amplitude of 

local initial deflection from b/450 to b/75.  

 

 

Fig. 4.3 Influence of local initial deflection on load-bearing capacity 

 

In this study, initial deflection influence coefficient (IDIC) is introduced to describe 

the quantitative influence of the initial deflections and defined as a ratio of the load-

bearing capacity of a model with each Com-i to that of the Com-5. The calculation of 

IDICFEA based on FEA results can be performed as follows. 

,
FEA

, 5

IDIC
u Com i

u Com

F

F





                              (4.1) 

where the Fu is the load-bearing capacity of the specimen. 
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Relationship between the IDIC and the amplitude of the local initial deflection 

normalized by the standard amplitude i.e. b/150 is shown in Fig. 4.4 - 4.10. It can be seen 

that IDIC decreases approximately linearly as the amplitude of local initial deflection 

increases. The decreasing slope is nearly the same for different amplitudes of the overall 

initial deflection. Therefore, linear regression analysis is conducted on the data when the 

amplitude of the overall initial deflection is L/1000.  

 

    
(a) R03λ03                             (b) R05λ03 

     
(c) R07λ03                            (d) R09λ03 

     
(e) R12λ03                            (f) R15λ03 

  

Fig. 4.4 Initial deflection influence coefficient (IDICs) versus normalized local initial deflection 
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(a) R03λ05                             (b) R05λ05 

     
(c) R07λ05                            (d) R09λ05 

     
(e) R12λ05                            (f) R15λ05 

  

Fig. 4.5 Initial deflection influence coefficient (IDICs) versus normalized local initial deflection 
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(a) R03λ07                             (b) R05λ06 

     
(c) R07λ07                            (d) R09λ07 

     
(e) R12λ07                             (f) R15λ07 

  

Fig. 4.6 Initial deflection influence coefficient (IDICs) versus normalized local initial deflection 
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(a) R03λ10                             (b) R05λ10 

     
(c) R07λ10                            (d) R09λ10 

     
(e) R12λ10                            (f) R15λ10 

  

Fig. 4.7 Initial deflection influence coefficient (IDICs) versus normalized local initial deflection 
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(a) R03λ14                            (b) R05λ14 

     
(c) R07λ14                            (d) R09λ14 

     
(e) R12λ14                            (f) R15λ14 

  

Fig. 4.8 Initial deflection influence coefficient (IDICs) versus normalized local initial deflection 
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(a) R03λ16                            (b) R05λ16 

     
(c) R07λ16                            (d) R09λ16 

     
(e) R12λ16                            (f) R15λ16 

  

Fig. 4.9 Initial deflection influence coefficient (IDICs) versus normalized local initial deflection 

 

 

 

 



62 
 

    
(a) R03λ18                            (b) R05λ18 

     
(c) R07λ18                             (d) R09λ18 

     
(e) R12λ18                             (f) R15λ18 

  

Fig. 4.10 Initial deflection influence coefficient (IDICs) versus normalized local initial deflection 

 

The decreasing slope α is related to normalized width-thickness ratios as shown in 

Fig. 4.11, in which seven series of data with different normalized slenderness ratios are 

plotted. It can be seen that the decreasing slope increases first and then decreases with the 

increase of the normalized width-thickness ratio. Since the decreasing slope represents 

the reduction of load-bearing capacity by local initial deflection, the peak points show the 

width-thickness ratio where the reduction reaches the maximum. In addition, the peak 
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point of the decreasing slope α tends to move to larger width-thickness ratio with the 

increase of normalized slenderness ratios. When the normalized width-thickness ratio R 

is small (i.e., R0.5), the influence of the local initial deflection seems to be slight. In the 

range of R from 0.7 to 1.5, column strength becomes comparatively sensitive to the local 

initial deflection. When normalized slenderness ratio λ is small (i.e., λ0.5), the influence 

reaches the maximum with the decreasing slope about 0.1 at R=0.7. It corresponds to the 

17.2% decrease of the load-bearing capacity. When λ is large (i.e., λ1.0), the load-

bearing capacity of columns with higher R-value becomes sensitive to the local initial 

deflection. With R and λ equal to 1.2 and 1.8, respectively, the influence of local initial 

deflection reaches the maximum with the decreasing slope of 0.1375 corresponding to 

the 20.7% decrease of load-bearing capacity. 

 

 

Fig. 4.11 Decreasing slope α versus normalized width-thickness ratio R 

 

Failure modes of all FE models have been checked. They are listed in Table. 4.4. 

The symbols of “O” and “C” in the table represent overall buckling and coupled buckling, 

respectively. The typical buckling failure modes are demonstrated in Fig. 4.12 taking two 

models as examples. The deformation of the columns is detailed at two points. One is at 

the point of load-bearing capacity, and the other is at the 85% of the load-bearing capacity 

after peak value. It can be recognized that coupled buckling or overall buckling occurs 

for 12 combinations of width-thickness and slenderness ratios indicated by “C/O” 

depending on the amplitudes of initial deflections. For these combinations, the failure 
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modes are detailed in Table. 4.5. The failure mode of R05λ05-07 and R07λ14-18 changes 

from overall buckling to coupled buckling with the increase of local initial deflection 

from b/450 to b/150. Failure mode change of R05λ09-18 occurs when increasing initial 

deflection from b/150 to b/75. This indicates that the amplitude of local initial deflection 

could change the failure mode in the normalized width-thickness ratio range from 0.5 to 

0.7. The failure mode change by the local initial deflection could result in the larger 

reduction of load-bearing capacity by it. Therefore, it could be thought that this change is 

a cause inducing the movement of peak point of decreasing slope. 

 

             

(a) at peak load  (b) at 85% after peak (c) at peak load(d) at 85% after peak  

Overall buckling (R03λ05) Coupled buckling (R09λ05) 

Fig. 4.12 Examples of deformed shape. (Amplifying factor:5) 
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Table. 4.4 Failure modes in the FE models 

Width-thickness ratio R Slenderness ratio λ 

 0.3 0.5 0.7 1.0 1.4 1.6 1.8 

0.3 O O O O O O O 

0.5 C C/O C/O C/O C/O C/O C/O 

0.7 C C C C C/O C/O C/O 

0.9 C C C C C C C 

1.2 C C C C C C C 

1.5 C C C C C C C 

 

Table. 4.5 Failure mode change by initial deflections 

(a) R05λ05-07, R07λ14-18 

Overall initial deflection Local initial deflection 

 b/75 b/150 b/450 

L/500 C C O 

L/1000 C C O 

L/3000 C C O 

 

(b) R05λ10-18  

Overall initial deflection Local initial deflection 

 b/75 b/150 b/450 

L/500 C O O 

L/1000 C O O 

L/3000 C O O 

4.3.2 Influence of overall initial deflection 

Results of models with the normalized slenderness ratios λ from 0.3 to 1.8 and 

constant normalized width-thickness ratio R of 0.9 are set as examples to show the 

influence of the overall initial deflection. The comparison of load-bearing capacities for 

different overall initial deflection are shown in Fig. 4.13. In the case of λ=0.3, the 

reduction on load-bearing capacity by increasing overall initial deflection is less than 

5%. As the slenderness ratio increases, reduction on the load-bearing capacity reaches 

up to 15.1% at most with the amplitude of overall initial deflection increases from 

L/3000 to L/500.  
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Fig. 4.13 Influence of overall initial deflection on load-bearing capacity 

 

Relationship between the IDIC and the amplitude of the overall initial deflection 

normalized by the standard amplitude i.e. L/1000 is shown in Fig. 4.14 – 4.19. The 

similar tendency to Fig. 4.4 - 4.11 can be seen, namely, the IDIC decreases 

approximately linearly as the amplitude of overall initial deflection increases, and the 

decreasing slope is nearly the same for different amplitudes of the local initial deflection. 
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(a) R03λ03                            (b) R03λ05 

    
(c) R03λ07                            (d) R03λ10 

    
(e) R03λ14                            (f) R03λ16 

 
(g) R03λ18 

   

Fig. 4.14 Initial deflection influence coefficient (IDICs) versus overall initial deflection 
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(a) R05λ03                            (b) R05λ05 

    
(c) R05λ07                            (d) R05λ10 

    
(e) R05λ14                            (f) R05λ16 

 
(g) R05λ18 

   

Fig. 4.15 Initial deflection influence coefficient (IDICs) versus overall initial deflection 
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(a) R07λ03                            (b) R07λ05 

    
(c) R07λ07                            (d) R07λ10 

    
(e) R07λ14                            (f) R07λ16 

 
(g) R07λ18 

   

Fig. 4.16 Initial deflection influence coefficient (IDICs) versus overall initial deflection 
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(a) R09λ03                            (b) R09λ05 

    
(c) R09λ07                            (d) R09λ10 

    
(e) R09λ14                            (f) R09λ16 

 
(g) R09λ18 

   

Fig. 4.17 Initial deflection influence coefficient (IDICs) versus overall initial deflection 
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(a) R12λ03                            (b) R12λ05 

    
(c) R12λ07                            (d) R12λ10 

    
(e) R12λ14                            (f) R12λ16 

 
(g) R12λ18 

   

Fig. 4.18 Initial deflection influence coefficient (IDICs) versus overall initial deflection 
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(a) R15λ03                            (b) R15λ05 

    
(c) R15λ07                            (d) R15λ10 

    
(e) R15λ14                            (f) R15λ16 

 
(g) R15λ18 

   

Fig. 4.19 Initial deflection influence coefficient (IDICs) versus overall initial deflection 
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Linear regression analysis is conducted on the data when the amplitude of the local 

initial deflection is b/150. The absolute values of the decreasing slope β is related to the 

normalized slenderness ratio λ as shown in Fig. 4.20 in which six series of data with 

different normalized width-thickness ratio R are plotted. It can be seen that the decreasing 

slope β increases first and then decreases with the increase of the λ-value. This tendency 

is similar to Fig. 4.11. However, being different from Fig. 4.11, the peak value of the 

decreasing slope appears at almost the same λ-value of 1.4. As shown in Table 4.5, the 

amplitude of overall deflection does not change the failure mode. This may be a cause of 

the difference. 

 

 

Fig. 4.20 Decreasing slope β versus normalized slenderness ratio λ 

 

With λ from 0.7 to 1.8, column load-bearing capacity becomes comparatively 

sensitive to overall initial deflection. The maximum decreasing slope ranges from 0.081 

to 0.1166. In addition, the influence of overall initial deflection on load-bearing capacity 

is related to normalized width-thickness ratio R. With the decrease of R, the influence of 

overall initial deflection increases. This is because column strength is mainly dominated 

by overall buckling when R is small. With R and λ equal to 0.3 and 1.4, respectively, the 

influence reaches the maximum with the decreasing slope of 0.1166 corresponding to the 

17.9% decrease of load-bearing capacity. 
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4.4 Influence of overall initial deflection 

4.4.1 Format of proposed formulae 

In the previous chapter, the quantitative influence caused by the initial deflections 

on the load-bearing capacity was observed with a wide range of the normalized 

slenderness and width-thickness ratios taken into consideration. The value of IDIC tends 

to decrease linearly as the local or overall initial deflections increase. The decreasing 

slope caused by the local/overall initial deflection is nearly invariable regardless of the 

amplitude of the overall/local initial deflection. This fact may suggest that there is no 

significant coupling effect on IDIC between two initial deflections. Therefore, the IDIC 

can be calculated as, 

IDIC ( , )( 1) ( , )( 1) 1p cf R I g R I                        (4.2) 

In the formula, f(R, λ) is the decreasing slope α, g(R, λ) is the decreasing slope β; Ip 

is the local initial deflection normalized by the standard local initial deflection (b/150); Ic 

is the overall initial deflection normalized by the standard overall initial deflection 

(L/1000). The terms, Ip, Ic minus 1, are set to satisfy the condition that the IDIC is equal 

to 1 when the local and overall initial deflections are b/150 and L/1000, respectively. 

4.4.2 Decreasing slope α 

From the numerical results presented in Fig. 4.11, it can be seen that the influence 

of local initial deflection is related with both normalized width-thickness ratio and 

slenderness ratio. As the width-thickness ratio increases, the decreasing slope increases 

first then decreases after the peak value. In addition, the peak value of the decreasing 

slope α appears at different normalized slenderness ratio. Referring to Fig. 4.11, the 

decreasing slope α is assumed as Eq. 4.3, 

2 3
( )

1( , )
p p R

f R p R  
                           (4.3) 

where R and λ is normalized width-thickness and slenderness ratios, respectively.  

Coefficients p1, p2, p3 and their determination coefficient are obtained as listed in 

Table. 4.6 through the regression analysis of the above numerical results with Levenberg-

Marquardt method. It is understood that the coefficients p1, p2, p3 can be associated with 
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the normalized slenderness ratio. Relationship between the coefficients and the 

normalized slenderness ratio is plotted in Fig. 4.21.  

Table 4.6 Coefficient term and determination coefficient of equation (L/1000)  

Slenderness  

ratio λ 

Coefficient term Determination  

coefficient p1 p2 p3 

0.3 -0.0749  3.1002  -5.5554  0.9143  

0.5 -0.0834  3.5604  -5.4439  0.9254  

0.7 -0.0915  4.2250  -5.6733  0.9478  

1.0 -0.1168  4.8706  -5.6100  0.9767  

1.4 -0.1320  3.9886  -3.7722  0.9924  

1.6 -0.1318  3.7669  -3.2494  0.9921  

1.8 -0.1289  3.6211  -2.8643  0.9906  

 

   

     (a) Equation of p1                    (b) Equation of p2 

 

(c) Equation of p3 

Fig. 4.21 Equation of coefficient terms p1, p2, p3 
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The authors tried several functions including linear, polynomial, logarithmic, 

exponential, trigonometric functions for the regression analysis. As a result, the 

polynomial regression was adopted since it provided comparatively accurate prediction 

and the formula format is simpler than others. The obtained formulae to estimate each 

coefficient are shown in Eq. 4.4. 

4 3 2
1

4 3 2
2

4 3 2
3

0.0384 0.2037 0.3362 0.1511 0.0958

5.8278 35.7294 80.1948 78.3656 7.0455

6.1618 24.2455 30.0485 14.1142 7.6727

p

p

p

   

   

   

      


     


     

       (4.4) 

4.4.3 Decreasing slope β 

From the numerical results presented in Fig. 4.20, it can be seen that the influence 

of overall initial deflection is also related to both normalized width-thickness ratio and 

slenderness ratios. As the slenderness ratio increases, the decreasing slope increases first, 

then decreases after the peak value which is similar to that as shown in Fig. 4.11. The 

different is that the peak value of the decreasing slope appears at almost the same λ-value 

of 1.4. The cubic function is assumed for the decreasing slope β as Eq. 4.5, 

3 2
1 2 3( , ) ( 1.4) ( 1.4)g R =q q q                       (4.5) 

where R and λ are normalized width-thickness and slenderness ratios, respectively.  

Coefficients q1, q2, q3 and determination coefficient are obtained as listed in Table. 

4.7 through the regression analysis of the above numerical results. It is understood that 

the coefficients q1, q2, q3 can be associated with the normalized width-thickness ratio. 

Relationship between the coefficients and the normalized width-thickness ratio is plotted 

in Fig.4.22. By means of the polynomial regression, the formulae to estimate these 

coefficients q1, q2 and q3 can be performed as a function of normalized width-thickness 

ratio R as shown in Eq.4.6. 
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Table 4.7 Coefficient term and determination coefficient of equation (b/150)  

Width-thickness  

ratio R 

Coefficient term Determination 

 coefficient q1 q2 q3 

0.3 0.0548  0.1333  -0.1124  0.9853  

0.5 0.0431  0.1179  -0.1087  0.9874  

0.7 0.0303  0.1126  -0.1030  0.9896  

0.9 0.0248  0.0989  -0.0963  0.9834  

1.2 0.0068  0.0706  -0.0866  0.9873  

1.5 0.0086  0.0664  -0.0817  0.9922  

 

    

   (a) Equation of q1                     (b) Equation of q2 

 

(c) Equation of q3 

Fig. 4.22 Equation of coefficient terms q1, q2, q3 
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3 2
1

3 2
2

3 2
3

0.037 0.0716 0.0126 0.0635

0.0626 0.16 0.0584 0.1264

0.0252 0.0659 0.0228 0.1108

q R R R

q R R R

q R R R

    


   


    

            (4.6) 

4.5 Validation of the proposed formulae 

4.5.1 Comparison between formulae and FEA results 

The IDICs obtained by the proposed formulae were compared with those by FEA 

for 378 models to verify the accuracy of the formulae. The comparisons are divided into 

seven figures by the normalized slenderness ratios as shown in Fig. 4.23 (a)-(g). 

Additional 108 FEA results with normalized slenderness ratio of 0.9 and 1.2, which are 

not used in formula fitting analysis, are considered in formula verification procedure for 

further prove the validation of the proposed formulae as shown in Fig. 4.24. The absolute 

value of maximum errors and average errors between formulae results and FEA results 

are shown in Table. 4.8 and Table. 4.9, respectively.  

It can be seen that most of the formulae results show good agreement with FEA 

results with maximum errors less than 5%. Only in four cases, the formulae results are 

found with errors more than 5%, but less than 7%. These relatively large errors are caused 

by the fact that the influence tendency of initial deflections is not strictly linear. Although 

the accuracy can be improved by considering the quadratic function on the influence 

tendency, the authors do not think that it is necessary due to accurate prediction results in 

most cases and more complicated calculation by using quadratic function. 
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(a) λ = 0.3                         (b) λ = 0.5 

 
(c) λ = 0.7                         (d) λ = 1.0 

 
(e) λ = 1.4                         (f) λ = 1.6 

 
(g) λ = 1.8 

Fig. 4.23 Comparison of IDICs between formulae and FEA results 
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(a) λ = 0.9                          (b) λ = 1.2 

Fig. 4.24 Comparison of IDICs between formulae and FEA results 

 

Table. 4.8 Maximum errors between formula and FEA results (%) 

Width-thickness ratio R Slenderness ratio λ 

0.3 0.5 0.7 0.9 1.0 1.2 1.4 1.6 1.8 

0.3 0.44  0.89  2.04  2.03  2.82  4.89  3.12  2.17  1.09  

0.5 1.81  1.48  1.62  1.67  2.17  4.27  2.55  2.07  1.01  

0.7 3.68  3.57  1.81  2.25  2.47  4.17  3.81  3.08  1.36  

0.9 3.30  3.22  3.69  4.35  5.40  5.49  5.74  4.97  3.32  

1.2 0.46  1.33  2.19  3.68  3.91  4.77  4.99  4.74  6.68  

1.5 2.23  1.98  1.29  1.26  1.78  2.48  2.62  4.70  3.67  

 

Table. 4.9 Average errors between formula and FEA results (%) 

Width-thickness ratio R Slenderness ratio λ 

0.3 0.5 0.7 0.9 1.0 1.2 1.4 1.6 1.8 

0.3 0.32  0.51  1.02  0.85  1.37  1.99  1.68  1.17  0.63  

0.5 0.62  0.66  0.86  0.75  1.14  1.61  1.45  1.11  0.58  

0.7 1.87  1.54  0.85  0.78  1.18  1.69  1.56  1.04  0.79  

0.9 1.80  2.18  2.27  2.73  2.94  2.96  2.89  2.15  1.34  

1.2 0.28  0.61  1.11  1.78  2.19  2.94  3.31  3.18  3.42  

1.5 1.05  1.17  0.84  0.74  0.93  1.33  1.60  2.14  2.07  

 

Therefore, it can be concluded that the proposed IDIC formulae have sufficient 

accuracy and reliability for estimating the quantitative influence of the initial deflections 

on the load-bearing capacity of the unstiffened welded box section columns. 
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4.5.2 Comparison between formulae and experimental results 

Besides the comparison between formulae and FEA results, the comparison between 

formulae and experimental results was also conducted to evaluation the validation of the 

proposed formulae. To predict the load-bearing capacity of an experimental column with 

measured initial deflections, not only the formulae aimed at quantitative influence of 

various initial deflections, but also formulae target on load-bearing capacity under certain 

initial deflections. In this part, a simplified formula developed by Kishi [87] to calculate 

the load-bearing capacity under local initial deflection of b/150 and overall initial 

deflection of L/1000, was used. The formulae are performed as follows, 

21 (0.0502 0.2485 0.6077)( 0.5)cr u/ = R                    (4.7) 

2

2

1 0.2

1.059 0.258 0.190 0.2 1.0

1.01.427 1.039 0.223

u y/ =



    

 

 


   
  

             (4.8) 

where σcr is the load-bearing capacity; σu is the overall buckling strength of the column 

with the normalized slenderness ratio of λ specified in JRA; and R is the normalized 

width-thickness ratio. 

Formulae to estimate the quantitative influence caused by the initial deflection are 

proposed in this study. The product between the proposed formulae in this study and the 

existing simplified formula from Kishi will be the load-bearing capacity of the columns 

with actual amplitude of initial deflections. The comparison between current formulae 

and experimental results [64, 84] is shown in Table. 4.10. Since the local initial deflection 

was not measured in Somodi’s test [60], the test results of W3-series specimens were not 

used in this part. It can be seen that the existing formula considering initial deflections of 

b/150 and L/1000 comparatively underestimates the load-bearing capacity for all 

specimens. The product between existing formula and IDICs provides better prediction 

on the load-bearing capacity.  
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Table 15 Comparison between formula and experimental results 

Specimen FT (kN) 𝜎̅T  𝜎̅cr IDIC IDIC 

*𝜎̅cr 

(𝜎̅cr − 𝜎̅T ) 

 /𝜎̅T (%) 

(IDIC*𝜎̅cr − 𝜎̅T) 

/𝜎̅T (%) 

S1a 2053 0.857 0.730 1.0471  0.764  -14.8  -10.9  

S1b 2139 0.893 0.730 1.0464  0.764  -18.3  -14.4  

S2a 2065 0.862 0.711 1.0689  0.760  -17.5  -11.8  

S2b 2062 0.861 0.711 1.0689  0.760  -17.4  -11.7  

S3a 2114 0.882 0.684 1.0868  0.743  -22.4  -15.8  

S3b 2044 0.853 0.684 1.0844  0.742  -19.8  -13.0  

W-S 706 0.671 0.578 1.1068  0.640  -13.9  -4.6  

W-L 564 0.536 0.468 1.1123  0.521  -12.7  -2.8  

Where FT is the experimental results, 𝜎̅ is the non-dimensional load-bearing capacity, 𝜎̅cr is 

calculated based on the Kishi’s formula and specification formula, IDIC is an initial deflection 

influence coefficient. 

4.6 Influence of residual stress on IDICs 

For the welded box section columns, many researchers have demonstrated that 

residual stress would have significant influence on their load-bearing capacity [88, 89]. 

According to previous statistics on residual stress of 216 normal strength steel columns 

by Fukumoto [87], compressive residual stress was found in the range from 0 to 0.6σy. In 

this section, to investigate the influence of residual stress on the relationship between 

initial deflection influence coefficient(IDIC) and initial deflections, specimens with short, 

medium and high columns length were chosen for FE analysis with compressive residual 

stress 0.1σy and 0.4σy into consideration. As mentioned in Section 4.3.1 and 4.3.2, the 

IDICs approximately linearly decreases as the amplitude of local/overall initial deflection 

increases. The decreasing slope is nearly the same for different amplitudes of overall/local 

initial deflection. Therefore, the IDICs are plotted with normalized local initial deflection 

under the overall initial deflection of L/1000 as shown in Fig. 4.25. It can been seen that 

slight influence due to different residual stress value on the relationship between IDICs 

and local initial deflection can be observed. In general, the slope of the plot for smaller 

residual stress is steeper, indicating larger influence of local initial deflection. For the 

columns with high slenderness ratio, the difference on IDICs becomes up to 
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approximately 5% with the increase of residual stress from 0.1σy to 0.4σy.  

 

 

(a) R07λ07                            (b) R09λ10 

 

(c) R12λ10                            (d) R15λ18 

Fig. 4.25 IDICs versus normalized local initial deflection 

 

Investigation was also carried out to study the influence of different residual stress 

of 0.1σy, 0.25σy and 0.4σy on the relationship between IDICs and normalized overall initial 

deflection. IDICs are plotted with normalized overall initial deflection under the local 

initial deflection of b/150 as shown in Fig. 4.26. It can be found that the decreasing 

tendency of IDICs related to shows close agreement with each other under different 

residual stress. This result indicates that residual stress has no clear influence on the 

relationship between IDICs and normalized overall initial deflection. 
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(a) R07λ07                            (b) R09λ10 

 

(c) R12λ10                            (d) R15λ18 

Fig. 4.26 IDICs versus normalized overall initial deflection 

4.7 Summary 

In this study, 486 models were analyzed to investigate the quantitative influence of 

the initial deflections on the load-bearing capacity of unstiffened welded square box 

section columns with a variety of normalized slenderness and width-thickness ratios. The 

main conclusions can be summarized as follows. 

(1) The load-bearing capacity linearly decreases as the amplitude of local/overall 

initial deflection increases. The decreasing slope is nearly the same for different 

amplitudes of overall/local initial deflection. 

(2) With the normalized width-thickness and slenderness ratios equal to 1.2 and 1.8, 

respectively, the influence of the local initial deflection reaches the maximum with the 

decreasing slope of 0.1375 corresponding to the 20.7% reduction on load-bearing capacity. 
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(3) With the normalized width-thickness and slenderness ratio equal to 0.3 and 1.4, 

respectively, the influence of the overall initial deflection reaches the maximum with 

decreasing slope of 0.1166 corresponding to the 17.9% reduction on load-bearing capacity. 

(4) Based on numerous FEA results, the formulae for the initial deflection influence 

coefficient (IDIC) are developed, which describe the quantitative influence caused by the 

initial deflections. Compared with the FEA results, the accuracy of the formulae is 

verified. 

(5) Compared with the experimental results, it is verified that the product between 

the IDIC and the simplified formula can predict the load-bearing capacity with good 

accuracy in the case of columns with various amplitudes of the initial deflections. 

(6) The residual stress has slight influence on the relationship between IDICs and 

local initial deflection, while it has negligible influence on the relationship between IDICs 

and overall initial deflection. 

The validity of the proposed formulae has been evaluated only for the conditions 

examined in this research. Their applicability to different cross-sections, residual stress 

pattern and high strength steel columns as well as wider range of initial deflection value 

should be studied in the future work. 
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Annex: An example to apply show the application procedure of the proposed 

formulae 

Test specimen W-S in Table 1 is set as an example to improve the accuracy of 

prediction on the load-bearing capacity. The basic parameter of W-S is tabulated below. 

 

Basic buckling parameter of W-S 

Parameter Value 

Normalized slenderness ratio λ 0.82 

 Normalized width-thickness ratio R 0.95 

Overall initial deflection L/1825 

Local initial deflection b/520 

σT/σy 0.671 

 

Calculation according to Kishi’s formula (Eq. 4.7) and design code (Eq. 4.8): 

2

2

1 (0.0502 0.2485 0.6077)( 0.5) 0.803

1.059 0.258 0.190 0.72

0.803 0.72 0.578
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Calculation of IDIC according to Eqs. 4.2-4.6: 
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4 3 2
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3
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0.0384 0.2037 0.3362 0.1511 0.0958= 0.1030
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Comparison with experimental results: 

,

0.578 0.671
100% 13.9%

0.671

0.64 0.671
100% 4.6%

0.671

cr ex

ex

u formula ex

ex

 



 



 
   

 
   

 

It can be seen that the prediction by the simplified formula tends to underestimate 

the load-bearing capacity of the columns due to large initial deflections considered. When 

the actual amplitude of initial deflections is considered into the calculation by the 

proposed formulae, more accurate results can be obtained. 
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CHAPTER 5 

 

 

 

 

 

 

 

Influence of local and overall initial deflections on coupled 

buckling strength of stiffened box section columns       

under axial compression 
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5.1 Introduction 

Stiffened box section compression member were determined by a wish for a high 

cross-section stiffness and local buckling resistance than that with unstiffened box section 

and usually provided for the arch ribs in steel arch bridges. However, due to high 

slenderness and width-thickness ratios, these kind of compression members are also 

susceptible to buckling instability phenomenon like that for unstiffened box section 

columns. In addition, initial deflections have significant influence on the load-bearing 

capacity. 

In previous research conducted by Murakoshi. et.al [90], three kinds of amplitude (i.e. 

L/1000, L/3000, L /5000) of the overall initial deflection were considered on the columns 

with different normalized slenderness ratio. It is found that the amplitude of the initial 

deflection has great influence on the load-bearing capacity of the stiffened box section 

columns. As the amplitude of the initial deflection increases from L/5000 to L/1000, load-

bearing capacity decreases at most 11.7%. In addition, the decrement on load-bearing 

capacity caused by initial deflection becomes more severe with the increase of the 

normalized slenderness ratio. Therefore, further numerical study focusing on the 

quantitative influence need to be carried out. 

In this chapter, stiffened box section columns under axial compression are chosen as 

a target. Nonlinear finite element models are developed to analyze the load-bearing capacity 

of columns. A wide range of the normalized width-thickness and slenderness ratios is set 

to ensure the occurrence of coupled buckling instability. Furthermore, various 

combinations of amplitude of the local and the overall initial deflections are analyzed in 

this study. In addition, applicability of the formulae developed to predict their influence on 

load-bearing capacity of unstiffened box section columns to stiffened box section columns 

is discussed. 

5.2 FE model for parametrical analysis 

5.2.1 Main parameters of stiffened box section columns 

The buckling instability of stiffened welded box section column is significantly 

influenced by the normalized slenderness and width-thickness ratios, λ and RR, given by 

the formulae, 
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where σy is the nominal yield stress, E is the Young’s Modulus, L is the length of the 

column, r is the radius of gyration, b is the width of the plate, t is the thickness of the 

plate, ν is the Poisson’s ratio, and n is the number of the subpanels separated by the 

stiffeners. 

In addition to the slenderness and width-thickness ratios, the properties of the stiffener 

are also influential. The stiffeners’ relative stiffness γ can be defined as, 

3 /11
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                                     (5.3) 

where Il is the moment of inertia of one stiffener with respect to the end connected to the 

plate. 

The required stiffness in JRA is expressed as follows, 
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4
0= 1 n                                     (5.5) 

where bs and ts are the width and thickness of the stiffener, respectively, α is the aspect 

ratio (i.e. α = b/t), α0 is the critical aspect ratio. 

5.2.2 Geometric parameters  

To ensure the appearance of coupled buckling failure mode, the normalized width-

thickness and slenderness ratios were set from 0.5 to 1.5 and 0.1 to 1.4, respectively. 

Based on statistics [93] on the dimension of arch rib in 44 arch bridges in Japan, it 

was found that the widths of the flange and web in most investigated arch bridges are in 

the range from 1000 to 2500 mm and 750 to 1500 mm, respectively. Therefore, the widths 

of flange and web of analyzed models are set to 1500mm and 1000mm, respectively, as 



92 
 

shown in Fig. 5.1. The designated width-thickness ratios can be obtained by changing the 

thickness of the plate. 

 

  

Fig. 5.1 Cross section of the specimen 

 

In the previous study conducted by NARA [91] on the load-bearing capacity of the 

stiffened plate, it is found that γ/γreq ratio of has great influence on the load-bearing capacity 

of the structure. Therefore, to prevent this effect, the value of γ was set equal to γreq. The 

dimension of specimens with normalized slenderness ratio of 0.1 is listed in Table. 5.1. 

Models with high λ-value of 0.5, 1.0 and 1.4 were generated by amplifying the column 

length with the relative factors (i.e. ratio of λ-value to 0.1). In addition, nine combinations 

of amplitudes of initial deflections were considered as listed in Table 2, leading to 144 FE 

models. Among the combinations, the one of bn/150 and L/1000 corresponds to the 

allowable initial deflections in the current Japanese specification, JRA. 

 

Table. 5.1 Dimension of specimens 

Model 1 2 3 4 

b (mm) 1500 

d (mm) 1000 

t (mm) 22.16 12.31 9.23 7.39 

nf 3 

nw 2 

bsf (mm) 190 120 112 89 

tsf (mm) 16 10.2 4.9 5 

bsw (mm) 170 110 102 81 

tsw (mm) 17 9.6 4.6 4.8 

L (mm) 3108 3150 3168 3170 

γ/γreq 1.0 1.0 1.0 1.0 

RR 0.5 0.9 1.2 1.5 

λ 0.1 0.1 0.1 0.1 

1500

500500500

1
0

0
0

5
0
0

5
0
0

0

0

40
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5.2.3 FE model building 

The general-purpose FEA software MSC.Marc was applied to the numerical 

analyses. Thick shell element (No.75) was used in the model. Meshing size was set to be 

small enough to ensure the accuracy of the results. Considering the convenience of 

residual stress setting, plates were divided into ten elements on every subpanel and four 

elements on the stiffener as shown in Fig. 5.2(a). The von Mises yield criterion was 

adopted in the analysis. Bilinear model with yield point of 355 MPa and strain hardening 

coefficient of E/100 was used to describe the material property. The Young’s modulus and 

Poisson ratio were set to 200 GPa and 0.3, respectively. The columns were supported 

under pin-ended condition with respect to the buckling axis Y as shown in Fig. 5.2(b), 

which is the same as that in Chapter 3. 

 

 

(a) Meshing profile 

 

 

(b) Boundary condition of specimen 

Fig. 5.2 Geometry and meshing in the model 
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Residual stress is also one of the most important factors to the stability behavior of 

compression members. It was assumed to exist in every plate with compression in the 

middle area and tension at both sides of the plate as shown in Fig. 5.3(a) so as to be in 

self-equilibrium condition. Referring to the Guidelines for Stability Design of Steel 

Structures [92], the residual stress of the stiffener was set as shown in Fig. 5.3(b). The 

compressive stress rc was set to 0.25σy based on Fukumoto’s statistics [89]. 

 

 

(a) On the plate 

 

(b) On the stiffener 

Fig. 5.3 Distribution of residual stress 

 

Images of local and overall initial deflection shapes are shown in Fig. 5.4 and Fig. 

5.5, respectively. The double trigonometric function shown in Eq. 5.6 was assumed for 

the local initial deflection. The number of half wave m was determined by the aspect ratio 

of the plate so as to give the minimum buckling strength according to the elastic buckling 

theory. Schematic illustration of local initial deflections between two diagrams is shown 

in Fig. 5.4(a). A half-sinusoidal wave shape expressed by Eq. 5.7 was assumed for the 

overall initial deflection. With respect to amplitude of initial deflections, bn/75, bn /150 

and bn /450 were taken as local initial deflection, while amplitudes of L/500, L /1000 and 

L/3000 were set for overall initial deflection resulting in nine combinations. 
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(a) Along the column length   (b) On the cross section 

Fig. 5.4 Local initial deflection 

 

 
Fig. 5.5 Overall initial deflection 
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where wlw and wlf are the local initial deflections on the web and flange, respectively; wl0 

is the amplitude of local initial deflection, m is the number of half sin-wave giving the 

minimum buckling strength, a is the length between two diagrams, bnw and bnf are the 

widths of subpanel between two stiffeners on the web and flange, respectively; wg is the 

overall initial deflection, wg0 is the amplitude of the overall initial deflection. 
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5.3 Parametrical analysis results and discussion 

In this chapter, initial deflection influence coefficient (IDIC) is also introduced to 

describe the quantitative influence of the initial deflections and defined as a ratio of the 

load-bearing capacity of a model with variable initial deflection combinations to that in 

specification (i.e. bn/150, L/1000). 

5.3.1 Influence of local initial deflection 

The relationship between IDICs and normalized local initial deflection is plotted in 

Fig. 5.6 – 5.9 with linear fitting analysis conducted on the group of points corresponding 

to the condition where the amplitude of overall initial deflection is L/1000. Models with 

λ equal to 1.4, RR varying from 0.5 to 1.5 as shown in Fig. 5.9, are selected as an examples 

to demonstrate the reduction of load-bearing capacity caused by local initial deflection. It 

can be seen that IDICs decrease approximately linearly as the amplitude of local initial 

deflection increases. The decreasing tendency is nearly the same for different amplitudes 

of the overall initial deflection in each structural model. However, the decreasing 

tendency of IDICs shows much different in the columns with different normalized width-

thickness ratios. 

When the normalized width-thickness ratio RR is small as 0.5 or large as 1.5, the 

local initial deflection has slight effect on the load-bearing capacity corresponding to 6.4% 

and 7.2%, respectively. The possible reason is that the failure of specimen with low width-

thickness ratio is mainly controlled by overall buckling, while it is slightly influenced by 

the local initial deflection. For the specimen with high width-thickness ratio, local 

buckling occurs early due to the low plate stiffness even if the local initial deflection is 

small. In the case of columns with medium RR-value, the local initial deflection has 

significant effect on the load-bearing capacity. Especially at RR equal to 0.9, reduction on 

load-bearing capacity with the increase in amplitude of local initial deflection from bn 

/450 to bn /75 reaches up to 19.2%. 

In addition, it should be mentioned that the decreasing slope of IDICs related to RR 

also differs a lot under different normalized slenderness ratio λ. The columns with high 

normalized slenderness ratios tend to be more sensitive to the local initial deflection than 

that under low normalized slenderness ratios. The reason is that for such columns, local 

buckling will occurs at the early stage and later in conjunction with overall buckling lead 
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to failure. The columns failing in coupled buckling shows more sensitive to initial 

deflections. 

 

 

    
(a) RR05λ01                            (b) RR09λ01 

    
(c) RR12λ01                            (d) RR15λ01 

 

Fig. 5.6 Influence of local initial deflection 
 

    
(a) RR05λ05                            (b) RR09λ05 
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(c) RR12λ05                            (d) RR15λ05 

 

Fig. 5.7 Influence of local initial deflection 
 

    
(a) RR05λ10                            (b) RR09λ10 

    
(c) RR12λ10                            (d) RR15λ10 

 

Fig. 5.8 Influence of local initial deflection 
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(a) RR05λ14                            (b) RR09λ14 

    
(c) RR12λ14                            (d) RR15λ14 

 
Fig. 5.9 Influence of local initial deflection 

5.3.2 Influence of overall initial deflection 

The relationship between IDICs and normalized local initial deflection is plotted in 

Fig. 5.10 – 5.13. Linear fitting analysis with IDICs and normalized overall initial 

deflection as parameter is conducted for the columns under local initial deflection of 

b/150. Models with normalized slenderness ratios λ from 0.1 to 1.4 and constant 

normalized width-thickness ratio RR of 0.9 as shown in Fig. 5.11 are set as examples to 

demonstrate the influence of the overall initial deflection on load-bearing capacity.. 

It can be seen that as overall initial deflection increases, IDIC decreases 

approximately linearly and the decreasing tendency is independent with local initial 

deflection. This fact indicates that there is no clearly coupled effect between the local and 

overall initial deflections. When the normalized slenderness ratio is small such as λ=0.1, 

overall initial deflection has little influence on load bearing capacity. As the normalized 

slenderness ratio increases, the slope of the decreasing tendency increases, which 

represents the increasing influence on the load-bearing capacity caused by overall initial 
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deflection. Reduction on the load-bearing capacity reaches up to 16.3% at most with the 

increase in amplitude of overall initial deflection from L/3000 to L/500. 

In addition, it can be also observed that the reduction of load-bearing capacity due to 

local initial deflection becomes more significant as the normalized slenderness ratio 

increases. The possible reason is that when the normalized slenderness ratios are at low 

level, the failure mode is mainly controlled by local buckling. For the columns with high 

slenderness ratio, local buckling occurs before overall buckling, and then the coupled 

buckling further deteriorates the load-bearing capacity. Therefore, the influence of local 

initial deflection is more significant on load-bearing capacity of the specimens with high 

normalized slenderness ratio than that with low normalized slenderness ratio. 

 

 

    
(a) RR05λ01                             (b) RR05λ05 

    
(c) RR05λ10                            (d) RR05λ14 

 
Fig. 5.10 Influence of overall initial deflection 
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(a) RR09λ01                             (b) RR09λ05 

    
(c) RR09λ10                            (d) RR09λ14 

 
Fig. 5.11 Influence of overall initial deflection 

 

    
(a) RR12λ01                             (b) RR12λ05 
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(c) RR12λ10                            (d) RR12λ14 

 
Fig. 5.12 Influence of overall initial deflection 

 

    
(a) RR15λ01                             (b) RR15λ05 

    
(c) RR15λ10                            (d) RR15λ14 

 
Fig. 5.13 Influence of overall initial deflection 
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5.4 Applicability of formulae developed for unstiffened welded box section columns 

In previous research, parametrical formulae of IDICs targeting on the quantitative 

influence of initial deflections for unstiffened box section columns have been developed 

as described in Chapter 4. In this part, IDIC formulae were used to evacuate the 

quantitative influence of initial deflections stiffened box section columns. In order to 

examine their applicability to the stiffened box section columns, the IDICs were 

calculated according to the previous formulae and compared with the FEA results as 

shown in Fig. 5.14. The maximum and average errors between the formulae and FEA 

results are summarized in Table. 5.2 and Table. 5.3. It can be seen that the formulae 

results show good agreement with FEA results in general. Most of the errors are less than 

5%. Only for a part of models, the errors of formulae results are more than 5%, but less 

than 10%. This fact indicates that the formulae developed for unstiffened welded box 

section columns can also provide good prediction of the quantitative influence of initial 

deflections on load-bearing capacity of stiffened welded box section columns. The 

possible reason may be explained as follows. The stiffness of the stiffeners was set so as 

to satisfy the requirement by the Specifications [10] in all FE models. Therefore, the local 

buckling was thought to occur within the subpanel between every two stiffeners, which 

is similar to the unstiffened box section columns. 

 

 

Fig. 5.14 Comparison of IDICs between formulae and FEA results 
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Table. 5.2 Maximum errors between formulae and FEA results 

RR 
λ 

0.1 0.5 1.0 1.4 

0.5 3.39 1.82 2.78 2.58 

0.9 7.65 5.64 6.41 6.35 

1.2 5.71 4.31 7.43 7.03 

1.5 1.82 5.49 4.22 3.58 

 

Table. 5.3 Average errors between formulae and FEA results 

RR 
λ 

0.1 0.5 1.0 1.4 

0.5 1.62 1.13 1.10 1.33 

0.9 3.36 2.29 3.64 3.31 

1.2 2.35 1.50 2.80 3.63 

1.5 0.91 2.37 1.91 1.53 

5.5 Summary 

In this chapter, numerical analyses were conducted on the load-bearing capacity of 

stiffened box section columns. A variety of initial deflection combinations was considered 

to investigate their quantitative influence on load-bearing capacity. Main conclusion can 

be summarized as follows. 

(1) The load-bearing capacity linearly decreases as the amplitude of local/overall 

initial deflection increases. Coupled effects between local and overall initial deflections 

on IDIC are not observed. 

(2) With the increase of local initial deflection from bn/450 to bn/75, the load-bearing 

capacity of column with RR=0.9 and λ=1.4 decreases linearly at most 19.2%. 

(3) With the increase of overall initial deflection from L/3000 to L/1000, the load-

bearing capacity of column decreases linearly at most 16.3%. 

(4) The formulae previously developed to predict the quantitative influence of initial 

deflection on load-bearing capacity of unstiffened box section columns could be applied 

to stiffened box section columns within the range of parameters discussed in this study. 
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Conclusions and future works 
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6.1 Conclusions 

The objective conducted in this dissertation is to improve the stability design of steel 

compression members with welded unstiffened and stiffened box cross sections. 

Comparison on stability design among four codes, validation of the numerical analysis 

on simulation for experimental results, formulation of quantitative influence for 

unstiffened box section column and its applicability for stiffened box section columns 

were conducted. The main conclusions can be summarized as follows: 

First of all, the provision for the stability of steel compression member in the four 

codes adopting the Partial Factor Design Method are investigated. The nominal strength 

of this structure based on the design codes is calculated and compared with each other. 

The design strengths and safety factors among the four codes are discussed. Further, the 

allowable strength is compared to investigate the difference among those codes. The main 

findings can be summarized as follows. 

(1) In the range of 0.5≤R ≤ 0.7, closed nominal strengths can be obtained from 

AASHTO, EC3 and JRA, while JTG D64 gives a lower nominal strength due to local 

buckling reduction considered from R >0.4. 

(2) When the local buckling reduction is considered (i.e. R ≥ 0.9), the nominal 

strength following AASHTO is higher than that of EC3, while the results in JRA and JTG 

D64 are on the conservative side of EC3. In addition, the results following EC3 

correspond with the FEA results better than others. 

(3) Safety factor increases along with the increase of ρD-value. JTG D64 I provides 

the highest safety factors, and then is JTG D64 II and JRA in the order, while EC3 offers 

lowest safety factors.  

(4) In the case of ρD-value less than 0.25, safety factors based on AASHTO is smaller 

than JRA. In the range from 0.25 to 2.0, safety factor following AASHTO locates between 

JTG D64 II and JRA. When the ρD-value exceeds 2.0, AASHTO gives higher safety 

factors than JTG D64 II. 

(5) Design strength following AASHTO is highest, and then is that of EC3 in the 

order, while JRA and JTG D64 offer conservative results.  

(6) Allowable strength following EC3 is higher than that in AASHTO in major part 

due to lower safety factor considered in EC3, while high safety factor in JTG D64 results 

in further conservative allowable strength than other codes.  



107 
 

(7) Considering ρD of 0.3 and 1.2, it does not change the comparison tendency of 

allowable strength among the four codes. 

Secondly, a precise FE model to replicate the load-bearing capacity of unstiffened 

box section columns with a wide range of normalized slenderness and width-thickness 

ratios into consideration was developed. Its accuracy was proved by comparing with the 

experimental results. The main findings can be summarized as follows. 

(1) Reasonable postbuckled results can be obtained by means of arc length method. 

(2) Reasonbale element type, intensive meshing size as well as inputing measured 

residual stress and initial deflection will results in accurate prediction on the load-bearing 

capacity of unstiffened box section columns. 

Thirdly, 486 models were analyzed to investigate the quantitative influence of the 

initial deflections on the load-bearing capacity of unstiffened welded square box section 

columns with a variety of normalized slenderness and width-thickness ratios. The main 

findings can be summarized as follows. 

(1) The load-bearing capacity linearly decreases as the amplitude of local/overall 

initial deflection increases. The decreasing slope is nearly the same for different 

amplitudes of overall/local initial deflection. 

(2) With the normalized width-thickness and slenderness ratios equal to 1.2 and 1.8, 

respectively, the influence of the local initial deflection reaches the maximum with the 

decreasing slope of 0.1375 corresponding to the 20.7% reduction on load-bearing capacity. 

(3) With the normalized width-thickness and slenderness ratio equal to 0.3 and 1.4, 

respectively, the influence of the overall initial deflection reaches the maximum with 

decreasing slope of 0.1166 corresponding to the 17.9% reduction on load-bearing capacity. 

(4) Based on numerous FEA results, the formulae for the initial deflection influence 

coefficient (IDIC) are developed, which describe the quantitative influence caused by the 

initial deflections. Compared with the FEA results, the accuracy of the formulae is 

verified. 

(5) Compared with the experimental results, it is verified that the product between 

the IDIC and the simplified formula can predict the load-bearing capacity with good 

accuracy in the case of columns with various amplitudes of the initial deflections. 

(6) The residual stress has slight influence on the relationship between IDICs and 

local initial deflection, while it has negligible influence on the relationship between IDICs 
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and overall initial deflection. 

Finally, numerical analyses were conducted on the load-bearing capacity of stiffened 

box section columns. A variety of initial deflection combinations was considered to 

investigate their quantitative influence on load-bearing capacity. Main conclusion can be 

summarized as follows. 

(1) The load-bearing capacity linearly decreases as the amplitude of local/overall 

initial deflection increases. Coupled effects between local and overall initial deflections 

on IDIC are not observed. 

(2) With the increase of local initial deflection from bn/450 to bn/75, the load-bearing 

capacity of column with RR=0.9 and λ=1.4 decreases linearly at most 19.2%. 

(3) With the increase of overall initial deflection from L/3000 to L/1000, the load-

bearing capacity of column decreases linearly at most 16.3%. 

(4) The formulae previously developed to predict the quantitative influence of initial 

deflection on load-bearing capacity of unstiffened box section columns could be applied 

to stiffened box section columns within the range of parameters discussed in this study. 

6.2 Future works 

The study in this dissertation has certain deficiencies and need further improvement 

in the future work. Some works deserve conducting for improvement are as follows: 

(1) The validity of the proposed formulae has been evaluated only for the conditions 

examined in this research. Their applicability to different cross-sections, residual stress 

pattern and high strength steel columns as well as wider range of initial deflection value 

need to be studied in the future work. 

(2) Experimental study combined with numerical analysis are worth carrying out in 

order to further investigate the quantitatively influence of initial deflections on load-

bearing capacity for stiffened box section columns and finally modified the proposed 

formulae. 
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