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Abstract 

Stable isotopic analytical technique has been applied on ecology of varied 

marine organisms but with few cases on cephalopods. Sepioteuthis lessoniana is a 

neritic squid species distributed in the Indo-Pacific Ocean. Fisheries management of 

the species is difficult due to inadequate ecological information, e.g. habitat use, 

movement pattern, metabolism and dietary shift of each life history stage. Therefore, 

the aim of this study is to apply stable isotopic technique for ecological studies on S. 

lessoniana in Taiwan waters as a pioneer example. 

 

This study first evaluated the efficacy of enriched stable isotopic mass-marking 

technique on hatchlings for further larval dispersal tracking purpose and the potential 

mass-marking effects on hatchling size and statolith chemistry of S. lessoniana. S. 

lessoniana egg capsules were collected from northern Taiwan and assigned randomly 

to 137Ba-spiking experimental groups at 0.2, 0.5 and 1 ppm and three immersion 

durations (1, 3 and 7 days). Immersion duration >3 days produced significantly lower 

138Ba : 137Ba ratios, with 100% marking success, indicating that it is a reliable 

marking technique. The 137Ba mass marking had a positive effect on size at hatch and 

was likely to affect statolith trace element incorporation, including Cu, Zn and Pb. 

These findings highlight that it is necessary to consider the species-specific effects on 

hatchling size and physiological responses when using stable isotopes mass-marking 

techniques. 

 

Subsequently, the daily growth and δ18O and δ13C values from the core to the 

edge of statoliths on S. lessoniana collected in northern Taiwan and the Penghu 

Islands were analyzed to predict the ontogenetic temperature and metabolic rate 

changes. The probability of occurrence in a given area at each life stage in three 

seasonal groups was determined using salinity values, deduced and measured 

temperatures, and the known ecology of S. lessoniana. The results showed that 

ontogenetic variation in the statolith δ18O values in S. lessoniana reflected the 

seasonal temperature fluctuation observed in Taiwanese waters, which indicated the 

reliability of the prediction method. Highly diverted dispersal and movement patterns 
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were observed. The results indicated the importance of the waters near the coast of 

northeastern Taiwan and the Penghu Islands as spawning grounds. Based on a model 

prediction, the distribution of S. lessoniana is likely associated with water temperature 

and upwelling, which supports high primary production and sustains the prey of the 

squid in the waters. The geographical overlap and a potential migration route between 

northeastern Taiwan and the Penghu Islands suggests the possibility of population 

connectivity in S. lessoniana between the two sites. 

 

Finally, the δ13C and δ15N in muscles of S. lessoniana in northern Taiwan were 

analyzed to investigate the diet composition shifting resulting from habitat change as 

growth. The δ13C values in muscles and statoliths are further used to assess the 

proportion of metabolically derived carbon (M value), evaluating the metabolic 

change along the ontogeny. The results showed an increasing pattern of δ15N and 

relatively consistent δ13C in squid muscles with the ontogenetic change, suggesting 

that they consume consistent species composition of prey in the same latitude region, 

whereas the prey size increases within ontogenetic change. A high level of metabolic 

rate, regarding high M value, found in adult individuals suggested obvious mobility 

for overwintering, and a high feeding rate and energy consummation during the 

reproductive period. 

 

This study evaluated the potential of stable isotopic mass-marking approach to 

track hatchling dispersal of S. lessoniana, and provided information on the spatial-

temporal movement and dietary shift of bigfin reef squid at various ontogenetic 

stages, which is essential for resource management and conservation of the species. 

These findings extend the limited knowledge about the life history of S. lessoniana in 

Taiwan. Future developments can reduce the uncertainty associated with this approach 

and provide more accurate species-specific interpretations of the variations of stable 

isotopic signatures within individuals and stocks of free-moving cephalopods. 
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1. Introduction 

Cephalopods exist in almost all marine environments (Okutani, 2015) and are 

important species for commercial fisheries and are considered as important model 

species for neurobiological and behavioral researches (Jereb and Roper, 2005; 

Kobayashi et al., 2013; Sugimoto and Ikeda, 2013). They share common biological 

characteristics including short life cycles, high metabolic rates, complex behaviors 

and high plasticity life history characteristics. Their growth and population dynamics 

respond sensitively to environmental conditions, such as food abundance, temperature 

and water (Jackson and Moltschaniwskyj, 2002; Forsythe, 2004). Cephalopod 

movement happens during all stages of the life history, from the passive drifting of 

egg and paralarvae with coastal and oceanic currents (O’Dor and Balch, 1985) to 

active vertical and spatial schooling migration at the adult stage for feeding or 

spawning (O’Dor, 1998a). Similar to most marine organisms, the movement pattern 

and distributional range of cephalopods is critical in determining population 

connectivity and dispersal, recruitment success and population gene exchange (O’dor, 

1998b; Moreno et al., 2008), which are key factors for fishery management (Swearer 

et al., 1999; Cowen and Sponaugle, 2009). However, most squid distributions and 

movement patterns are difficult to observe and so are poorly understood. 

 

The bigfin reef squid, Sepioteuthis lessoniana, is widely distributed in the neritic 

waters of the Indo-Pacific Ocean, which includes the waters surrounding Taiwan 

(Roper et al., 1984; Okutani, 2015). Field observations have revealed that adults 

migrate from offshore areas to shallow inshore areas for spawning (Segawa, 1987). In 

the waters off the northern coast of Taiwan, S. lessoniana hatching occurs almost 

throughout the entire year with two hatching peaks in May and August-September, 

respectively (Chen et al., 2015). The population can therefore be divided into at least 

two seasonal groups (spring and autumn) on the basis of back-calculated hatching 

date and life history traits (Ching et al., 2017). This species of squid is important to 

fisheries and is caught by a variety of fishing methods, including jigging, lured-hooks, 

purse seines, set nets and trawls. Although it has the highest economic value among 

squids in Taiwan, empirical evidence concerning the movement and distribution 
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during the ontogenetic stages is similarly scarce. 

 

Several methods for investigating dispersal and movements of squids have been 

developed, but are not always applicable. Movement patterns of squids have been 

collected directly through external tagging (e.g. Ueta and Jo, 1990; Jackson et al., 

2005; Gilly et al., 2006; Kanamaru et al., 2007a; Bazzino et al., 2010). Ueta and Jo 

(1990) studied the migration of subadult–adult individuals of S. lessoniana around 

Tokushima Prefecture in Japan by using the tag–recapture method along with fishery 

data and suggested that this species stayed in inshore waters and migrated to offshore 

waters for overwintering. Kanamaru et al. (2007a) evaluated past tagging studies for 

S. lessoniana migration in Japan and reported that individuals released in autumn 

moved farther than those released in spring. However, external tags may harm 

organisms and increase mortality rates (Sauer et al. 2000; Kanamaru et al., 2007b; 

Barry et al. 2011). In addition, low recapture rates and the size of the electronic device 

usually limit the success of squid tagging experiments (Semmens et al., 2007). 

Although alternative biomarkers, such as parasite communities and molecular 

markers, are not limited by squid body size and can be applied on larval stage 

individuals, these methods cannot provide detailed information on larval dispersal and 

movement patterns (Bower and Margolis 1991; Buresch et al. 2006). On the other 

hand, the movements of squids are attributed to suitable temperature and food 

abundance because squids are highly vulnerable to drastic changes in temperature and 

food availability. Elemental signatures (e.g. Sr:Ca ratio) of the hard structures of squid 

provide a potential method to trace the ambient water temperatures experienced 

(Ikeda et al., 2003; Yamaguchi et al., 2015, Liu et al., 2016; Yamaguchi et al., 2018), 

although the relationships between the Sr:Ca ratio and temperature are inconsistent in 

different species (Elsdon and Gillanders, 2002, 2003; Gillanders et al., 2013). Other 

than elemental signatures, stable isotopic tracers that are more commonly applied to 

teleost otolith should be considered to apply on cephalopod statolith for improving the 

accuracy and reliability of predictions. 

 

1.1. 137Ba mass-marking techniques 
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In recent years, enriched stable isotope marking techniques have been used on 

fishes, such as injecting enriched stable isotopes into mature females (Thorrold et al. 

2006; Almany et al. 2007) or immersing offspring in water with enriched stable 

isotopes (Munro et al. 2008; Smith and Whitledge 2011; Woodcock et al. 2011a). 

These techniques can be used to produce unique isotopic signatures in the biogenic 

carbonates of experimental offspring, which are distinguishable from natural 

populations (Munro et al. 2008; Smith and Whitledge 2011). Stable isotopes of 

barium and strontium have similarities in their ionic radius to Ca2+ and will likely be a 

substitute for Ca2+ in biogenic carbonates (Speer 1983), thus both elements are 

commonly used in the marking experiments. Because barium concentrations are 

relatively low in natural seawater (varying in the range 0.007–15 ppm in seawater and 

fresh water; Bernat et al. 1972; Kresse et al. 2007), performing this technique with 

barium for marine organisms is easier. In addition, marking by feeding Ba-enriched 

dietary items has been suggested as a more effective method in marine systems 

(Woodcock and Walther 2014). The 137Ba isotope is stable in lower abundance 

(11.23%) and is not the major barium isotope (71.1% for 138Ba; Rosman and Taylor 

1998). When enrichment with 137Ba in calcified structures is greater than 

environmental levels, the mark is easily detected and shows a difference from natural 

seawater signatures (Thorrold et al. 2006). Therefore, 137Ba mass-marking techniques 

are likely suitable for tracking larval dispersal and movement patterns of squids in the 

natural environment. 

 

To date, only two studies have evaluated the 137Ba mass-marking technique in the 

early life stages of cephalopods (Pecl et al. 2010; Payne et al. 2011). Due to the 

difficulty in determining the oocyte maturity stage in cephalopod ovaries (Pecl et al., 

2010), maternal injection of stable isotopes may not be available for all cephalopod 

species. In contrast, Payne et al. (2011) combined two 137Ba spiked concentrations 

(0.3 and 1 ppb) with three immersion durations (2, 5 and 8 days) for marking Sepia 

apama eggs hatchlings, and demonstrated the potential of using stable isotopes to 

assess the population dynamics of cephalopods in the field. Given the efficacy of 

enriched isotope marking technique varies among species, the method producing 
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high-quality marking with lower cost in the species of interest has to be evaluated 

(Warren-Myers et al. 2018). 

 

On the other hand, compared with other fluorescent dyes (e.g. alizarin 

complexone), mass-marking methods with enriched isotopes are usually considered 

non-toxic to experimental offspring (Williamson et al. 2009; Woodcock et al. 2011a; 

Warren-Myers et al. 2018). However, increasing evidence suggests that this technique 

may affect hatchling size (Williamson et al. 2009; Starrs et al. 2014a, 2014b). The 

size at hatch is crucially related to swimming and foraging ability, which consequently 

affects survival rate and reproduction (Sogard, 1997). It is unclear if the enriched 

isotope marking method affects the hatchling size of cephalopod species. Moreover, 

the physiological regulation may be altered during the process of enriched isotope 

marking, causing erroneous interpretations for cephalopod behaviours (de Vries et al. 

2005). Such effects must be validated and considered carefully in stable isotope mass-

marking experiments. 

 

1.2. The analysis of oxygen isotope ratio 

Besides enriched isotopes marking, natural isotopic signatures in biogenic 

carbonate can be modified by environmental and biological activity, and thus are 

considered powerful tools for assessing organism dispersal and ecological 

connectivity (Rodgers and Wing, 2008; Kato et al., 2020; Kawazu et al., 2020). In 

fishes, the isotopic composition in otolith formed CaCO3 can provide important 

information on environmental and biological processes (Campana, 1999). Oxygen has 

three forms of stable isotopes: 16O, 17O and 18O, and their relative abundances are 

99.76, 0.04 and 0.20 %, respectively. Due to greater abundances and mass differences 

between 16O and 18O, the oxygen isotope ratio generally focuses on 18O/16O ratio 

(Rohling, 2013). Oxygen isotope ratios in seawater have been considerably linked 

with thermal mechanisms within the hydrological cycle, such as evaporation, vapor 

transport, precipitation and freshwater runoff (Rohling, 2013). The oxygen isotope 

ratio (δ18O) in fish otoliths is in equilibrium with that in the ambient water, and δ18O 

value uniformly increases with a decrease in seawater temperature in various species 
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of fish (Elsdon and Gillanders, 2002; Høie et al., 2004a). Squid statoliths are 

composed of calcium carbonate, and the fundamental mechanism between statolith 

and ontogeny/environment is similar to that of fish otoliths (Arkhipkin et al., 2004; 

Arkhipkin 2005; Gillanders et al., 2013). Therefore, statolith δ18O value can be 

analogously used as proxies for reconstructing the ontogenetic preferences of squids 

(Radtke, 1983; Landman et al., 2004; Trasviña-Carrillo et al., 2018, Chung et al. 

2020). There are a few literatures that predicted the environmental preferences with 

δ18O value in cephalopod statoliths. Landman et al. (2004) assessed the experienced 

temperature of the giant squid Architeuthis sanctipauli to be in the range of 10.5 oC–

12.9 oC and average living depths to be 125–250 m by analyzing the δ18O values in 

one entire statolith, which are considered to provide lifelong average temperature 

data. Trasviña-Carrillo et al. (2018) analyzed the δ18O values in the entire statolith of 

the jumbo squid Dosidicus gigas and found that spatial and trophic preference did not 

differ between sexes, but did among ontogenetic stages because of vertical migration 

for larger individuals. The temporal resolution of their ontogenetic movement and 

distribution history can be increased by micromill sampling, which was used on fish 

otoliths (Høie et al., 2004b), for higher temporal resolution of isotopic information. 

Recently, Chung et al. (2020) conducted a temperature-controlled experiment to 

define the statolith δ18O values of sepia pharaonis exposed to the different ambient 

water temperature. To date, this is the first temperature-dependent equation for δ18O 

values in cephalopod statoliths. Combining the temporal resolution of isotopic 

composition and temperature-dependent equation offers a valuable opportunity to 

study cephalopod movement and their thermal responses to climate change. 

 

1.3. The analysis of carbon and nitrogen isotope ratio 

Like the expression of oxygen isotopes, carbon isotopes typically was expressed 

as 13C/12C ratio (99.89 % and 0.11%, respectively). The carbon isotope composition in 

seawater is mainly controlled by biological and inorganic processes as well as air-sea 

exchange (e.g. Schmittner et al., 2013). For example, living plants preferentially 

incorporate lighter 12C, compared to 13C, into their biomass and have less value of 

stable carbon isotope ratio (δ13C) (about -28‰) for C3 photosynthetic pathway than 



6 
 

the value (about -14‰) for C4 pathway (O’Leary, 1988). Factors affecting δ13C value 

in biogenic carbonate are more complex than those affecting oxygen isotope 

(McConnaughey 1989; McConnaughey et al., 1997). The δ13C value in fish otoliths is 

derived from dissolved inorganic carbon in water (δ13CDIC) and dietary carbon 

(δ13Cdiet). In general, δ13CDIC values are relatively uniform in marine systems, varying 

from 0 to 3‰ on the horizontal distribution and 1‰ in vertical gradient (Lin et al., 

1999; Schmittner et al., 2013; Becker et al., 2016). With a given value of apparent 

oxygen utilization (AOU), δ13CDIC values can be calculated from a simple linear 

relationship between δ13CDIC values and AOU in the global ocean (Kroopnick, 1985). 

On the other hand, δ13Cdiet values in benthic/neritic prey are commonly higher than 

those of pelagic prey (France, 1995). The stable isotopic composition of a consumer 

shows an integrated value of isotopic composition of their prey, suggesting that 

habitat and food utilization affect the carbon isotope composition in the predator body 

(Hobson, 1999). Moreover, carbon sources for biogenic carbonates are derived from 

blood and endolymph of organisms (Campana, 1999). The proportion of respiratory 

and dietary carbon in body fluid increases with faster metabolic rates, reducing the 

δ13C value (Schwarcz et al., 1998; Soloman et al., 2006; Tohse and Mugiya, 2008). 

The δ13C value in biogenic carbonate in such instances records information on 

physiological processes regulating the metabolic rate (Chung et al., 2019a, 2019b), 

such as the swimming activity and growth of organism (Sherwood and Rose, 2003). 

We therefore used the δ13C values in statoliths as a supplement for inferring the 

movement between coastal and offshore seawater corresponding to metabolism and 

dietary shifts. 

 

Similarly, the analysis of δ13C and δ15N of soft tissues is a considerable method to 

infer the trophic relationship in response to foraging ecology and habitat use (Rodgers 

and Wing, 2008; Green et al., 2012). This two stable isotope analysis shows the 

dietary information over a time period from weeks to months depending on size at 

catch and turnover rate (Hobson, 1999). The trophic shifting throughout lifetime has 

not been evaluated for S. lessoniana in the field. Based on empirical observations in 

rearing experiments (Lee et al., 1994; Ikeda et al., 2003), S. lessoniana mainly feeds 
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on crustaceans and fishes, and is sometimes cannibalistic, resulting in similar trophic 

patterns. Due to the presence of different life history stages, which may show a 

distinct habitat use, some degree of spatial, seasonal and bathymetric variability in 

diet may be found using carbon and nitrogen stable isotope analysis of soft tissues. 

 

1.4. Research purpose 

The demographic dynamic has not been fully evaluated for S. lessoniana in 

Taiwan. Given the presence of different life history stages of S. lessoniana, which 

may exhibit distinct habitat use and movement patterns, there is an evident need to 

integrate overall temporal-spatial shifts on dispersal and movement of this species in 

Taiwan waters. This is a fundamental step to having a better understanding about the 

environmental role in the distribution and the population connectivity of this species. 

This study therefore evaluated potential techniques and investigated the movement 

patterns and distribution of S. lessoniana in terms of the individual, seasonal, 

geographical, and population scales by combining stable oxygen and carbon isotopes 

in statoliths, which deduced the experienced temperature and metabolic information 

among life history stages, with stable carbon and nitrogen isotope of muscle tissues, 

available for assessing dietary shifting in each habitat. The objectives of this study 

are:  

 

(I) Evaluate the efficiency of marking statoliths of S. lessoniana embryos with 

enriched 137Ba and the potential effects on the size-at-hatch and statolith chemistry of 

individuals after marking for future application in the field. 

 

(II) First analysis of spatial-temporal stable oxygen and carbon isotope in cephalopod 

statoliths. Then investigate the ontogenetic movement patterns of different seasonal 

and geographical groups of S. lessoniana around Taiwan through statolith δ18O and 

δ13C analyses. 

 

(III) Examine whether δ13C values in statoliths could be a proxy of metabolic rate, 

then δ13C values in muscles and statoliths are used to assess the proportion of 
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metabolically derived carbon (M value). In addition, stable carbon and nitrogen 

isotopes in S. lessoniana muscles were used to provide evidence of diet between 

habitat shifting as growth. 
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2.  

Evaluation of the 137Ba mass-marking 

technique and potential effects in the early life 

history stages of Sepioteuthis lessoniana 
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2.1. Materials and methods 

S. lessoniana egg capsules were collected by SCUBA diving from artificial 

bamboo reefs (depth ~20–25 m) at Wanghaixiang Bay in northern Taiwan in August 

2015. The egg capsules were put in an opaque plastic bucket with natural seawater 

and immediately transported (<2 h) to the aquaculture station of the National Museum 

of Marine Science and Technology (Keelung, Taiwan). Before the experiments, all the 

egg capsules were suspended on nylon threads in a 200-L tank for initial acclimation. 

Natural seawater was collected from Wanghaixiang Bay and pumped through a filter 

bed to supply the rearing system. During the experiment, the seawater temperature 

was maintained at a mean (±s.d.) temperature of 25 ± 1°C, salinity was maintained at 

34.1–34.7 PSU and experiments were conducted under a 12-h light–dark cycle. 

 

In all, 150 eggs with visible embryos at 23–25 developmental stages, which were 

classified according to Segawa (1987), were randomly selected for each group stage 

and reared in a 10-L tank. There were nine experimental groups in total: three 137Ba 

spike concentrations (0.2, 0.5 and 1 ppm) and three immersion durations (1, 3 and 7 

days). These groups were compared against a control group with no spiking. Different 

137Ba concentrations were prepared by dissolving 137Ba-enriched BaCO3 (≥91% 137Ba 

and 8% 138Ba; Trace Sciences International, Richmond Hill, ON, Canada) in ultrapure 

water. For groups immersed for >1 day, half the rearing seawater was replaced daily 

and extra 137Ba spike was added to maintain the concentration of the 137Ba spike. After 

immersion, eggs were returned to the natural seawater until they hatched. The Mantle 

length (ML, mm) and body weight (BW, mg) of the hatchlings were measured. 

Individuals were then sacrificed by exposure to a high concentration of ethyl alcohol 

and their statoliths extracted. The experimental procedures followed the Guidelines 

for the Care and Welfare of Cephalopods in Research – A Consensus Based on an 

Initiative by CephRes, FELASA and the Boyd Group (Fiorito et al., 2015). The 

growth condition factor of hatchlings was estimated based on Fulton’s condition 

factor K, calculated as follows (Ricker 1975): 

K = (BW ÷ ML3) × 100 
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Statoliths were extracted under a stereomicroscope (SteREO Discovery, V12; 

Carl Zeiss Microscopy GmbH, Jena, Germany), cleaned ultrasonically with 70% 

hydrogen peroxide to remove adhering tissue, rinsed three times in ultrapure water, 

placed into acid-washed Eppendorf microcentrifuge tubes and oven dried overnight. 

The statoliths were then transferred to 1.5-mL acid-washed high-density polyethylene 

vials and weighed on a microbalance to the nearest 10 μg. Individual pairs of 

statoliths were dissolved in 0.5 mL of 0.3 M ultrapure nitric acid. Solutions were 

analysed using inductively coupled plasma–mass spectrometry (ICP-MS; ELEMENT 

XR ICP-MS; Thermo Scientific, Bremen, Germany) at the Institute of Earth Science, 

Academia Sinica, Taipei, Taiwan. Nine isotopes (25Mg, 43Ca, 55Mn, 88Sr, 137Ba, 138Ba 

and 208Pb) were analysed in a low-resolution mode and two isotopes (63Cu and 64Zn) 

were evaluated in a medium-resolution mode. Element concentration is shown as a 

ratio relative to the concentration of calcium (mean element (Me) : Ca ratio). The 

carbonate (otolith)-certified reference material FEBS-1 (National Research Council, 

Ottawa, ON, Canada) was used to determine the Me : Ca ratio of samples and 

analysed every fifth sample to instrument drift. In regard to the matrix effect, statolith 

solutions in various calcium concentrations (0.5, 1, 5, 25 and 50 ppm) were tested and 

the Me : Ca ratios of every sample were normalised at the same level of matrix 

concentration. The relative standard deviations of the Me : Ca ratio measurements of 

FEBS-1 were lower than 4% for most elements expect Mn : Ca (Mg : Ca 3.37%; 

Mn : Ca 5.16%; Sr : Ca 1.79%; Ba : Ca 3.44%; Pb : Ca 2.46%; Cu : Ca 1.85%; Zn : Ca 

3.06%), and the percentage accuracy of the Me : Ca ratios was better for Mg : Ca, 

Sr : Ca, Ba : Ca and Pb : Ca (1.04, 0.36; 0.60 and 1.21% respectively) than for 

Mn : Ca, Cu : Ca and Zn : Ca (7.20, 7.91 and 6.76% respectively). However, Mn 

concentrations detected were close to the background level and were excluded from 

further analyses. 

 

Statistical analyses in present study were performed using SPSS (ver. 20, IBM 

Corp., Armonk, NY, USA), as described below. A Shapiro–Wilk was used to assess 

the normality of the data, and Ba stable isotope ratios were found to be non-normally 

distributed. Therefore, a non-parametric Scheirer Ray Hare extension of the Kruskal–
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Wallis test was used to examine the effects of spiked concentration and immersion 

duration on 138Ba : 137Ba ratios. In addition, the effect of 137Ba spikes on the size and 

condition of marked hatchlings were analysed by two-way analysis of variance 

(ANOVA). If significant differences were detected, Tukey’s post hoc test was used to 

evaluate the difference between groups. For statolith chemistry, a forward stepwise 

canonical discriminant analysis was used to evaluate variations in element 

composition (Mg : Ca, Sr : Ca, Zn : Ca, Cu : Ca and Pb : Ca) among the control and all 

treatment groups, and cross-validation was further conducted to assess the percentage 

of successful classifications. In addition, Spearman’s ρ test was used to assess 

correlations between barium stable isotopes (137Ba : Ca and 138Ba : Ca) and other trace 

elements. 

 

2.2. Results 

2.2.1. Barium isotope ratios and mark success 

The 137Ba spike was successfully marked in statoliths because 138Ba : 137Ba 

values decreased with increasing spike concentration or immersion duration. The 

mean (±s.d.) 138Ba : 137Ba ratio in statoliths in the control group was 6.28 ± 0.17, 

which decreased to 3.50 ± 0.22 after 7 days of immersion in 1-ppm 137Ba-spiked 

solution (Table 1, Fig. 1). Significant interactions were found between immersion 

duration and the concentration of the 137Ba spike on 138Ba : 137Ba ratios in hatchling 

statoliths (Scheirer–Ray–Hare extension of the Kruskal–Wallis test, d.f. = 9, SS = 

166601.9, H = 34.577, P < 0.001), so separate Dunn’s tests were used to compare the 

mean 138Ba : 137Ba ratios within groups. Overall, 7 days of immersion produced 

significantly lower mean 138Ba : 137Ba ratios than 1 day immersion for the same spiked 

concentration (Z > 4.057, P < 0.001), and the mean 138Ba : 137Ba ratios of the 1-ppm 

treatment were significantly lower than those of the 0.2-ppm treatment for the same 

immersion duration (Z > 3.510, P < 0.01). Longer immersion durations (3 and 7 days) 

with higher spiked concentrations (0.5 and 1 ppm) produced significantly lower 

138Ba : 137Ba ratios than seen in the control group (Z > 4.564, P < 0.001). An 

additional significant difference was detected between 3- and 1-day immersions in the 

0.2-ppm 137Ba-spiked group (Z > 3.510, P = 0.015). 
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Following the criteria of Payne et al. (2011), the critical value of successfully 

marked squid was set at 5.78, which was the mean ratio of the control group minus 3 

s.d. for 138Ba : 137Ba. A successfully marked statolith was defined as a 138Ba : 137Ba 

ratio in the hatchling statolith that was lower than this value. Higher spiked 

concentrations and longer immersion duration both increased the success rate of 

statolith marking (Fig. 1). For example, no mark was found after 1 day of immersion 

with 0.2 ppm 137Ba spike, but the success rate increased to 40% after 3 days of 

immersion with the same concentration. In total, 100% of squid were successfully 

marked after 3 days of immersion with the 0.5- and 1-ppm concentrations and after 7 

days of immersion with all concentrations. 

 

2.2.2. Hatchling size and growth condition factor 

All eggs hatched 1–5 days after marking. The mean ML of the hatchlings in each 

group ranged from 5.54 to 5.99 mm, the mean BW ranged from 24.4 to 31.3 mg and 

mean Fulton’s condition factor K ranged from 12.98 to 16.43 (Table 1, Fig. 2). No 

interaction between spike concentration and immersion duration was found for ML (F 

= 0.795, P = 0.622), BW (F = 1.162, P = 0.321) or Fulton’s condition factor K (F = 

0.821, P = 0.597) of hatchlings (Table 2). The spiked concentration of 137Ba 

significantly affected ML (F = 5.789, P = 0.001) and BW (F = 6.687, P < 0.001) of 

hatchlings, but not Fulton’s condition factor K (F = 2.530, P = 0.058). Hatchlings 

exposed to spike concentrations of 0.2 and 1 ppm were significantly longer than those 

in the control group (Tukey’s honest significant difference (HSD), P = 0.001 and 

0.008 respectively; Fig. 2a). The BW of hatchlings in the control group was 

significantly lower than that of hatchlings in all spiked groups (P < 0.01, Fig. 2b). 

Conversely, the ML (F = 5.190, P = 0.002), bodyweight (F = 8.222, P < 0.001) and 

Fulton’s condition factor K (F = 3.214, P = 0.024) of hatchlings differed significantly 

among immersion duration treatments. Individuals in most immersion duration groups 

had a larger size in terms of ML and BW than those in the control group, except for 

BW observed after 1 day immersion (P = 0.063). In addition, there was a significant 

difference in Fulton’s condition factor K between 1 and 3 days of immersion (P = 



14 
 

0.013; Fig. 2c). 

 

2.2.3. Element discrimination and correlation 

According to canonical discriminant analysis, hatchling statolith element 

composition did not show a clear pattern of discrimination between the control and all 

experimental groups (Fig. 3). The variations explained by Functions 1 and 2 were 

53.9 and 24.0% respectively. Cu primarily contributed to Function 1 and Zn 

contributed to Function 2 (Table 3). The cross-validated classification success for all 

hatchlings was 24.7%, and ranged from 0% (7 days of immersion with 0.2 ppm 137Ba) 

to 53.3% (7 days of immersion with 1 ppm 137Ba) (Table 4). 

 

Although statoliths were enriched with 137Ba, their elemental:Ca ratios (Cu : Ca, 

Zn : Ca and Pb : Ca) positively correlated not to 137Ba but to 138Ba (Table 2; Fig. 4). 

The regressions of 138Ba : Ca with Cu : Ca, Zn : Ca and Pb : Ca were significant (P < 

0.01), with determination coefficients (R2) of 0.865, 0.741 and 0.248 respectively. 

 

2.3. Discussion 

Because of its crucial role in marine ecosystems and being a highly attractive 

fishery target, effective ecological monitoring and resource management of S. 

lessoniana are needed. In particular, larval dispersal patterns and demographic 

population connectivity have significant effects on marine organism resources 

(Cowen et al., 2000; Thorrold et al., 2001; Jones et al., 2005; Cowen and Sponaugle, 

2009). There are many factors influencing the success rate of mass marking (e.g. 

spike concentration or developmental stage; Payne et al., 2011; Woodcock and 

Walther, 2014). Consistent achievement of 100% mark success is a vital goal for any 

mass-marking technique (Warren-Myers et al., 2018). For fish larvae or eggs, 

concentrations of ≥0.1 ppm 137Ba have been used to achieve 100% mark success by 

immersion (Woodcock et al., 2011a, 2011b; de Braux et al., 2014, Warren-Myers et 

al., 2015). However, the eggs of many cephalopod species (e.g. myopsid squid and 

sepioidea cuttlefish) are coated with encapsulation substances (i.e. a capsule) that are 

effective barriers against metal uptake into the embryo (Rosa et al., 2015). Therefore, 
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the present study examined higher 137Ba spike concentrations to mark large numbers 

of S. lessoniana hatchlings and found that 100% mark success was achieved steadily 

after 3 days of immersion with concentrations >0.5 ppm of the enriched barium stable 

isotope. 

 

This study revealed that 7 days of immersion with lower spike concentrations 

could also achieve 100% mark success, indicating that immersion duration is a critical 

factor for marking S. lessoniana statolith through egg immersion. This may be 

because the perivitelline fluid, which is in the capsule and encasing the embryo, is 

conducive to ambient seawater influx and swells gradually during the late 

development stage (Cronin and Seymour, 2000). Extension of immersion during egg 

swelling results in the uptake of the spiked water, decreasing the 138Ba : 137Ba ratio 

within eggs. A similar effect of immersion duration on Ba stable isotope ratios in 

otoliths of fish species has been reported (Munro et al., 2008; de Braux et al., 2014). 

Yet, this is inconsistent with the results reported for S. apama by Payne et al. (2011), 

who found a significant interaction between the concentration of enriched 137Ba and 

immersion duration, but no significant differences among immersion durations for the 

lower concentration tested (0.3 ppb). Species and physiological differences may 

explain these different results. For example, egg swelling time varies according to 

embryo development period, thus the longer embryo development of S. apama (3–5 

months; Hall and Fowler, 2003) would dilute the contribution of immersion time to 

the 138Ba : 137Ba ratios in S. apama statoliths. Moreover, the relatively low enriched 

137Ba concentration may need a longer time of immersion, and the effect of immersion 

duration would become significant. In the study of Payne et al. (2011), extension of 

immersion duration from 2 to 8 days did decrease 138Ba : 137Ba ratios for the higher-

concentration (1 ppb) treatment group. Therefore, determining the appropriate 

concentration and corresponding time of immersion before using this technique on a 

species of interest is important, because life history characteristics (e.g. developmental 

stage) and habitats (e.g. seawater or fresh water) may affect the effectiveness and the 

costs for mass marking. 
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The ML of hatchlings in this study was consistent with that reported by Lee et al. 

(1994), who continuously cultured S. lessoniana through three successive generations 

and whose hatchlings averaged 5.3 mm ML, ranging from 3.5 to 6.4 mm ML. The 

BW of hatchlings in past studies varies, from a range of 4.3–12.0 mg (mean 8.2 mg; 

Lee et al., 1994) to 50 mg (Segawa, 1987); the BW of hatchlings in the present study 

fell between values published in the literature. In the present study, 137Ba mass 

marking slightly increased the ML and BW of marked hatchlings in some of the 

experimental groups. Larger hatchling size may benefit from an increased attack 

speed (Sugimoto and Ikeda, 2013) and a reduction in the distance required to capture 

prey accurately (Chen et al., 1996). In addition, hatchling size is linked to 

vulnerability to predators (Blaxter, 1986; Sogard, 1997), so that larger size hatchlings 

would have a greater survival rate in the early life history stages. Moreover, the 

growth condition (K) is related to embryo development and environmental variables, 

and individuals in a better condition (K) have higher survivorship and greater growth 

rate (Bolger and Connolly, 1989). However, the K values of hatchlings in the present 

study only differed significantly between two immersion duration groups, indicating 

that 137Ba mass marking did not affect hatchling growth condition. Previous 

experimental results of the effects of transgenerational marking (i.e. injection method) 

on the condition of larval fish were species specific. Positive (Starrs et al., 2014a, 

2014b), negative (Williamson et al., 2009) and no significant effects (Zitek et al., 

2013; Warren-Myers et al., 2015) on size at hatch, yolk sac area, oil globule area and 

eyeball diameter were found among species. The findings of the present study provide 

additional information on cephalopod species marked using the immersion method. 

As noted by Starrs et al. (2014b), the effects of such mass marking with stable 

isotopes on hatchling morphology require additional research, as does the roles of the 

barium during the development of S. lessoniana embryos. 

 

We found different element compositions of statoliths in hatchlings that were 

related to size at hatch, and significant correlations were found between Me : Ca ratios 

(Cu : Ca, Zn : Ca and Pb : Ca) and 138Ba : Ca. The effects on element composition of 

statoliths are not often mentioned in the literature when marking cephalopod offspring 
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with enriched stable isotopes. Element uptake in cephalopod statoliths is presumably 

similar to the observations in fish otoliths (Gillanders et al., 2013) and is primarily 

associated with environmental changes, such as water chemistry composition 

(Arkhipkin et al., 2004) and ambient temperature (Ikeda et al., 2002; Zumholz et al., 

2007). However, in this study the rearing seawater was maintained at consistent 

conditions and egg capsules in the same cluster were used to eliminate any possible 

effects from the maternal yolk (e.g. Lloyd et al., 2008). The difference in growth rate 

between control and experimental groups was a potential explanation for variations in 

element incorporation. Growth rate has been confirmed to be negatively correlated 

with the elemental partition coefficient in otoliths of teleost species (Walther et al., 

2010). A faster growth rate could result in more calcium-binding proteins, altering 

relative ion concentrations in the calcifying fluid (Kalish, 1989). Therefore, trace 

elements such as Cu and Zn have a greater likelihood of being associated with organic 

matrix protein (Miller et al., 2006). In addition, a fast growth rate usually occurs with 

higher calcium carbonate accretion rate (Ikeda et al., 1999), which raises the pH of the 

calcifying fluid and reduces trace element concentrations in the endolymph, resulting 

in a negative relationship between the Me : Ca ratio and accretion rate (Sinclair, 2005; 

Sinclair and Risk, 2006; Hamer and Jenkins, 2007). The lower hatchling size in the 

control group could simultaneously lead to elevated patterns of Me : Ca in statoliths. 

Although the effects of growth rate on the element composition of cephalopod 

statoliths have not been adequately clarified, the physiological processes do 

significantly affect the microchemistry of biogenic carbonates. We emphasis that the 

mechanisms of trace element incorporation into statoliths should be carefully 

considered to avoid confounding environmental signatures with artificial marking. 
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3.  

Seasonal movement patterns of the bigfin reef 

squid Sepioteuthis lessoniana predicted using 

statolith δ18O values 
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3.1. Materials and methods 

3.1.1. Squid collection and age estimation 

Twenty-two and twenty-one adult S. lessoniana individuals were collected by 

jigging from the inshore waters of northern Taiwan and the Penghu Islands (Fig. 5), 

respectively, between November 2017 and March 2018. The mantle length (ML; in 

mm) of each individual was measured. Statoliths were extracted, cleaned 

ultrasonically using 70% hydrogen peroxide, rinsed, oven-dried, and embedded in 

Epofix resin (Struers, Denmark). The left statolith of each squid was ground and 

polished along the posterior side to approximately 50–100 μm above the core by using 

a metallographic grinding and polishing machine (P20FR-HA; Top Tech Machines co. 

Ltd., Taiwan). This thickness ensured that a sufficient volume of milling powder was 

available for isotopic analysis (>40 μg per sample). Alternative formation of 

translucent and opaque growth zones has been previously validated as occurring on a 

daily basis (Jackson, 1990); thus, the growth increment at the lateral dome region of 

statolith was examined from the photographs recorded under a compound microscope 

(400×, DM-2500, Leica Microsystems GmbH, Germany) by using a digital camera 

(DFC-450, Leica Microsystems [Switzerland] Lt., Switzerland) to estimate age. The 

growth increments were counted twice, and an average value was used as daily age. If 

the difference between two counts was >5%, a third count was recorded to minimize 

measurement error (Arkhipkin and Shcherbich, 2012). The hatching date of each 

individual was back-calculated from the deduced age (in days) and the date of 

collection. Each individual was further categorized into the nearest seasonal group 

according to its hatching month, namely spring (March–May), summer (June–August) 

and autumn (September–November). 

 

3.1.2. Isotopic analysis 

After age counting, statolith slides were drilled using an ESI New Wave 

Research Micromill and carbonate powders were collected sequentially from the edge 

to the core at the lateral dome region at intervals of 134–192 μm (Fig. 6). The tip of 

the drill was approximately 200 μm in diameter (H23RS, Comet, Germany), and 

milling depth was set at approximately 150 μm. In squid samples from northern 
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Taiwan, most statoliths involved four drilling paths (except a smaller statolith, 

K180313003, which had three paths only), and each path was recorded to estimate 

covered daily growth. Based on the morphological and ecological changes in 

accordance with growth and age (Segawa, 1987), we defined four stages in S. 

lessoniana from northern Taiwan corresponding to age, namely the embryonic-

paralarval (age: 0–20 days), juvenile (age: 20–60 days), juvenile–subadult (age: 60–

110 days) and subadult–adult (age: >110 days) stages. Conversely, there are three 

larger adults of the summer group from Penghu Islands involving five drilling paths, 

we therefore additionally defined an adult (age: >150 days) stage for the fifth path. 

 

The powder samples of each drilling path were transferred to glass vials and 

reacted with 100% orthophosphoric acid at 70°C in an automated online system (Kiel 

Carbonate IV, Thermo Electron Corporation, Germany) to produce CO2. The values of 

δ18O were determined by analyzing the released CO2 gas by using a mass 

spectrometer (Finnigan MAT 253, Thermo Electron Corporation, Germany) at 

National Taiwan University. The long-term reproducibility of the Finnigan MAT 253 

is higher than ± 0.08‰ (one standard deviation [s.d.]) for δ18O, based on repeat 

samples of international reference standards (NBS-19, approximately 40–50 μg). The 

values of δ18O (‰) were reported in standard notation relative to standards Vienna 

Pee Dee Belemnite (VPDB) after calibration against the NBS-19 standard: 

δ18O values = (
18O:16Osample –  18O:16Ostandard

18O:16Ostandard

)  × 1000(‰) 

 

The temperature-dependent relationship of δ18O values in biogenic aragonites is 

taxonomic and species specific (Shirai et al., 2018). However, no equation has been 

established for statoliths in S. lessoniana; hence, we applied the equation established 

for statoliths in another cephalopod species, Sepia pharaonis (Chung et al., 2020), to 

deduce experienced temperature in S. lessoniana. 
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δ Ostatolith, VPDB – δ Owater, VSMOW  

18

 

18
= 2.88 (±0.14) – 0.20 (±5.40 × 10-3) × T( C 

o
) 

where δ18Ostatolith,VPDB represents the statolith δ18O values on a VPDB scale, and 

δ18Owater, VSMOW represents the water δ18O values on a VSMOW (Vienna Standard 

Mean Ocean Water) scale. The δ18Owater, VSMOW values were derived using the 

relationship with salinity (S) in Taiwan Strait (Chang, 2000): 

δ Owater, VSMOW =
 

18
 0.28 × S – 9.38 

 

To evaluate the feasibility of the equation, the relationship of measured and 

deduced temperature derived from the edge of statoliths in 67 crossed-season captured 

individuals were analysed to understand if it followed the 1:1 correspondence. The 

duration (days) which statolith δ18O values represented was considered, and the 

measured temperature was averaged based on the duration at the depth of 50m. 

 

3.1.3. Prediction of movement patterns 

To accurately predict the experienced temperature and corresponding living areas 

of S. lessoniana, individual differences in living period and temporal and spatial 

variations in seawater temperature were considered in the evaluation. The individual 

living period and season corresponding to each data point of statolith δ18O values 

were established through the examination of microstructure. During the defined 

period, water temperature and salinity were obtained from the HYbrid Coordinate 

Ocean Model website (HYCOM, http://ncss.hycom.org/thredds/catalog.html) and are 

presented in a spatial resolution of 0.08° × 0.08° at the depths of 0, 30, 50, and 100 m, 

according to the living depth of this species (Roper et al., 1984; Tomano et al., 2016; 

Ammar and Maaroof, 2019). Next, we set the unit of the spatial grid at 0.4° × 0.4° to 

establish the movement pattern because this spatial grid covers the minimum range of 

squids captured off northern Taiwan in the present study (Fig. 5). For setting units, the 

average values of temperature and salinity in each grid at each depth (0, 30, 50, and 

100 m) was used to produce δ18Owater, VSMOW values based on the equation established 

by Chang (2000). 
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The deduced temperature depended on the measured statolith δ18O value and the 

variation in water δ18O values among grids at different depths. Therefore, each data 

point of statolith δ18O values was used to deduce the experienced temperature in every 

grid at various depths, each of which had their specific water δ18O values. When the 

deduced temperature matched with the measured temperature (from the HYCOM), the 

grid thus obtained was considered the possible living area of the squid during a 

specific period; this period was estimated using the growth rings in the milling area 

for the statolith δ18O measurement. The extent of match between the deduced and 

measured temperature was based on the comparison of probability distributions 

between these two values determined using Student’s t test (Fig. 7). The probability 

distribution of deduced temperature was modeled using a known living period (days) 

as well as an average and the uncertainty (SD) associated with the deduced 

temperature. The uncertainties were estimated by running Monte Carlo simulations 

1,000 times and included variations in salinity, instrumental measurements, and 

parameters of the temperature-dependent equation. Similarly, the probability 

distribution of measured temperature was modeled using known living periods (days) 

and average values of measured temperature and associated standard deviations. Once 

the t test resulted in a P-value larger than 0.05, we accepted that the two temperatures 

did not differ significantly and inferred a possibility of the occurrence of a living area 

in the grid (Fig. 7). We repeated modeling to determine the matched area and depth of 

each statolith δ18O value from individuals at each life stage. 

 

Furthermore, we considered the collection location, spawning site, and 

movement ability of S. lessoniana to determine the possible living areas. The δ18O 

value in the outermost portion of statoliths reflected the occurrence of S. lessoniana 

near the collection location. If this value represented the 10-day average of the signal, 

the maximum movement of S. lessoniana was calculated to be approximately 50 km 

away from the collection location because the mean swimming speed of adult S. 

lessoniana individuals is 5 km per day, according to a study by Kanamaru et al. 

(2007a). Consequently, grids located farther than 50 km from the collection site were 
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eliminated. In addition to this “backward” evaluation, based on the collection 

location, a “forward” method was also used to evaluate the living area at the 

embryonic-paralarval stage. We excluded the matched areas that were not adjacent to 

the coast because the egg capsules of S. lessoniana are always found in inshore waters 

(Segawa, 1987). Combining the results of forward and backward calculations and 

mobility, the possible occurrence of life stages of individuals were further selected 

from the matched areas found based on the statolith δ18O value. 

 

After examining the living area at an individual level, we calculated the probability of 

occurrence in each setting area for each seasonal group. The probability was 

calculated using the following equation: 

Pj=
C1j+C2j+…+Ckj

kj

 

where Ckj represents the occurrence of kth squid in area j, and kj is the total number of 

individuals in grid j. If squid sample number 1 exists in grid 1 at a specific life stage, 

the Ckj value is 1; otherwise, the Ckj value is 0. Furthermore, the Pj value indicates the 

probability of occurrence in grid j. If the Pj value is 1, all squid samples at the same 

ontogenetic stage occur in grid j. If an area with a probability (p value) of >0.5 is 

identified, it would be considered a major residential area for S. lessoniana seasonal 

groups around Taiwan. 

 

3.1.4. Statistical analysis 

In order to understand the geographical differences in the movement pattern and 

distribution, we compared the squid samples in northern Taiwan and the Penghu 

Islands waters from November 2017 to March 2018. To identify the effects of 

ontogenetic stage and hatching season on δ18Ostatolith value, differences in δ18Ostatolith 

values among all ontogenetic stages over the seasonal groups (spring, summer, and 

autumn) were examined using a nonparametric Scheirer–Ray–Hare extension of the 

Kruskal–Wallis test followed by post hoc multiple comparisons tests (Dunn’s tests). A 
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linear regression and an Analysis of Covariance (ANCOVA) were used to test if the 

experienced temperature deduced by the equation (Chung et al., 2020) was reasonable 

and close to 1:1 correspondence between measured and deduced temperature. All 

statistical tests were conducted using SPSS (ver. 20, IBM Corp., Armonk, USA). The 

t-test used to evaluate the extent of matching between deduced and measured 

temperatures and the Monte Carlo simulations were used for uncertainty 

determination were performed using R (R Core Team 2018). 

 

3.2. Results 

Hatching date and season of all S. lessoniana samples were back-calculated from 

statolith daily increment reading. In squid samples collected from northern Taiwan, 

seven individuals were identified belonging to the spring group with a mean (±s.d.) 

ML of 264 ± 49 mm and an age ranging from 150 to 167 days. Six individuals were 

identified as the summer group with a mean ML of 260 ± 24 mm and an age ranging 

from 146 to 192 days. Nine individuals belonged to the autumn group with a mean 

ML of 298 ± 45 mm and an age ranging from 140 to 177 days (Table 6). In the 

samples collected from Penghu Islands, four individuals were found to belong to the 

spring group with a mean ML of 301 ± 58 mm and an age ranging from 175 to 228 

days. More than a half of individuals (n = 12) of Penghu Islands were identified as the 

summer group with a mean ML of 311 ± 51 mm and an age ranging from 149 to 240 

days. Five individuals of the autumn group had a mean ML of 243 ± 37 mm and an 

age ranging from 143 to 184 days (Table 6). 

 

No significant interaction or differences in ML of squid samples of northern 

Taiwan were observed between seasonal groups (two-way analysis of variance 

[ANOVA], F < 2.470, P > 0.097). Again, there were no significant geographical or 

seasonal differences in ML of squid samples from northern Taiwan and Penghu 

Islands (F < 0.588, P > 0.448). For statolith carbonate sampling, the drilling paths 

represented an average (±s.d.) of 17.2 ± 8.3, 42.9 ± 7.8, 51.4 ± 8.2, and 58.5 ± 12.5 

days growth from the core to the edge that corresponding to the embryonic–

paralarval, juvenile, juvenile–subadult, and subadult–adult stages, respectively. In 
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addition, for the adult stage of three individuals of Penghu Islands, the outermost 

drilling paths represented an average of 59.8 ± 12.7 days living record. 

 

3.2.1. Oxygen isotopic composition of the statolith 

In the squid samples of northern Taiwan, δ18Ostatolith values ranged from −2.93 to 

−0.12‰ with a mean of −1.86 ± 0.79‰. Variations in the δ18Ostatolith values were not 

consistent among seasonal groups (Fig. 8a). Larger variations were observed in the 

summer and autumn groups than in the spring group; however, the δ18Ostatolith values 

were not significantly different among the seasonal groups (Kruskal–Wallis test, H = 

1.506, P = 0.471, Table 7). Ontogenetic stage differences were observed in δ18Ostatolith 

values (Kruskal–Wallis test, H = 39.941, p < 0.001, Table 7). The values decreased 

slightly from embryonic–paralarval stage to the juvenile stage and then increased until 

the subadult–adult stage (Fig. 8b). The values of δ18Ostatolith in the embryonic–

paralarval stage were significantly lower than those in the subadult–adult stage 

(Dunn’s tests, Z = –4.078, p < 0.001). In addition, the values in the juvenile stage 

were significantly different from those in the juvenile–subadult and subadult–adult 

stages. No interaction was observed between the seasonal group and ontogenetic 

stages in δ18Ostatolith values (Table 7). Individual ontogenetic trends showed that the 

δ18Ostatolith values in the spring group ranged between –2.87‰ and –1.61‰ and were 

relatively stable until the statolith edge (Fig. 9). In the summer group, the δ18Ostatolith 

values in the statolith core varied from –2.54‰ to –1.87‰; they decreased to the 

lowest levels, between –2.32‰ and –2.83‰, at the juvenile stage and then increased 

to the highest levels, between –1.06‰ and –0.65‰, in the statolith edge (Fig. 10). 

The δ18Ostatolith values in the autumn group showed a pattern similar to that of the 

summer group (Fig. 11), but the δ18Ostatolith values were higher at the juvenile–subadult 

stage (–2.23‰ to –0.97‰) and subadult–adult stage (–0.50‰ to –0.12‰) than those 

in the summer group. 

 

The δ18Ostatolith values ranged from −3.26 to −0.20‰ with a mean of −1.88 ± 

0.67‰ for the squid samples of Penghu Islands. Significant interactions were found 

between the seasonal group and ontogenetic stage of the δ18Ostatolith values, thus 
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pairwise Dunn’s tests were used to compare the mean δ18Ostatolith values within groups 

(Table 7). Similar to the results of northern Taiwan, the δ18Ostatolith values were not 

significantly different among the seasonal groups (Kruskal–Wallis test, H = 3.304, P = 

0.192, Fig. 12a), but ontogenetic differences were observed (Kruskal–Wallis test, H = 

30.059, P < 0.001, Table 7, Fig. 12b). The value of δ18Ostatolith gradually increased 

from the juvenile stage, and the subadult-adult stage and adult stage showed 

significantly higher values of δ18Ostatolith than other stages (Dunn’s tests, Z = –2.981, P 

< 0.05). A significant difference between the juvenile stage and the juvenile-subadult 

stage was observed (Dunn’s tests, Z = –3.318, P < 0.01). Overall, the individual 

ontogenetic trends of squid samples of the Penghu Islands were slightly different from 

these of northern Taiwan. The δ18Ostatolith values in the spring group ranged between –

2.69‰ and –1.40‰ and decreased between the embryonic-paralarval stage and the 

subadult-adult stage (Fig. 13). Besides three individuals (P171229002, P180117001 

and P180304004) which showed δ18Ostatolith value patterns similar to that of the 

summer group of northern Taiwan, the δ18Ostatolith values in most individuals in the 

summer group showed a constantly increasing trend until the statolith edge, varying 

between –1.86‰ and –0.40‰ at the subadult-adult stage and adult stage (Fig. 14). 

Again, the δ18Ostatolith values in the autumn group increased from the juvenile stage to 

the highest levels, between –1.65‰ and –0.38‰, in the statolith edge, but the 

δ18Ostatolith value in the statolith core of only one individual (P180313002) was 

detected (Fig. 15). 

 

3.2.2. Predicted occurrence area and movement pattern 

Deduced and measured temperature of individuals in northern Taiwan samples 

were close and the linear regression showed a well correspondent (Fig. 16, p < 0.001). 

The slope was not significantly different from the line of 1:1 (F1, 34 = 0.83, p = 0.37) 

indicating that the deduced temperature could reasonably reflect the experienced 

temperature of S. lessoniana. 

 

Figures 17–22 present the distribution of occurrence probability of seasonal 

groups at different depths of northern Taiwan and the Penghu Islands by comparing 
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deduced and measured temperatures while considering collection location, spawning 

site, and movement ability. The probability of occurrence results indicated that the 

three seasonal groups of S. lessoniana around Taiwan have diverse distributions and 

movement patterns. 

 

For the squid samples of northern Taiwan, the individuals in the spring group had 

the highest possibility of hatching in neritic waters (approximate depth: 0–50 m) near 

the coast, extending from northeastern to eastern Taiwan and the Ryukyu Islands (Fig. 

17). After hatching and reaching the paralarval stage, individuals were widely 

distributed in the inshore waters of northeastern Taiwan, possibly from the sea surface 

to an approximate depth of 50 m; these individuals may have subsequently migrated 

to relatively deeper waters near the coast of northeastern Taiwan or to the offshore 

waters of eastern Taiwan. In addition, the waters at a depth of 30-50 m along southern 

Taiwan were also potential hatchling grounds, and the hatched individuals moved 

northward as the growth proceeded. Finally, they mainly remained in the northeastern 

waters during the subadult–adult stages (Fig. 17). The summer group of northern 

Taiwan was most likely to hatch in the areas near northeastern Taiwan, extending 

southward to the Penghu Islands (Fig. 18). However, the predicted distribution at the 

juvenile stage covered a wide area, owing to constant seawater temperatures in 

summer. Similarly, a wide and deep living area (approximate depth: 100 m), including 

the inshore waters of northern Taiwan and the waters near the Ryukyu Islands 

(approximate depth: 100 m), was observed in the last two stages, and it differed from 

the pattern of the spring group. In the autumn group of northern Taiwan, the predicted 

hatching sites were similar to those in the summer group (Fig. 19). However, juvenile 

individuals might have been distributed in the southern waters (Fig. 19), but they were 

not detected in the waters, with the probability > 0.5, because the deduced 

temperature at this stage did not completely match the water temperature in the study 

area. The autumn group then spent their subadult and adult stage (approximately 3–4 

months) in the inshore waters of northern Taiwan at depths between 0 and 100 m 

before capture. 
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For the squid samples of the Penghu Islands, the highest possibility for hatching 

in the spring group occurred in neritic waters (approximate depth: 0–50 m) around the 

both Penghu Islands waters and the waters off northeastern to eastern Taiwan (Fig. 

20). At the juvenile stage, they then distributed mainly at depths of 30-50 m waters 

around the Penghu Islands, or in the inshore waters of northeastern extending to 

eastern Taiwan; these individuals may have subsequently stayed in relatively deeper 

waters in eastern Taiwan or between the Penghu Islands and southwestern Taiwan. 

Finally, they migrated and aggregated to Taiwan Straits during the subadult-adult 

stage, likely at a depth of 0 – 50 m in northern Penghu Islands and approximately 100 

m depth in southern Penghu Islands (Fig. 20). In contrast, the individuals in the 

summer group of the Penghu Islands were most likely to hatch in the waters from the 

Penghu Islands to southern Taiwan (Fig. 21). They also exhibited a wide possibility of 

distribution at the juvenile stage because of the constant seawater temperature in 

summer. When reaching the subadult stage, the individuals of the summer group 

highly aggregated around the Penghu Islands, in comparison to the spring group. The 

depth distribution during subadult and adult stages was random between the sea 

surface to an approximate depth of 100 m. For the adult stage, the occurrence 

probability remained in the same regions as the subadult stage for spawning. The 

individuals in the autumn group of the Penghu Islands seemed to hatch in the waters 

of southern Taiwan; however, the prediction was based on δ18Ostatolith value in the 

statolith core area from a single squid sample. Similarly, a wide possible living area in 

the neritic waters (approximate depth: 0 – 50 m), including the inshore waters of 

northeastern Taiwan and southern Taiwan, was observed in the juvenile stage. The 

individuals at the juvenile-subadult stage consequently migrated to the Taiwan Strait, 

and spent their subadult-adult stage in the northern waters at depths between 0 and 50 

m and about 50 km from the Penghu Islands, before capture. 

 

3.2.3. The geographical overlap during sexual maturity 

The occurrence probabilities in the subadult-adult stages of each seasonal group were 

multiplied to understand their geographical overlap between northern Taiwan and the 

Penghu Islands (Fig. 23). The geographical overlap for all seasonal groups mainly 
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presented in northern Taiwan Strait. The overlapping regions of the spring group were 

located in 118.8 – 120.4○E, 24.2 – 25.4○N. These of the summer and autumn groups 

were closer to Taiwan and in 120.0 – 121.2○E, 23.8 – 25.8○N. The overlapping rates 

among three seasonal groups were lower than 0.5. The highest rate (0.30) was in 0 – 

30 m depth of coastal waters near China for the spring group, following (about 0.28) 

was in 0 – 30 m depth waters by western Taiwan for the summer group. 

 

3.3. Discussion 

Stable oxygen isotope ratios recorded in statoliths provide information regarding 

diverse movement patterns of S. lessoniana; differences in ontogenetic distributions 

were observed among seasonal groups, as well as between geographical stocks. 

Although the approach for investigating the movement of animals by using δ18O 

values in biogenic carbonates has been widely applied in studies on fish (Trueman et 

al., 2012; Currey et al., 2014; Shiao et al., 2017; Darnaude and Hunter, 2018), thus 

far, studies have not adopted this method to determine the movement history of 

cephalopods. We demonstrated the potential of using this approach in studies on 

cephalopod ecology. Because of the significant effects of larval dispersal and 

demographic population connectivity on cephalopod resources (O'Dor, 1992; Boyle 

and Boletzky, 1996; Semmens et al., 2007), the results of the present study may 

improve the fishery management and conservation for the bigfin reef squid. 

 

3.3.1. Variation in statolith δ18O values in relation to experienced temperature 

The variation in statolith δ18O values among individuals has been observed in 

several squid species and is associated with differences in experienced temperature 

(Radtke, 1983; Landman et al., 2004; Trasviña-Carrillo et al., 2018). The general 

trend of statolith δ18O values is to decrease with an increase in temperature; this trend 

follows the theoretical predictions and observations from other biogenic carbonates 

(Rexfort and Mutterlose, 2006; Trueman et al., 2012; Kitagawa et al., 2013; Linzmeier 

et al., 2016). However, assessing the reliability of using statolith δ18O values to 

reconstruct experienced temperature in cephalopods is challenging because previous 

studies have analyzed δ18O value from an entire statolith, which indicates the mean 
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experienced temperature throughout its lifespan. Thus, in our study, we evaluated the 

deduced temperature compared with the seawater temperature and temperature 

preference of S. lessoniana at different life stages. 

 

The deduced temperature of the embryonic stage and an approximate 20-day 

paralarval stage from the statolith core ranged from 20.0°C to 28.5°C, regardless of 

seasonal or geographical groups. This finding was consistent with those of other 

studies that found that S. lessoniana hatches in a warm environment of approximately 

20°C to 30°C (Segawa, 1987; Walsh et al., 2002; Ikeda et al., 2009). Each squid 

species has its optimum living temperature, which supports its growth and survival, 

particularly in its embryonic development and early life stages (Jackson and Choat, 

1992; Forsythe et al., 2001). This suggests that the population of S. lessoniana around 

Taiwan shows a constant preference for this temperature at hatch. 

 

Whether the squid samples were collected from which locations, the statolith 

δ18O values among seasonal groups exhibited similar patterns of variation after the 

paralarval stage because of seawater temperature varying with the seasons. For 

example, the spring group experienced warmer (summer) temperatures at the juvenile 

and adult stages than at the hatching stage in spring. By contrast, the summer and 

autumn groups reached their juvenile and adult stages in autumn and winter, 

respectively, hence, they experienced lower temperatures in their juvenile and adult 

stages than in their hatching stage. The summer and autumn groups exhibited more 

positive δ18O values than the spring group at the juvenile and adult stages because of 

lower temperatures. Thus, the ontogenetic variation in statolith δ18O values in the 

spring group was less obvious than in the summer and autumn groups (Fig. 9-11 and 

Fig. 13-15). The statolith δ18O values of S. lessoniana ontogenetic variation mirrored 

the seasonal temperature fluctuation off Taiwan waters, thus indicating the reliability 

of the prediction method used in the present study. 

 

3.3.2. Prediction of ontogenetic movement and distribution 
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The seasonal and vertical migration of squid species has been described in the 

literatures (Bazzino et al., 2010; Argüelles et al., 2012; Yamaguchi et al., 2019); this 

behavior was also observed in our study. Interpreting time-series data in squids is 

generally more difficult than interpreting data obtained from bivalves (e.g., 

Nakashima et al., 2004; Owen et al., 2008; Nishida et al., 2015) because the squid 

species move freely, unlike bivalves. We converted the measured statolith δ18O values 

to the deduced temperature and cross-matched them with the seasonal and depth 

changes in the seawater temperatures to estimate the probability of the geographical 

distribution of S. lessoniana between two collection sites (northern Taiwan and the 

Penghu Islands), through using a procedure derived from a widely used method to 

study fish migration (involving the use of otolith δ18O values; Thorrold et al., 1997; 

Weidel et al., 2007; Shiao et al., 2014). In our case, the movement patterns of S. 

lessoniana in ontogenetic stages exhibited diversity among the seasonal and 

geographical groups (Figs. 17–22). These findings are comparable to the known 

ecology of S. lessoniana, including spawning (Segawa, 1987), migration (Ueta and Jo, 

1990; Kanamaru et al., 2007a) and depth distribution (Roper et al., 1984; Tomano et 

al., 2016). Therefore, we first explored the movement patterns and distribution of S. 

lessoniana in Taiwan, as well as the roles of environmental factors in the processes, 

and discussed the distribution ranges between northern Taiwan and the Penghu Islands 

to clarify their population connectivity and dynamics. 

 

3.3.2.1. The squid samples of northern Taiwan 

According to statolith δ18O values, most probably the individuals of the spring 

and summer groups hatched near the coasts of northeastern Taiwan, with an 

occurrence probability of 1; these findings support empirical evidence that the waters 

near the coast of northeastern Taiwan are one of main spawning grounds for S. 

lessoniana (Chen et al., 2015; Ching et al., 2017). The dominant topography in 

northern Taiwan is that of an eroded coastline with complicated topographical features 

and structures (Song et al., 1997), forming macroalgae-rich and coral-rich 

environments for spawning. In addition, the quantity of nutrients supplied by the year-

round upwelling of the Kuroshio Current off northeastern Taiwan supports high 
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primary production and sustains sequential consumers in the waters (Liu et al., 1992; 

Chen, 1997; Gong et al., 2003). Therefore, this biomass could be a crucial factor 

sustaining the abundance of S. lessoniana near Taiwan (e.g., Otero et al., 2008; 

Rodhouse et al., 2014). However, the individuals of the autumn group had a high 

probability (> 0.8) of hatching in the waters of southern and southwestern Taiwan 

(i.e., the Penghu Islands). The paralarvae were transported northward by the Kuroshio 

Current or the South China Warm Current into the Taiwan Strait during September 

and October (Tang et al., 2000; Jan et al., 2002, 2006). Although the results suggest 

that waters at a depth of 100 m near the coast of southern Taiwan are also potential 

hatching grounds, adult females are unlikely to have laid eggs at a depth of down to 

100 m because the environment is unsuitable for planktonic paralarvae and no egg 

capsules have been observed on the seabed at the aforementioned depth. 

 

Distribution of juvenile individuals appeared to be widespread around Taiwan, 

both horizontally and vertically. This distribution pattern has two possible 

explanations. First, the juvenile squids were passively shifted by ocean currents, thus 

reflecting the seawater temperatures of a larger region. Second, the consistent 

seawater temperatures around Taiwan in summer and autumn reduced the precision of 

distribution prediction. In particular, the estimated probabilities of juvenile 

distribution in the autumn group were all less than 50%. Compared with the juvenile 

stage, the subadult–adult stages showed a narrower area of predicted distribution. In 

the spring group, the subadult individuals remained at a depth of approximately 50 m 

near the coast of northeastern Taiwan or at a depth of approximately 100 m in the 

inshore waters of eastern Taiwan. Subsequently, adult individuals migrated to the 

northeast coasts for mating and spawning. To our knowledge, larger individuals are 

rarely captured in the eastern waters, which suggests that the eastern waters are not a 

principal habitat for S. lessoniana individuals in the spring group. Nevertheless, the 

occurrence of S. lessoniana in the eastern water needs to be understood through 

additional surveys using systematic fishery records. By contrast, individuals in the 

juvenile–subadult stage in the summer group were mostly found in the areas between 

the coastal waters of China to northeastern Taiwan; furthermore, individuals in this 
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stage in the autumn group might remain in the waters in northeastern Taiwan or 

around the Penghu Islands. Both the summer and autumn groups used the northern 

waters of Taiwan as their main habitat during the adult stage in winter. In addition, 

adult individuals in the autumn group appeared to move to further offshore waters 

(about 100 km). During winter months, drastic reductions in temperature occur in 

northern Taiwan primarily during strong northeasterly monsoon and cold surge events 

(Chen and Huang, 1999; Chen et al., 2002). In such a turbulent state, the individuals 

move offshore for overwintering and return to inshore areas for feeding and spawning 

when the environment becomes relatively stable. This explanation is consistent with 

the findings of Ueta and Jo (1990), who studied the migration of S. lessoniana 

subadult–adult individuals around Tokushima Prefecture. 

 

3.3.2.2. The squid samples of the Penghu Islands 

The waters at depth of 0 – 50 m around the Penghu Islands were the probably 

hatching ground for the individuals of both spring and summer groups, but the spring 

group exhibited another potential hatching ground near the coast of northeastern 

Taiwan (Fig. 20-22). It is commonly believed that S. lessoniana aggregated near the 

coastal waters for spawning (Segawa, 1987; Jereb and Roper, 2005), but the empirical 

evidence for spawning activity around the Penghu Islands is rather limited than in 

northeastern Taiwan. These findings therefore further supported that another 

population of S. lessoniana exists in the waters around the Penghu Islands, which 

have been explored by using life-history traits and statolith elemental signatures 

(Ching et al., 2017). The Penghu Islands is located on the continental shelf between 

Taiwan and southeast Mainland China, and has complex and diverse topography 

(Hong et al., 2011). Hundreds of shallow sandbanks of the Taiwan Bank, with an 

average depth of 20 m, lie in the southwest of the Penghu Islands. The Penghu 

Channel, located in the east of the Penghu Islands, is 100 – 200 m depth in south-

north direction and the shallower Zhangyun Ridge is to the north of the Penghu 

Channel. Seasonal variations of wind directions have endured complex coastal current 

and circulation systems, topographically inducing upwelling to bring nutrient-

enriched water resulting in higher primary production, particularly in summer (Hont 
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et al., 2011; Tseng et al., 2020). These oceanographic features constitute a suitable 

hatchery for this species, making the waters around the Penghu Islands one of the 

main habitats in Taiwan. On the other hand, the hatchery of the spring group near the 

coasts of northeastern Taiwan is related to the connection between the two 

geographical stocks (explained in the following sections). Although the individual of 

the autumn group exhibited potential hatching sources from southern Taiwan near the 

Penghu Channel, this spawning depth (approximate 100 m) is not considered a 

favorite by the pelagic squid species, especially represented from only one individual. 

 

The squid samples of the Penghu Islands among three seasonal groups were 

widely distributed in the waters at depths of 0 – 50 m around Taiwan. However, 

compared with the individuals of northeast Taiwan, the distribution range of the 

individuals of the Penghu Islands waters may reflect the seasonal variations of the 

wind directions over the Taiwan Strait (Jen et al., 2006; Hong et al., 2011). For 

example, weaker southwesterly winds have predominated in summer, and two 

topographically induced upwelling areas occur around the Penghu Islands and near 

the Taiwan Bank, respectively (Hu et al., 2003). The juveniles of spring and summer 

groups aggregated to the two upwelling areas where abundant nutrients are (Fig. 20-

21). On the other hand, the winds have switched to stronger and northeast direction 

and resulted in the China Coastal Water, with low temperature and low salinity, 

southwards into northern waters of the Penghu Islands. The juveniles of the autumn 

group thus shifted through the winter monsoon and distributed in southern waters of 

the Penghu Islands (Fig. 22). At the juvenile-subadult stage, the individuals of the 

spring group stayed at deeper waters (approximate: 50 – 100 m) in the Penghu 

Channel or near the coasts of eastern Taiwan (Fig. 20). In contrast, the subadult 

individuals of the other two groups were distributed in the Taiwan Strait; the summer 

group was at a depth of 100 m near the Penghu Channel (Fig. 21) and the autumn 

group was in neritic waters (Fig. 22). Finally, isothermal line spacing around the 

Penghu Islands might affect the predicted distribution differences of adult individuals 

among seasonal groups. The spring group took northern regions of the Penghu Islands 

or deeper waters in the Penghu Channel as the main habitat during their adult stage 
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and the two areas were topographically inferred as high-nutrient upwelling areas 

(Hong et al., 2011; Huang et al., 2018). However, the statolith edges of these 

individuals have reflected main water temperatures from summer to mid-autumn, 

when the main water mass is warm China Coastal Water (Jan et al., 2010; Huang et 

al., 2018), affecting the precision of distribution prediction. At the subadult-adult 

stage, the autumn group showed a shallower distribution range, corresponding to the 

20○C isotherm with vertical mixing of water masses, which has been demonstrated to 

enhance phytoplankton growth and affect the fishing ground of other fish species (i.e. 

Mugil cephalus, Lan et al., 2014).  

 

Due to the technical limitation of the micromill method, it is difficult to analyze 

more than four drilling paths from one individual except for the larger squid samples 

of the summer group. The additional fifth path provided an opportunity for estimating 

the movement patterns of S. lessoniana after maturity. Interestingly, these individuals 

of the summer group exhibited a limited moving distance from the subadult stage to 

the adult stage, with at most 2 grids in the present study (about 70 – 80 km) (Fig. 21). 

These individuals stayed and spent their 40 – 50 % (about 80 – 110 days) of their 

lifetime near the waters of the Penghu Islands. The short life cycle of loliginid squids 

commonly exhibit a wide variety of reproductive patterns with multiple times of 

mating and spawning during a spawning season (Iwata et al., 2005; Wade et al., 

2005). In addition, male cephalopods usually mature earlier than females, so males 

may have a longer reproductive period (Rodhouse and Hatfield, 1990; Chen et al, 

2015). However, the length of spawning activities of S. lessoniana remains unknown. 

Our results with statolith δ18O values suggested that S. lessoniana hatched in summer 

may migrate aggregately near the Penghu Islands during autumn and winter (Oct. – 

Feb.) for spawning. A similar species, Sepioteuthis australis, distributed in 

southwestern coast of Australia and New Zealand, was demonstrated to spawn over 

months and move over one hundred kilometers but do not leave a spawning ground 

(Pecl et al., 2006). It is critical to know how long it takes for a species to use a habitat 

to reside and reproduce so that we can assess the effectiveness of fishery management 

(e.g. protected area and closed season), and estimate the amount of resources in the 
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region. Long-term monitoring and more detailed temporal resolution of movement 

pattern will be helpful to understand the roles of the waters near the Penghu Islands 

for S. lessoniana. 

 

3.3.2.3. The geographic overlap between northern Taiwan and the Penghu 

Islands 

The immaturity individuals of three seasonal groups in the present study 

exhibited considerable habitat overlap and a possible migration route from the Penghu 

Islands to northeastern Taiwan. In addition, the results showed that the northern 

waters of the Taiwan Strait may overlap its habitat for mature individuals from 

northern Taiwan and the Penghu Islands, suggesting a possibe gene exchange with the 

individuals in the northern waters of the Taiwan Strait. The female could store the 

sperm in their sperm storage receptacles for weeks (Wada and Kobayashi, 1995; Wada 

et al., 2005) until they move to deposit their eggs in inshore shallower waters, 

consequently improving the genetic exchange between the geographical stocks. In 

general, loliginid squids spawn throughout the year and consequently exhibit 

multicohort formations along with highly diverse dispersion patterns; hence, high 

levels of genetic diversity are achieved in the populations of these cephalopods 

(O’Dor, 1998). A study reported that the elemental signatures in the entire statolith 

exhibited less variation between S. lessoniana samples from northern Taiwan and the 

Penghu Islands for the same season (Ching et al., 2017). This finding suggests a high 

level of population connectivity in S. lessoniana in Taiwan. In recent years, the 

coexistence of three cryptic lineages of S. lessoniana has been reported in the Indo-

Pacific Ocean (Cheng et al., 2014; Tomano et al., 2016). These cryptic lineages of S. 

lessoniana exhibit similar morphology but are genetically distinct (Akasaki et al., 

2006; Hsiao et al., 2016; Shen et al., 2016). Although the extent of cryptic diversity 

within the S. lessoniana species complex in Taiwan remains unclear, a single cryptic 

lineage may be predominant in northern Taiwan and the Penghu Islands, based on the 

migration pattern prediction. Additional studies with larger areas of geographic 

sampling and using a combination of molecular methods are needed to provide more 
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knowledge regarding the population structure of the bigfin reef squid over its 

distribution range. 

 

3.3.3. Method improvement and applications in future 

As the first study to determine the ontogenetic movement of squid by using 

statolith δ18O values, this study provided information on the life history of S. 

lessoniana, although the analytical technique can be improved considerably in the 

future. First, the δ18O values in the juvenile statoliths of the autumn group of northern 

Taiwan suggested high experienced temperatures (approximately 25°C –29°C), and 

this does not satisfactorily accord with the observed water temperature range from the 

sea surface to a depth of 100 m depth in autumn. The mechanisms of isotopic 

fractionation in statoliths (such as the results of fish otolith by Thorrold et al., 1997; 

Høie et al., 2004a) and other potential sources of variability (e.g., Høie et al., 2004b; 

Darnaude and Hunter, 2018; Linzmeier, 2019) should be carefully considered in 

further research. Second, the seawater δ18O values vary by <1‰ across the surface in 

the present study area and by approximately 1‰ with depth (LeGrande and Schmidt, 

2006), slightly biasing the prediction of experienced temperature. Salinity was used to 

predict seawater δ18O values, based on the equation established from the waters in 

Taiwan Strait (Chang, 2000). The development of location-specific relationships 

between salinity and seawater δ18O values can minimize the bias of reconstructed 

temperature. Third, reducing the minimum analytical powder amount from statolith 

can increase the temporal sampling resolution and enhance the precision of 

reconstructed temperature (Leder et al., 1996; Høie et al., 2004b). As reported by 

Sakamoto et al. (2019) in their otolith study, the weight of drilling powder can be as 

low as 0.3–11.4 μg, representing a temporal resolution of 10–30 days, which is 

considerably higher than that of this study (>40 μg and approximately 30–60 days). A 

statolith analysis with higher temporal resolution can significantly benefit the studies 

on stock discrimination and individual migration. Fourth, defining minimum and 

maximum probabilities that can indicate the existence of S. lessoniana populations 

requires additional statistical support. In addition, the size of the spatial grid can be 
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reduced to match the movement behavior of S. lessoniana for a higher precision of 

habitat determination. 

 

Seawater temperature directly and strongly affects cephalopod ecology and 

fisheries (Jackson and Moltschaniwskyj, 2002; Forsythe, 2004). Statolith δ18O is a 

crucial parameter that provides evidence of general patterns of distributional extent 

and movement. Statoliths, which are involved in orientation and balance, are found in 

all cephalopod species; hence, they can be widely used for ecological research on 

cephalopods (Clarke, 1978; Arkhipkin 2005). For example, the predicted geographical 

distributions based on statolith δ18O signatures are comparable to the estimated stock 

boundaries determined using fishery data or tagging methods. Precise geographic 

boundary and habitat use (e.g., spawning ground) allow managers to implement 

suitable management measures to conserve targeted species (Gislason et al., 2000; 

Hobday et al., 2010). In recent years, in response to variations in the behavior of 

oceans and difficulties in managing resources, scientists have highlighted the 

importance of technological improvements through use of finer spatial and temporal 

scales for near real-time animal tracking (Maxwell et al., 2015; Dunn et al., 2016). 

Combining the deduced temperatures of the individuals over ontogenetic stages, we 

have described continuous movement patterns of S. lessoniana lifespan. This study 

thus provided the geographical variations of distribution ranges to supply more 

information regarding the population connectivity, and to estimate the genetic flow, 

which may be particularly difficult if complex cryptic lineages of S. lessoniana exist 

in the same region. The intra- and interannual movement patterns also support the 

decisions pertaining to the establishment of fishing grounds, forecasting of catches, 

and dynamic fishery management for cephalopods (e.g., Yamaguchi et al., 2019). 

However, the extent of geographic distribution resolution using statolith δ18O may be 

species specific. Our results showed that accurately predicting residence waters during 

the periods when variations in water temperature of the region are not obvious (from 

summer to early autumn in Taiwan) is relatively difficult. Thus, statolith δ18O is 

unlikely to serve as the main indicator of distribution for tropical cephalopod species. 

Species with a large diel vertical migration (e.g., Young, 1978; Hunt and Seibel, 2000) 
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also probably biases the prediction of experienced temperature, thus increasing the 

risk of misinterpretation when this method is applied to a species. Establishing a 

temperature-dependent relationship of δ18O for specific cephalopod species is also 

necessary for improving the approach in the future. 
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4.  

The ecological inferences using stable carbon 

and nitrogen isotopes on spatial preferences of 

S. lessoniana in Taiwan
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4.1. Materials and Methods 

4.1.1. Squid collection and measurement 

Seventy-seven S. lessoniana individuals were collected by jigging from the 

coastal and inshore waters of northern Taiwan between November 2017 and 

December 2018. As this jigging is a directed and squid-specific fishing method, the 

catch reflected a main size range of the squid, including the recruitment size in 

northern Taiwan. To obtain statoliths for the carbon isotopic analysis over complete 

ontogenetic stages, twenty-two adult S. lessoniana of northern Taiwan and twenty-one 

adult individuals from the Penghu islands waters between November 2017 and March 

2018 were collected for statolith isotopic analysis. All squid samples were frozen 

immediately then were transported to the laboratory for the examination. 

 

The mantle length (ML; in mm) and body weight (BW; in g) of each individual 

was measured. Sexual maturity was determined following given scales for loliginid 

squid by Boyle and Rodhouse (2005): Stage I and II (immature); III (maturing); IV 

(mature). Approximate 1 cm × 0.5 cm of muscle tissues were obtained from the 

mantle of squid individuals. Muscle tissues were rinsed with distilled water, removed 

the skins, dried at 40 ○C for 48 hours, and ground into a fine powder by using a mortar 

and pestle. Dried muscle powder at about 0.70 – 0.75 mg of each sample was packed 

into a tin capsule for subsequent analysis. As long turnover rate tissue, the stable 

isotopes of muscle commonly reflect the ecological records in the recent weeks to 

months duration (Hobson, 1999). Based on their sampling month, the individuals 

therefore were categorized into four groups, namely spring (March–May), summer 

(June–August), autumn (September–November), and winter (December–February) 

sampling groups. 

 

For twenty-two individuals from northern Taiwan and twenty-one from the 

Penghu Islands, statoliths of each squid were extracted, cleaned ultrasonically using 

70% hydrogen peroxide, rinsed, oven-dried, and embedded in Epofix resin (Struers, 

Denmark). The left statolith then was ground and polished along the posterior side by 

using a metallographic grinding and polishing machine (P20FR-HA; Top Tech 



42 
 

Machines co. Ltd., Taiwan) to a distance about 50–100 μm above the core, ensuring 

more than 40 μg milling powder was available for carbon isotopic analysis. The 

growth increment (formed daily, Jackson, 1990) at the lateral dome region of statolith 

was examined from the photographs recorded under a compound microscope (400×, 

DM-2500, Leica Microsystems GmbH, Germany) by using a digital camera (DFC-

450, Leica Microsystems [Switzerland] Lt., Switzerland) to estimate age. The daily 

age of the individual for statolith carbon isotopic analysis was an average value of two 

growth increment counts. Another count had to be made when the difference between 

two counts was >5% to reduce measurement error (Arkhipkin and Shcherbich, 2012). 

The hatching date of each individual was back-calculated from the deduced age (in 

days) and the date of collection. Each individual was categorized into the nearest 

seasonal group according to its hatching month, namely spring (March–May), 

summer (June–August) and autumn (September–November) hatching groups.  

 

4.1.2. Isotopic analysis 

The definition of life history stage and detailed measurement procedure for δ13C 

value of statolith (δ13Cstatolith) is described in above Section 3.1.2.. Each drilling path 

was recorded to determine the life history stage corresponding to covered daily 

growth. 

 

The bulk δ13C and δ15N values of muscle tissues (δ13Cmuscle and δ15Nmuscle) were 

measured by an automatic Elemental Analyzer (Flash 2000 EA, Thermo Fisher 

Scientific, Germany) connected to an isotope ratio mass spectrometer (Finnigan MAT 

253, Thermo Fisher Scientific, Germany). The standards, namely urea, protein and 

carbon and nitrogen isotopes in L-glutamic acid (USGS40), were analyzed in groups 

of seven samples during the measurement process. The reproducibility of the Finnigan 

MAT 253 is higher than ± 0.06‰ (one standard deviation [s.d.]) and ± 0.15‰ for 

δ13Cmuscle and δ15Nmuscle values, respectively.  

 

4.1.3. Data analysis 
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Metabolic rate can be indexed by the width of daily growth increment of statolith, 

water temperature, and body mass. Therefore, we explored the effect of these indexes 

on δ13Cstatolith values at geographical (northern Taiwan; the Penghu Islands) and 

ontogenetic (early stages: embryonic, paralarval, early juvenile; later stages: stage 

later juvenile, subadult, adult) levels by sample and multiple regressions. The width of 

daily growth increments was averaged at each life history stage. The deduced 

temperatures were described in above Section 3.1.2.. The mantle length at each life 

history stage was back-calculated using the logistic growth function in Taiwan (Chen 

et al., 2015): 

𝑀𝐿 =
𝑎

(1 + 𝐸𝑥𝑝 (−𝑏(𝑡 − 𝑐)
 

where a is 426.55, b is 0.02, and c is 141.05 for male individuals; a is 341.05, b is 

0.03, and c is 125.46 for females. Then the estimated BW were derived using the 

relationships between ML and BW (Chen et al., 2015): 

𝐵𝑊 = 𝑎𝑀𝐿𝑏 

where a is 0.0003; b is 2.65 and 2.70 for male and female, respectively. The 

intermediate dates of each life history stage were used to represent the median ML at 

each life history stage, so that the estimated BW could correspond to the δ13Cstatolith 

values at these stages. To identify the seasonal and geographical effects on δ13Cstatolith 

value, we eliminated the potential effects of temperature on the δ13Cstatolith value 

through the linear regression of the δ13Cstatolith values on deduced temperature. A 

nonparametric Kruskal–Wallis test was then used to examine the differences in the 

residual values among seasonal sampling groups and collection sites. 

 

The proportion of metabolically derived carbon (M values) was calculated 

following a two-component mixing model (Schwarcz et al., 1998; Solomon et al., 

2006; Chung et al., 2019a): 

𝛿13𝐶 = 𝑀 ∗ 𝛿13𝐶𝑑𝑖𝑒𝑡 + (1 − 𝑀) ∗ 𝛿13𝐶𝐷𝐼𝐶 + 휀 

where δ13Cdiet and δ13CDIC values are the δ13C values of the dietary carbon and 

dissolved inorganic carbon of seawater, respectively, and the term  is the total net 

isotopic fractionation from the sources to biogenic carbonate. In present study, δ13Cdiet 
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value was δ13Cmuscle value minus 1.6 of trophic enrichment based on Dosidicus gigas 

(Ruiz-Cooley et al., 2006);  was set as 2.7 for aragonite carbonates following the 

result from inorganic precipitation of carbonate (Romanek et al., 1992). The δ13CDIC 

value was acquired from a modelling prediction (Kroopnick, 1985):  

𝛿13𝐶𝐷𝐼𝐶 = 0.0074 × AOU + 1.54 

where AOU is apparent oxygen utilisation, and we set AOU values as annual mean 

values with a spatial resolution of 1° × 1° from the sea surface to 200 m depth around 

Taiwan (117.5 – 124.5○E, 20.5 – 24.5○N), which were obtained from National 

Oceanographic Data Center of NCEI website (https://www.nodc.noaa.gov/cgi-

bin/OC5/woa18/woa18oxnu.pl?parameter=A, Garcia et al., 2009). This M value 

represents the proportion of carbon metabolically derived from the diet. 

 

Finally, to assess the distributions of δ13Cmuscle and δ15Nmuscle values between 

ontogenetic stages and sampling seasons, we determined the isotopic niche overlap 

using the the standard ellipses method of the SIBER (Stable Isotope Bayesian Ellipses 

in R) package, version 2.1.5 in R version 3.4.2 (R Development Core Team, Vienna, 

Austria) (Jackson et al., 2011).  

 

4.2. Results 

The summarized sample information is shown in Table 8. The mean ML and BW 

were 217.2 ± 75.0 mm and 637.7 ± 471.8 g for the individuals with muscle isotopic 

analysis, respectively. The mean δ13Cmuscle and δ15Nmuscle values were -16.88 ± 0.49‰ 

and 12.73 ± 0.72‰, and the mean C:N ratio in muscle was 3.49 ± 0.21. In the statolith 

carbon isotopic analysis, the mean ML and BW were 276.6 ± 43.7 mm and 998.5 ± 

382.9 g for individuals from northern Taiwan and 293.1 ± 54.9 mm and 1298.3 ± 

626.6 g for individual from the Penghu Islands. The δ13Cstatolith values were -9.37 ± 

0.71‰ and -8.86 ± 1.30‰ for northern Taiwan and the Penghu Islands individuals, 

respectively.  

 

Table 9 shows the width of growth increment, estimated ML, and estimated BW 

of S. lessoniana individuals for statolith isotopic analysis in early and later life history 
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stages from two collection sites. Consequently, the explanatory of growth increment 

width, deduced temperature, estimated body weight, as alternative metabolic indexes, 

on δ13Cstatolith values at geographical and ontogenetic levels were examined (Table 10). 

These metabolic indexes have little effect (< 25%) on all life history stages of 

individuals from both collection sites, and no significant effect (P = 0.416) was found 

on the early life history stage from northern Taiwan. The highest R2 of 57% was found 

in the later life history stage of individuals from northern Taiwan. In addition, the 

explanatory levels of alternative metabolic indexes were generally better in later life 

history stage than in the early life history stage. The simple linear regression showed 

that deduced temperature significantly affected the δ13Cstatolith value in all life history 

stages of individuals from the Penghu Islands (F = 8.51, P < 0.01) (Fig. 24), but not 

on individuals from northern Taiwan (F = 3.49, P = 0.66). For individuals from 

northern Taiwan, deduced temperature (F = 46.29, P < 0.001) had a significant effect 

on δ13Cstatolith value in the later life history stages (Fig. 25). For individuals from the 

Penghu Islands, deduced temperature showed significant effect on δ13Cstatolith value in 

both early life history stage (F = 5.12, P < 0.05) and later life history stage (F = 12.45, 

P < 0.01) (Fig. 26). However, estimated body weight showed a positive effect on 

δ13Cstatolith value in the later life history stage of individuals from northern Taiwan (F = 

12.92, P < 0.01) but a negative effect in the early life history stage from the Penghu 

Islands (F = 4.22, P < 0.05) (Fig. 25, 26). 

 

The residuals of δ13Cstatolith values in the linear regression on deduced 

temperatures showed significant seasonal variations between two collection sites (Fig. 

27). In northern Taiwan, the residuals among three seasonal hatchling groups 

decreased in the first three life history stages but those of the autumn hatchling group 

significantly increased at subadult-adult stage (H = 15.12, P < 0.01). The residuals of 

the autumn hatching group were significantly higher than that of the spring hatching 

group (Dunn’s tests, Z = -14.88, P < 0.05). On the other hand, the residuals among 

three seasonal hatchling groups of the Penghu Islands generally decreased over life 

history stages. The residuals of each seasonal hatching group had no significant 

difference between life history stages. The residuals of the autumn hatchling group 
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were also significantly higher than those of the others (Dunn’s tests, Z < -19.28, P < 

0.01). At the geographical level, the residual patterns between two autumn hatching 

groups had significant differences (H = 3.95, P < 0.05). Fig. 28 shows the differences 

in residuals at each life history stage between northern Taiwan and the Penghu 

Islands. There were little differences in residuals for the spring and summer hatching 

group between two collection sites except for the subadult-adult stage of the summer 

hatching group. Conversely, the residuals for the autumn group in the Penghu Islands 

were larger than these in northern Taiwan over all life history stages. 

 

There was no relationship between δ13Cmuscle and δ13Cstatolith values (Fig. 29). 

Based on the AOU acquired in the present study area, the δ13CDIC values were ranged 

from -0.22 to 1.67. Therefore, the calculated proportion of metabolically derived 

carbon (M values) were averaged as 0.66 ± 0.04, ranging between 0.56 to 0.75. 

 

Fig. 30 showed the relationship between log10(BW) and δ13Cmuscle values of 

individuals (n = 77) from northern Taiwan. No significant effect of body weight was 

found on δ13C values of muscle tissues. Given the different patterns observed when 

comparing the δ13Cstatolith residuals between life history stages, we next analyzed the 

variations of δ13Cmuscle and δ15Nmuscle values at the ontogenetic level. Over sampling 

duration (Nov. 2017－Dec. 2018), the δ13Cmuscle values of individuals from northern 

Taiwan did not exhibit obvious trends, and the δ15Nmuscle values generally increased 

with months and maturity stages (Fig. 31, 32). The δ15Nmuscle values of maturing and 

mature individuals were significantly higher than those of immature individuals (H = 

37.58, P < 0.001).  

 

4.3. Discussion 

The application of stable isotope analysis of carbon and nitrogen in ecological 

inferences is continually increasing and has provided insight into the dietary and 

trophic status, habitat use, and movements of a variety of species (Hobson, 1999; 

Trasviña-Carrillo et al., 2018; Simpson et al., 2019; Kato et al., 2020; Kawazu et al., 

2020). Present study investigated the potential methods for inferring the spatial 
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preferences of S. lessoniana using the variations of statolith δ13C value and muscle 

δ13C and δ15N values. The results demonstrated that the alternative metabolic indexes 

significantly affected the statolith δ13C value, and there were ontogenetic and seasonal 

differences in δ13C and δ15N values. Combining previous estimation of movement 

pattern and distribution using statolith δ18O values, stable carbon and nitrogen isotopic 

composition provided a supplementary and valuable test to indicate the habitat and 

movement differences in different life history stages and seasonal hatching groups. 

 

Statolith growth increment width, deduced temperature and estimated body 

weight exhibited partial impacts on statolith δ13C value except for the early life 

history stage of northern Taiwan (Table 10). The stable carbon isotopic composition 

varies because of two sources: (1) DIC in environmental water incorporated through 

the gill or intestine; (2) metabolic carbon from diet and respiration (Kalish, 1991; 

McConnaughey et al., 1997; Chung et al., 2019a, 2019b). To our knowledge, the 

evaluation of metabolic proxy using δ13C value in biogenetic carbonate in 

cephalopods has not been examined yet. The statolith increment width has 

demonstrated to reflect the somatic growth rate of squid (Jackson and 

Moltschaniwskyj, 2001); the temperature and body mass exhibit positive relationships 

with resting oxygen consumption (Clarke and Johnston, 1999; Gillooly et al., 2001). 

These alternative metabolic indexes therefore can be used to test if the statolith δ13C 

value is a metabolic proxy for cephalopods, such as that in teleost fishes. The results 

in present study supported this expectation, but might vary with environmental and 

physiological changes in different life history stages. Cephalopods are poikilothermic 

animals, and temperature is the most influential factor in altering their life cycle, 

including egg development, feeding rate and lifespan (Forsythe et al., 2001, 2002; 

Vidal et al., 2002). Temperature showed a negative effect on statolith δ13C value, 

which is consistent with the results of the temperature-controlled studies on fish 

otoliths (Martino et al., 2019; 2020). However, stronger temperature effects were 

found in the later life history stage (subadult-adult) (Fig. 25, 26). This is likely 

because of the narrower temperature range for hatching (20 – 30○C, Segawa, 1987; 

Walsh et al., 2002; Ikeda et al., 2009) reducing the contribution of ambient 
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temperature on metabolism, which influenced the variation of statolith δ13C values in 

early life history stage (embryonic-juvenile). Estimated body weight contributed a 

portion effect on statolith δ13C values, although not consistent between two collection 

sites (i.e. positive and negative). At the species level, smaller body size has a higher 

mass specific metabolic rate. We observed that statolith δ13C values of northern 

Taiwan individuals increased with estimated body weight, suggesting lower metabolic 

rate of larger individual, while Penghu Islands individuals had an opposite trend in 

their early life history stage. The hatchlings of loliginid squids are planktonic, and 

they switch to active prey capture and highly mobile with the onset of the 

development process (Boyle and Rodhouse, 2005). The locomotion ability at each 

development stage may lead different relationships between statolith carbon isotopes 

and metabolism. In contrast, the statolith growth increment width had a relatively 

slight effect on the δ13C values. Although statolith δ13C values can be a potential 

indicator of metabolic rate to assess the movement patterns such as swimming 

efficiency and feeding activities (Sherwood and Rose, 2003), we emphasize that the 

stable carbon isotopes are altered by the collective effect among multiple factors, and 

cephalopods have the capability to adjust their cellular and mitochondrial energetic 

consumption during short- or long-term changes of temperature and environmental 

conditions (Oellermann et al., 2012). These must be taken into account when using 

statolith carbon isotopes to make ecological inferences to avoid misinterpretations. 

 

The observed differences in residuals of δ13Cstatolith value profiles between 

seasonal hatching groups and collection sites of S. lessoniana indicated the different 

environmental conditions they experienced (Fig. 27). This result supports our 

discussion in section 3.3.. For example, the autumn hatching group of northern 

Taiwan individuals had significantly lower residual values at the juvenile-subadult 

stage, likely associated with higher energetic consumption when migrating between 

coastal and offshore waters in winter. The residuals of the autumn hatching groups of 

both two collection sites were relatively higher than that in the other hatching groups, 

suggesting slower growth rates (corresponding to lower total metabolic rate) were 

maintained during lifetime for autumn hatching groups. In winter, strong and cold 
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northeasterly monsoons covers the waters off northern Taiwan and the Taiwan Strait. 

Searching and staying in suitable habitats may be driven by strategies to avoid drastic 

reductions in temperature and turbulent environment, but habitat depth and diversity 

is linked to metabolic energetic demands, thus inhibiting their growth. 

 

Interestingly, the trends of differences in residuals between two collection sites 

were relatively consistent for the spring and summer hatching groups, but distinct for 

the autumn hatching group (Fig. 28). Consistent residuals of the spring hatching group 

and different residuals at only the adult stage of summer hatching group suggested 

that these individuals from two collection sites might be exposed to environments 

with similar properties before the subadult stage. By using statolith δ18O values, the 

predicted distributions of spring hatching groups from two collection sites did exhibit 

large overlap (Fig. 17 and 20). Large habitat overlap can be also observed in the two 

summer hatching groups, but after the subadult stage, they separately distributed in 

coastal waters near northern Taiwan and the Penghu Islands (Fig. 18 and 21). 

Although technological limitations had reduced the prediction accuracy for the 

autumn hatching group distribution in the early life history stage, the previous results 

by statolith δ18O values indicated the habitat differences after the subadult stage (Fig. 

19 and 22). As per descriptions in section 3.3.2.3., a possible migration route between 

northeastern Taiwan and the Penghu Islands and a high level of genetic flow in S. 

lessoniana were suggested. Combining variations of statolith oxygen and carbon 

isotopic compositions, we therefore conclude that: In summer, due to the warm and 

consistent oceanic environment between northern Taiwan and the Penghu Islands, the 

individuals hatched in spring and summer have a higher level of population 

connectivity within two locations; when winter begins, the cold and turbulent 

environmental condition separates the two geographical stocks, and thus the levels of 

gene flow for the individuals hatched in autumn may decrease. On the other hand, the 

spatial distribution of δ13CDIC value could affect the variations of statolith δ13C value 

in present study (Schwarcz et al., 1998). However, because δ13CDIC value varies in a 

narrow range (about 0.5 – 1.0‰ around Taiwan according to Sheu et al., 1996; Lin et 
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al., 1999), the variation of statolith δ13C value affected by δ13CDIC value should be less 

than 1.0‰. 

 

Compared with statolith δ13C value, we cannot observe a relationship between 

log-transformed body weight and muscle δ13C value (Fig. 30). This variation in δ13C 

value between statolith and muscle may be explained by differences in isotopic 

incorporation and conversion because of dietary influences and tissue metabolic 

turnover. Cephalopods are extremely sensitive to starvation over their lifetime and 

must feed on sufficient food to fuel their metabolism and growth (Vadal et al., 2002, 

2006). The muscle δ13C value therefore is continuously changing due to variable diet 

and fast metabolic turnover. For example, the carbon profiles in muscle fatty acid of 

Lolliguncula brevis squids tended to reflect that of their prey in 10 days of feeding 

(Stowasser et al., 2006). In present study, the carbon isotopic compositions in muscles 

might be driven by the synthesis of new tissues, which significantly reflected recent 

feeding before capture, rather than a direct outcome of metabolism. With this 

assumption, the absence of a metabolic-related signal in muscle might represent more 

feeding history among northern Taiwan individuals. This also explains why there was 

no correlation in δ13C value between statolith and muscle in the present study (Fig. 

29). In teleost fishes, the otolith δ13C value was expected to reflect the same total 

change in muscle δ13C value (Elsdon et al., 2010). However, to our best knowledge, 

this phenomenon has not been examined in cephalopods yet. Additional experimental 

evaluations are needed to provide more information regarding stable isotopic 

fractionation among diet, soft tissues and statolith of S. lessoniana. 

 

Given that the proportion of metabolically derived carbon (M value), which 

increases with an increase of metabolism, in cephalopod statolith is unclear, we 

preliminarily estimated the M values of adult squids (n = 19) by using carbon isotopes 

in the statolith edge and muscle with known parameters. The determination of M 

value can help us to clarify how the statolith δ13C value reflects the chronological 

changes of total metabolic rates within ontogenetic progress. The M values estimated 

here was ranged between 0.56 and 0.75, distinctly higher than the M values estimated 
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by fish otolith δ13C values in the most previous studies (0 – 0.5, Chung et al., 2019a). 

This result is consistent with biological properties of loliginid squids, including 

strong-swimming in neritic waters and maintaining an extremely high level of feeding 

and growth rate throughout the lifetime. Notably, the statolith δ13C value generally 

decreased with ontogenetic changes, indicating a likely lower M value in early life 

history stage. Strong mobility and long-distance movement after the juvenile stage 

may explain this result. For example, subadult and adult individuals in northern 

Taiwan migrate between coastal and offshore waters, causing an increase in metabolic 

rate. The energy or oxygen consumption of reproductive physiology as maturating can 

also alter the metabolic performance. However, juvenile and subadult loliginid squids 

more frequently use energy-efficient movement ways of mantle contraction to replace 

the energy-consuming jet propulsion in the paralarval stage (Boyle and Rodhouse, 

2005; Bartol et al., 2008). In fact, previous estimations of M value were specific to 

particular life history stages, and the metabolic rate of an individual fluctuates in 

response to the dynamics of temperature, growth and activity over the lifetime. 

Moreover, using the δ13C value in soft tissues (i.e. muscle) is an alternative method 

for estimating the metabolically derived carbon isotopes as dietary δ13C value. For 

cephalopods, the typical isotopic shifts between diet and muscle tissue range from 

0.8‰ in coastal marine food webs (France and Peter, 1997) to 1.6‰ of an open sea 

species of Dosidicus gigas (Ruiz-Cooley et al., 2006). Reducing the uncertainty in the 

δ13CDIC and δ13Cdiet values will improve the precision of M value estimation. It is 

certain that the metabolism contributes predominant variations of statolith δ13C value 

for adult individuals of S. lessoniana. We emphasize that further estimating the M 

values during the ontogeny should be able to more comprehensively describe the 

population dynamics and migration throughout life history stages for cephalopods. 

 

Increasing δ15N values, but not δ13C values, were found in muscle tissue with 

body size (28 – 1746 g) of northern Taiwan individuals collected in different months 

(Fig. 31, 32), indicating ontogenetic changes in diet for S. lessoniana. The stable 

isotopic signatures of consumers reflects that of their preys, and carbon and nitrogen 

isotopic composition in tissues have been used extensively to trace the food sources 
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and trophic levels among organisms (Hobson and Welch, 1992; Kelly, 2000). 

Compared to stomach contents analysis, which shows a dietary snapshot in daily scale 

and may be difficult to conduct for cephalopods because of their fast digestion rate, 

stable isotopic signatures provide an integrated estimation of diet over times (from 

weeks to months) and can be used to infer feeding history and movement (Hansson et 

al., 1997; Hobson and Wassenaar, 1999; Toledo et al., 2020). In present study, the 

muscle δ15N values increased from 11.97 ± 0.41‰ in sexual maturity stage I 

(immature) to 13.24 ± 0.55‰ in stage IV (mature), and the difference was no greater 

than the trophic enrichment of δ15N mean values (2.5–3.4‰). By contrast, δ13C values 

are mainly used to determine primary sources within a food web. In the marine 

ecosystems, δ13C commonly exhibit different values between latitudes, inshore and 

offshore, or pelagic and benthic, reflecting variations of plankton compositions 

(Hobson et al., 1994; Hobson, 1999; Argüelles et al., 2012). The muscle δ13C values 

of the present study did not exhibit distinguishable trends with sexual maturity stage, 

ranging from -16.51 ± 0.47‰ in stage I to -16.97 ± 0.45‰ in stage IV. These results 

are consistent with other trophic position studies with cephalopod muscle. For 

example, δ13C values of the oceanic squid Todarodes filippovae were unrelated to 

body size and had approximate 1.3‰ range between different maturity stages (Cherel 

et al., 2009); Hunsicker et al. (2010) found little variation in the muscle δ13C values of 

Berryteuthis magister commander squid with increasing ML. Therefore, the 

ontogenetic diet we have found in S. lessoniana can be concluded as that this squid is 

a highly carnivorous species that consumes consistent species composition of prey in 

the same latitude region, likely between coasts and inshore (variation in δ13C value < 

1‰), whereas the prey size increases within ontogenetic change (increase in δ15N 

values less than one trophic enrichment). The stable isotopic analysis of muscle 

samples from various latitudes (e.g. the Penghu Islands) can clarify the ontogenetic 

shift in diet and feeding differences between locations, helping us to infer detailed 

movement, connection and population dynamic of this species. 
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5. Conclusion 

This study has evaluated the potential of the stable isotopic mass-marking 

approach to track hatchling dispersal of S. lessoniana, and investigated the movement 

patterns and distribution of S. lessoniana around Taiwan by using stable isotopic 

compositions in the statolith and muscle tissue. There are few previous studies on the 

migration over the cephalopod lifetime. In addition, the movement and distribution 

range of S. lessoniana in Taiwan have not been examined yet. Therefore, for the first 

time, our results provide successful marking conditions when using the stable isotope 

marking technique on S. lessoniana and its potential effects on cephalopod statolith, 

and indicate the differences of movement patterns among seasonal groups between 

northern Taiwan and the Penghu Islands as well as the possible variations of their 

distribution ranges within the ontogenetic changes. These findings extend the limited 

knowledge about the life history of S. lessoniana. 

 

Stable isotope mass-marking techniques can be successfully used in fishes. We 

demonstrated unique signatures in S. lessoniana statoliths with 100% marking success 

after 3 days of immersion in 137Ba and provide an approach to unravel the questions 

regarding dispersal mechanisms and movement patterns in cephalopods. However, we 

also found potential effects of stable isotope mass marking on offspring size at hatch 

that are consistent with those reported by an increasing number of studies. The effects 

on embryo development and growth may induce variations in element composition in 

statoliths, probably reflecting physiological processes and statolith accretion, which 

affect statolith chemistry and may subsequently affect the accuracy of interpreting an 

individual’s environmental history. We highlight that the effects of this technique need 

to be taken into consideration in field applications. Additional research investigating 

the relationships among multiple elements and physiological responses to enriched 

stable isotope incorporation will advance our knowledge for the application of these 

techniques to wild cephalopods. 

 

All wild squids possess natural isotopic signatures that are incorporated into their 

statoliths and reflect the environmental temperature or isotopes composition. 
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Migration between waters may produce shifts in isotopic composition. This study 

applied sequential sampling to stable oxygen and carbon isotopic compositions of 

statoliths, and the findings suggest the ecological features of seasonal movement 

strategies and population connectivity in S. lessoniana in Taiwan. As a result, the 

waters off northeastern Taiwan and the Penghu Islands have proven to be an important 

spawning ground for S. lessoniana. Furthermore, the spring and summer hatching 

groups between northern Taiwan and the Penghu Islands may be able to be considered 

as a single stock. Flexible life history traits and a large distribution range are critical 

for cephalopods and support a high level of genetic diversity and ensure population 

abundance. This study provides information on the spatial and vertical distribution of 

S. lessoniana at various ontogenetic stages, which is essential for resource 

management and conservation of this commercial species. 

 

The stable isotopic signatures in muscle tissues reveal more information on the 

variations of trophic levels and distribution ranges of poorly known S. lessoniana. Our 

example of this species illustrated the usefulness of combining the statolith and 

muscle isotopic analysis at the community and population in habitat use and degree of 

specialization of some seasonal groups. In addition to trophic relationships, the carbon 

isotopic analysis also provides an opportunity to estimate the metabolic rate of S. 

lessoniana in the field. A high level of metabolic rate found in adult individuals 

suggested obvious mobility for overwintering, and high feeding rate and energy 

consumption during the reproductive period. The property of continuous 

accumulation of the statolith together with muscle carbon isotopic compositions, used 

as dietary signatures, indicate the ontogenetic changes of metabolism, improving our 

understanding of the activity and oxygen consumption over the lifetime in 

cephalopods. Our results also showed an increasing pattern of nitrogen isotopes and 

relatively consistent carbon isotopic signature, suggesting no obvious dietary shift of 

the squid within the same latitude region. Future developments can reduce the 

uncertainty associated with this approach and provide more accurate species-specific 

interpretations of the variations of stable isotopic signatures within individuals and 

stocks of free-moving cephalopods. 
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Recent environmental and anthropic threats to marine ecosystems have come into 

public notice, increasing the importance of fishery management and conservation 

(Pikitch et al. 2004; Poloczanska et al. 2013; Dunn et al. 2016). Understanding the 

population connectivity and migration of cephalopods is critical in developing 

approaches for the resource management and conservation of marine ecosystems. For 

example, implementing fishery management by restrictions or closed fishing zones 

during spawning seasons will ensure the recruitment of the S. lessoniana population in 

Taiwan is sustainable. Using a variety of methods to obtain more ecological 

information on S. lessoniana is needed. The geographical distribution can be 

delineated based on statolith isotopic signatures and be compared to the estimated 

stock boundaries by fishery data or tagging approaches. These results can be useful to 

determine the detailed migration routes of the squid in further studies in combination 

with isotopic mass-marking tracking and statolith elemental compositions. Moreover, 

the examination of intra- and inter-annual distributions will help us to understand how 

climate change influences their population dynamic. This biological information 

provides insights into the past interaction between organisms and the environment, 

and enables us to better manage cephalopod resources in the future. 
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Table 1 Summary of the mantle length, body weight, Fulton’s condition factor K and 138Ba/137Ba ratio among the control group and all 

experimental treatments. 

 
  Mantle length (mm) Body weight (mg) Fulton's condition factor (K) 138Ba/137Ba ratio 

Treatment n Mean ± s.d. Range   Mean ± s.d. Range   Mean ± s.d. Range   Mean ± s.d. Range 

Control 15 5.54 ± 0.50 4.89 - 6.37  24.40 ± 6.28 10 - 33  14.21 ± 2.79 8.55 - 20.31  6.28 ± 0.17 6.08 - 6.52 

0.2 ppm, 1 day 15 5.96 ± 0.44 5.21 - 6.63  27.53 ± 4.03 17 - 32  13.12 ± 2.27 9.61 - 18.07  6.18 ± 0.17 5.98 - 6.51 

0.5 ppm, 1 day 15 5.78 ± 0.58 4.52 - 6.66  26.73 ± 4.32 16 - 30  14.15 ± 3.25 10.20 - 21.66  6.01 ± 0.15 5.75 - 6.29 

1 ppm, 1 day 15 5.99 ± 0.28 5.41 - 6.60  27.67 ± 1.99 24 - 31  12.98 ± 1.63 10.37 - 16.42  5.85 ± 0.24 5.25 - 6.10 

0.2 ppm, 3 day 15 5.93 ± 0.33 5.14 - 6.27  29.40 ± 3.25 22 - 35  14.13 ± 1.58 12.41 - 17.78  5.83 ± 0.13 5.60 - 6.06 

0.5 ppm, 3 day 15 5.77 ± 0.31 5.17 - 6.13  31.27 ± 2.66 27 - 37  16.43 ± 2.50 13.79 - 23.16  5.30 ± 0.18 4.97 - 5.64 

1 ppm, 3 day 15 5.78 ± 0.17 5.37 - 5.95  28.93 ± 1.83 25 - 32  15.04 ± 1.17 13.77 - 17.44  4.57 ± 0.36 4.12 - 5.44 

0.2 ppm, 7 day 15 5.91 ± 0.25 5.34 - 6.17  28.40 ± 3.54 22 - 36  13.76 ± 1.62 11.23 - 16.48  5.34 ± 0.24 4.89 - 5.78 

0.5 ppm, 7 day 15 5.77 ± 0.31 4.96 - 6.16  28.87 ± 3.50 21 - 33  15.10 ± 1.94 12.75 - 18.59  4.61 ± 0.28 4.29 - 5.21 

1 ppm, 7 day 15 5.84 ± 0.19 5.57 - 6.16   29.00 ± 2.70 25 - 36   14.54 ± 1.12 12.16 - 16.83   3.50 ± 0.22 3.20 - 3.99 
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Table 2 Nonparametric analysis of variance results for the difference in 137Ba-

spiked concentrations (0, 0.2, 0.5 and 1 ppm) and immersion durations (0, 1, 3 and 7 

days) for Ba isotopes ratios in the statoliths of hatchlings. Boldface indicates 

significant P-values. 

  df MS F p 

Mantle length         

Immersion duration 3 0.913  5.190  0.002 

Concentration 3 1.018  5.789  0.001 

Immersion duration × 9 0.140  0.795  0.622 

 Concentration     

Residual 224 0.176    
     
Body weight     
Immersion duration 3 188.949  8.222  < 0.001 

Concentration 3 153.682  6.687  < 0.001 

Immersion duration × 9 26.697  1.162  0.321 

 Concentration 
 

  
 

Residual 224 22.982         
Fulton's condition K     
Immersion duration 3 18.235  3.214  0.024 

Concentration 3 14.353  2.530  0.058 

Immersion duration × 9 4.660  0.821  0.597 

 Concentration     

Residual 224 5.674      
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Table 3 Structure matrix coefficients for Discriminant Function (DF) 1 and DF2 for 

each mean element : Ca ratio used in canonical discriminant analysis for hatchling 

statoliths among the control and experimental groups. Main contributed elements are 

represented in bold. 

Elements DF1 DF2 

Cu/Ca 0.689 0.254 

Zn/Ca 0.506 0.484 

Pb/Ca 0.336 -0.339 

Mg/Ca 0.094 0.042 

Sr/Ca 0.082 0.350 
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Table 4 The cross-validated classification success for the statoliths of hatchlings in the control and experimental groups based on the 

discriminant function analysis scores. Correct classifications are represented in bold. 

Treatments 

 

Control 0.2 ppm 0.5 ppm 1 ppm 0.2 ppm 0.5 ppm 1 ppm 0.2 ppm 0.5 ppm 1 ppm 

  1 day 1 day 1 day 3 days 3 days 3 days 7 days 7 days 7 days 

Control 26.7 26.7 0.0 0.0 6.7 13.3 13.3 6.7 6.7 0.0 

0.2 ppm, 1 day 20.0 20.0 0.0 13.3 0.0 20.0 6.7 13.3 6.7 0.0 

0.5 ppm, 1 day 0.0 0.0 13.3 20.0 6.7 26.7 6.7 6.7 6.7 13.3 

1 ppm, 1 day 6.7 20.0 13.3 26.7 0.0 0.0 26.7 0.0 0.0 6.7 

0.2 ppm, 3 days 13.3 6.7 13.3 0.0 6.7 13.3 13.3 13.3 13.3 6.7 

0.5 ppm, 3 days 13.3 6.7 6.7 0.0 6.7 20.0 0.0 13.3 26.7 6.7 

1 ppm, 3 days 0.0 13.3 0.0 6.7 6.7 6.7 40.0 6.7 6.7 13.3 

0.2 ppm, 7 days 20.0 0.0 6.7 0.0 0.0 13.3 6.7 0.0 20.0 33.3 

0.5 ppm, 7 days 6.7 0.0 6.7 0.0 0.0 13.3 13.3 0.0 40.0 20.0 

1 ppm, 7 days 0.0 6.7 0.0 0.0 0.0 6.7 0.0 13.3 20.0 53.3 
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Table 5 Summary of Spearman’s ρ test between Ba stable isotopes and trace elements in the 

statoliths of hatchlings. Significant correlations (P < 0.05) are in bold. 

 Mg : Ca 

(mmol mol–1) 

Sr : Ca 

(mmol mol–1) 

Zn : Ca  

(μmol mol–1) 

Cu : Ca 

(μmol mol–1) 

Pb : Ca 

(μmol mol–1) 
137Ba : Ca (μmol mol–1)      

 rs 0.503 –0.122 0.055 –0.067 –0.030 

 P-value 0.138 0.738 0.881 0.855 0.934 
138Ba : Ca (μmol mol–1)      

 rs 0.588 0.012 0.794 0.794 0.794 

 P-value 0.074 0.973 0.006 0.006 0.006 
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Table 6 Sampling date, mantle length, age estimation, and back-calculated hatching date 

and season for each S. lessoniana individual used in statolith oxygen isotopic analysis. 

Sample code 
Mantle length 

(mm) 
Age (days) Sampling date Hatching date Seasonal group 

      2017-Northern Taiwan 

K171102001 323 166 2 Nov. 2017 20 May 2017 Spring 

K171102003 285 167 2 Nov. 2017 19 May 2017 Spring 

K171102004 279 153 2 Nov. 2017 2 Jun. 2017 Spring 

K171102006 313 152 2 Nov. 2017 3 Jun. 2017 Spring 

K171102010 239 159 2 Nov. 2017 27 May 2017 Spring 

K171102011 215 167 2 Nov. 2017 19 May 2017 Spring 

K171102012 194 150 2 Nov. 2017 5 Jun. 2017 Spring 

      
K180116002 256 148 16 Jan. 2018 21 Aug. 2017 Summer 

K180116003 231 147 16 Jan. 2018 22 Aug. 2017 Summer 

K180116005 261 146 16 Jan. 2018 23 Aug. 2017 Summer 

K180116007 244 153 16 Jan. 2018 16 Aug. 2017 Summer 

K180116012 264 160 16 Jan. 2018 9 Aug. 2017 Summer 

K180313003 302 192 13 Mar. 2018 2 Sep. 2017 Summer 

      
K180313001 339 176 13 Mar. 2018 18 Sep. 2017 Autumn 

K180313002 302 172 13 Mar. 2018 22 Sep.2017 Autumn 

K180313004 271 163 13 Mar. 2018 1 Oct. 2017 Autumn 

K180313007 253 140 13 Mar. 2018 24 Oct. 2017 Autumn 

K180313008 234 143 13 Mar. 2018 21 Oct. 2017 Autumn 

K180329001 354 177 29 Mar. 2018 3 Oct. 2017 Autumn 

K180329002 360 164 29 Mar. 2018 16 Oct. 2017 Autumn 

K180329003 285 176 29 Mar. 2018 4 Oct. 2017 Autumn 

K180329004 281 174 29 Mar. 2018 6 Oct. 2017 Autumn 

      2017-Penghu Islands 

P171122001 243 175 22 Nov. 2017 31 May 2017 Spring 

P171122002 263 181 22 Nov. 2017 25 May 2017 Spring 

P171229001 330 207 29 Dec. 2017 5 Jun. 2017 Spring 

P180107001 367 228 7 Jan. 2018 24 May 2017 Spring 
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Table 6 Continued. 

Sample code 
Mantle length 

(mm) 
Age (days) Sampling date Hatching date Seasonal group 

      2017-Penghu Islands 

P171127002 200 149 27 Nov. 2017 1 Jul. 2017 Summer 

P171228002 311 198 28 Dec. 2017 13 Jun. 2017 Summer 

P171229002 301 181 29 Dec. 2017 1 Jul. 2017 Summer 

P180116002 312 198 16 Jan. 2018 2 Jul. 2017 Summer 

P180117001 300 184 17 Jan. 2018 17 Jul. 2017 Summer 

P180118001 274 189 18 Jan. 2018 13 Jul. 2017 Summer 

P180118002 287 195 18 Jan. 2018 7 Jul. 2017 Summer 

P180302005 382 240 2 Mar. 2018 5 Jul. 2017 Summer 

P180304001 378 219 4 Mar. 2018 28 Jul. 2017 Summer 

P180304004 327 190 4 Mar. 2018 26 Aug. 2017 Summer 

P180304005 291 201 4 Mar. 2018 15 Aug. 2017 Summer 

P180313001 372 198 13 Mar. 2018 27 Aug. 2017 Summer 

      
P180302001 246 143 2 Mar. 2018 10 Oct. 2017 Autumn 

P180302002 244 169 2 Mar. 2018 14 Sep. 2017 Autumn 

P180304002 188 149 4 Mar. 2018 6 Oct. 2017 Autumn 

P180304003 247 163 4 Mar. 2018 22 Sep. 2017 Autumn 

P180313002 292 184 13 Mar. 2018 10 Sep. 2017 Autumn 
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Table 7 Results of nonparametric analysis of variance to test the differences in S. 

lessoniana statolith oxygen isotopes ratios among seasonal groups (spring, summer, 

and autumn) and ontogenetic (embryonic–paralarval, juvenile, juvenile–subadult, and 

subadult–adult) stages. Boldface indicates significant P-values. 

  df SS MS H P 

      Northern Taiwan 

Seasonal group 2 696.40    1.506  0.471  

Ontogenetic stage 3 18472.92   39.941  < 0.001 

Seasonal group × 6 4558.88   9.857  0.131  

Ontogenetic stage      

Total 73 33762.50  462.50      

            
Penghu Islands 

Seasonal group 2 1820.61    3.304 0.1916 

Ontogenetic stage 3 16562.20   30.059 < 0.001 

Seasonal group × 6 8787.57  15.949 0.014 

Ontogenetic stage      

Total 73 40222.72  551.00     
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Table 8 Sample size, morphology and stable isotopic composition of muscles and statoliths of S. lessoniana from two sampling sites. 

Collection site N Mantle length (mm) Body weight (g) δ13Cmuscle (‰) δ15Nmuscle (‰) C:N ratio of muscle δ13Cstatolith (‰) 

  Range Range Range Range Range Range 

  Mean ± s.d. Mean ± s.d. Mean ± s.d. Mean ± s.d. Mean ± s.d. Mean ± s.d. 

Northern Taiwan 77 
72 － 360 28 － 1746  -18.21 － -15.35 11.11 － 14.40 2.97 － 3.96  - 

 217.2 ± 75.0 623.7 ± 471.8  -16.88 ± 0.49 12.73 ± 0.72 3.49 ± 0.21   - 

        

Northern Taiwan 22 
194 － 360 382 － 1746 - - -  -11.17 － -7.89 

276.6 ± 43.7 998.5 ± 382.9 - - -  -9.37 ± 0.71 

  
      

Penghu Islands 21 
188 － 382 417 － 2510 - - -  -11.37 － -4.41 

293.1 ± 54.9 1298.3 ± 626.6 -  -  -  -8.86 ± 1.30 
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Table 9 The width of growth increment, estimated ML, and estimated BW of S. 

lessoniana in early (embryonic-juvenile) and later (subadult-adult) life history stages 

from two collection sites. The estimated mantle length (ML) and estimated body 

weight (BW) at each life history stage was back-calculated using the logistic growth 

function and the ML-BW relationship, respectively, in Taiwan (Chen et al., 2015). 

Collection site Early life history stage Later life history stage 

  Mean ± s.d. Range 
 

Mean ± s.d. Range 
 

Northern Taiwan 
      

Growth increment width (μm) 3.7 ± 0.7 2.4 - 4.9 
 

2.6 ± 0.5 1.5 - 3.5 
 

Estimated ML (mm) 34.1 ± 15.3 8.3 - 73.4 
 

148.2 ± 56.4 57.8 - 255.3 
 

Estimated BW (g) 4.6 ± 4.1 0.1 - 16.9 
 
221.0 ± 199.6 17.2 - 717.2 

 

       
Penghu Islands 

      
Growth increment width (μm) 4.0 ± 0.6 2.6 - 5.3 

 
2.8 ± 0.5 1.8 - 4.2 

 
Estimated ML (mm) 34.4 ± 15.1 9.0 - 73.4 

 
172.8 ± 76.9 54.3 - 317.5 

 
Estimated BW (g) 5.8 ± 5.7 0.1 - 26.4   360.3 ± 367.1 14.5 - 1278.9   
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Table 10 Results of multiple linear regressions correlating statolith δ13Cstatolith values with 

predicted variables for all, early (embryonic-juvenile) and later (subadult-adult) life history 

stages. The equations of form δ13Cstatolith = a + b1 × (growth increment width) + b2 × 

(deduced temperature) + b3 × (body weight). SEest is standard error of estimate. Boldface 

indicates significant P-values. 

Data set N a b1 b2 b3 R2 P SEest 
         

Northern Taiwan         

All stages 74 -8.881 0.33 -0.06 0.0004 0.14 0.013 0.68 

Early stage 36 na na na na na 0.416 na 

Later stage 38 -6.795 0.25 -0.13 0.0004 0.57 < 0.001 0.45 
         

Penghu Islands         

All stages 80 -4.125 0.55 -0.26 -0.001 0.24 < 0.001 1.15 

Early stage 35 -2.725 0.31 -0.26 -0.052 0.28 0.016 1.00 

Later stage 45 -2.449 0.21 -0.29 -0.001 0.29 0.002 1.24 
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Figure 1 Mean (±s.d.) Ba isotope ratios in the statoliths of hatchlings immersed in 

water with 137Ba-spiked concentrations of 0.2 (light gray bars), 0.5 (dark gray bars) 

and 1 ppm (black bars) for 1, 3 and 7 days. Error bars indicate standard deviations, 

and labels below the columns indicate the percent of mark success for each group. 

The dashed line indicates the natural 138Ba/137Ba ratio.
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Figure 2 Mantle length, bodyweight and Fulton’s condition factor K of hatchlings 

immersed in water with different concentrations of 137Ba spike, namely 0.2 ppm (light 

grey bars), 0.5 ppm (dark grey bars) and 1 ppm (black bars), for 1, 3 and 7 days and 

the control group. The boxes show the interquartile range, with the median value 

indicated by the horizontal line; whiskers show the range. Circles indicate outliers in 

each experimental group. 
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Figure 3 Forward stepwise canonical discriminant analysis using Mg, Sr, Zn, Cu 

and Pb in the statoliths of hatchlings among control and all experimental groups 

immersed in water containing different concentrations of 137Ba spike (0.2, 0.5 and 1 

ppm) for 1, 3 and 7 days. 
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Figure 4 Linear regressions between mean element : Ca ratios and 138Ba : Ca in the 

statoliths of hatchlings. Symbols indicate different treatment durations (circle, control; 

square, 1 day; diamond, 3 days; triangle, 7 days) and difference 137Ba spike 

concentrations (white, 0.2 ppm; grey, 0.5 ppm; black, 1 ppm). Error bars indicate the 

s.d..
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Figure 5 Map showing the collection locations (slanted lines). The unit of spatial 

grids was 0.4° × 0.4° for the establishment of occurrence probability. 
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Figure 6 Polished S. lessoniana statolith (K180116012) with the drilling paths for 

powder collection. (a) White solid lines indicate the entire powder collection area at 

the lateral dome region and dashed lines indicate approximate boundaries of the 

drilling path. Arrow indicates the statolith core. Scale bar = 400 μm. (b) The setting of 

the drilling path. Yellow and green lines indicate the paths of drill tip at the core and 

the outers of the core, respectively, square as a turning point. The intervals between 

lines are 134–192 μm.
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Figure 7 Determination of matching between deduced and measured temperature 

from the two-sample t test. The deduced temperature was based on the statolith δ18O 

values and measured temperature was the data extracted from the HYbrid Coordinate 

Ocean Model website. The test was conducted in each spatial grip (0.4o × 0.4o) at 

depths for each specific life stage of S. lessoniana. The criteria of matching was set as 

the P-value of 0.05. 
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Figure 8 δ18Ostatolith values in S. lessoniana hatched in 2017 from northern Taiwan in 

three seasonal groups and at four ontogenetic stages. The box plots show the 

interquartile range, with the median value indicated by the horizontal line; whiskers 

show the range. Circles indicate outliers. 
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Figure 9 δ18Ostatolith profiles of S. lessoniana from the statolith core to the edge of 

each individual in the spring group of 2017-Northern Taiwan. 
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Figure 10 δ18Ostatolith profiles of S. lessoniana from the statolith core to the edge of 

each individual in the summer group of 2017-Northern Taiwan. 
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Figure 11 δ18Ostatolith profiles of S. lessoniana from the statolith core to the edge of 

each individual in the autumn group of 2017-Northern Taiwan. 
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Figure 12 δ18Ostatolith values in S. lessoniana hatched in 2017 from Penghu Islands in 

three seasonal groups and at five ontogenetic stages. The box plots show the 

interquartile range, with the median value indicated by the horizontal line; whiskers 

show the range. 
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Figure 13 δ18Ostatolith profiles of S. lessoniana from the statolith core to the edge of 

each individual in the spring group of 2017-Penghu Islands. 
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Figure 14 δ18Ostatolith profiles of S. lessoniana from the statolith core to the edge of 

each individual in the summer group of 2017-Penghu Islands. 
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Figure 15 δ18Ostatolith profiles of S. lessoniana from the statolith core to the edge of 

each individual in the autumn group of 2017-Penghu Islands. 
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Figure 16 The linear relationship between deduced temperatures from δ18O values 

of individual statolith edges and corresponding measured temperatures in the same 

period. Horizontal error bars indicate one standard deviation of measured temperature; 

vertical error bars indicate one standard deviation evaluated by using Monte Carlo 

Simulations and considering uncertainty caused from salinity and parameter variation 

in the equation. Dashed line indicates the 1:1 correspondence. 
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Figure 17 Probability distribution based on experienced temperatures in S. 

lessoniana individuals in the spring group at each life stages of 2017-Northern 

Taiwan. The legend indicates the probability value of occurrence. 
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Figure 18 Probability distribution based on experienced temperatures in S. 

lessoniana individuals in the summer group at each life stage of 2017-Northern 

Taiwan. The legend indicates the probability value of occurrence.
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Figure 19 Probability distribution based on experienced temperatures in S. 

lessoniana individuals of the autumn group at each life stage of 2017-Northern 

Taiwan. The legend indicates the probability value of occurrence. 
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Figure 20 Probability distribution based on experienced temperatures in S. 

lessoniana individuals of the spring group at each life stage of 2017-Penghu Islands. 

The legend indicates the probability value of occurrence. 
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Figure 21 Probability distribution based on experienced temperatures in S. 

lessoniana individuals of the summer group at each life stage of 2017-Penghu Islands. 

The legend indicates the probability value of occurrence. Note that the adult stage was 

only shown in the summer group in 2017-Penghu Islands. 

  



110 
 

 

 

Figure 22 Probability distribution based on experienced temperatures in S. 

lessoniana individuals of the autumn group at each life stage of 2017-Penghu Islands. 

The legend indicates the probability value of occurrence. 
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Figure 23 Overlapping rates at the subadult-adult stages of S. lessoniana individuals 

among three seasonal groups between northern Taiwan and the Penghu Islands. The 

legend indicates the probability value of geographical overlap. 
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Figure 24 The relationship between deduced temperature and δ13Cstatolith value for 

all life history stages of Penghu Islands individuals. Symbols indicate different life 

history stages (open triangle: embryonic-paralarval; solid triangle: juvenile; open 

circle: juvenile-subadult; solid circle: subadult-adult; solid diamond: adult) and 

seasonal hatching groups (green: spring; blue: summer; orange: autumn). 
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Figure 25 The relationship between alternative metabolic indexes (deduced 

temperature and estimated body weight) and δ13Cstatolith value for the later life history 

stage of northern Taiwan individuals. Symbols indicate different life history stages 

(open circle: juvenile-subadult; solid circle: subadult-adult) and seasonal hatching 

groups (green: spring; blue: summer; orange: autumn). 
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Figure 26 The relationship between alternative metabolic indexes (deduced 

temperature and estimated body weight) and δ13Cstatolith value for the (a, b) early and 

(c) later life history stage of Penghu Islands individuals. Symbols indicate different 

life history stages (open triangle: embryonic-paralarval; solid triangle: juvenile; open 

circle: juvenile-subadult; solid circle: subadult-adult; solid diamond: adult) and 

seasonal hatching groups (green: spring; blue: summer; orange: autumn). 

 



115 
 

 
Figure 27 The variations of residual values of seasonal hatching groups (green: 

spring; blue: summer; orange: autumn) among different life history stages. These 

residual values were acquired from a linear regression of δ13Cstatolith values on the 

deduced temperatures. Error bars indicate the s.d.. 
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Figure 28 The residuals of the Penghu Islands minus these of northern Taiwan at 

each life history stage. The colors indicate seasonal hatching groups (green: spring; 

blue: summer; orange: autumn). 
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Figure 29 δ13C values in muscles and statolith edge of northern Taiwan individuals 

(n = 19). 
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Figure 30 The relationship between log10(body weight) and δ13Cmuscle values of 

northern Taiwan individuals (n = 77). Note that symbols here indicate different sexual 

maturity stages (open triangle: I; solid triangle: II; open circle: III; solid circle: IV). 
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Figure 31 The variations of δ13Cmuscle and δ15Nmuscle values of northern Taiwan 

individuals (n = 77) over the sampling duration. Note that symbols here indicate 

different sexual maturity stages (open triangle: I; solid triangle: II; open circle: III; 

solid circle: IV). 
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Figure 32 δ13C and δ15N values in muscles of northern Taiwan individuals. Ellipses 

represent the standard ellipse area (SEA) estimated for each sexual maturity stage. 

Note that symbols here indicate different maturity stages (open triangle: I; solid 

triangle: II; open circle: III; solid circle: IV). 
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