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	 Transferring between a ship and an offshore platform is potentially dangerous owing to 
excessive motion caused by rough conditions. In this paper, we focus on a small vessel with 
consideration of three degrees of freedom of motion: heaving, rolling, and surging. To stabilize 
these motions using a relatively small device, we propose an underactuated mechanism 
including two linear actuators and a two-degree-of-freedom gangway connected to the transfer 
platform. First, we clarify the degrees of freedom and range of the mechanism. Next, we 
derive a model and design a controller to stabilize the system. Finally, the effectiveness of 
the mechanism and its controller are tested by numerical simulation as well as by an actual 
experiment on a small-scale model of the mechanism.

1.	 Introduction

	 At sea, ships are greatly affected by waves. Therefore, in many ports, breakwaters have been 
built to reduce the rocking of ships at the docks and to increase safety by preventing waves 
from coming in from the open sea. However, some remote islands and offshore facilities are not 
protected by breakwaters, and the waves can cause ships to rock significantly. As an example, 
Hashima Island, located in Nagasaki and recently placed on the World Cultural Heritage list, is 
not surrounded by breakwaters. Therefore, the rocking of ships used for tourism is not reduced 
and directly reflects the sea conditions. Therefore, a rope is used to fix ships to the land. 
However, such a ship is not well constrained, and, depending on the sea conditions, the rocking 
of the ship may be uncontrollable, making it impossible to land. Therefore, various studies are 
being conducted on the analysis and prediction of ship sway.(1,2)

	 Generally, a gangway is commonly used for transfer between ship and land. A gangway 
is a device attached to the ship side and used as a bridge to the land. It is used in many ships 
because of its ease of use, but it can only be used in places where the motion of the ship is 
small. Because of the dangers involved in the use of a gangway in remote islands and offshore 
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power generation facilities, motion reduction devices have been developed for use in places 
where ships are subjected to significant rocking. Such motion reduction devices are installed 
on the ship side and reduce the sway of the gangway on which people are moving, allowing a 
gangway to be used in places where the ship sways greatly. These devices have mainly been 
commercialized in Europe, where maritime policies are more advanced, and include Momac 
Offshore Transfer System (MOTS)(3–5) and Ampelmann.(3–5) MOTS is a motion reduction 
device for serial linkage mechanisms. It is used to access offshore wind power facilities owing 
to its relatively small size and wide range of motion. However, owing to its low carrying 
capacity, it is used for transferring a small number of people but is not suitable for transporting 
cargo. On the other hand, Ampelmann is a parallel link mechanism called a Stewart platform,(6) 
which is used for various purposes in addition to sea transfer, and it has been used to access 
offshore wind and oil field facilities. It can carry cargo due to its high rigidity and high 
carrying capacity, but its range of motion is narrow and its mechanism is large. Both of these 
large motion reduction devices have advantages and disadvantages, and their mechanisms are 
selected according to the operating environment, but they can only be installed on large vessels. 
However, in Japan, relatively small vessels such as fishing boats and tourist boats are often used 
to access remote islands and maintain offshore power generation facilities, and motion reduction 
devices for these vessels have not been introduced to the Japanese market. A horizontal sliding 
system for ship motion stabilizers using a parallel link mechanism has also been studied.(7–9) 
Although research on motion reduction devices exists, they are not widely used in Japan, and 
more research is needed for their practical use.
	 In this paper, a motion reduction device using an underactuated parallel link mechanism that 
enables space-saving, miniaturization, and cost reduction is focused on. Relatively small vessels 
such as fishing boats, tourist boats, and offshore wind power maintenance vessels are considered 
as targets for this device. The number of actuators is reduced by using an underactuated 
mechanism, which results in reductions in the cost and size of the motion reduction device. The 
controller of the motion reduction device is designed by using the input linearization technique, 
and its effectiveness is confirmed in a simulation and experiment using a small-scale device. 

2.	 Design of Motion Reduction Device

	 Two types of mechanism are used in existing motion reduction devices: serial link and 
parallel link. The parallel link mechanism consists of several links and joints arranged in 
parallel between the output link and the base. The links are not subjected to a bending moment, 
and the actuator can be placed close to the base. Also, because it is a closed-loop mechanism, 
the total output of the actuators becomes the output of the main body, and the errors of the 
actuators are averaged out, it has higher output and higher accuracy than the serial link 
mechanism. However, it has structural problems such as a relatively narrow range of motion 
and interference between the position of the output and the characteristics of the posture, which 
require the careful selection of design and operation methods. 



Sensors and Materials, Vol. 33, No. 3 (2021)	 899

2.1	 Underactuated parallel mechanism

	 Since this research targets small ships, a small and low-cost motion reduction device that 
saves space but has sufficient power output to allow people to ride on the ship is required. 
Also, it is desirable to design the system in such a way that the control error is as small as 
possible. Therefore, a parallel link mechanism is chosen to achieve high power, rigidity, and 
accuracy. However, the parallel link mechanism tends to result in a relatively large device, 
which is a concern for space-saving and miniaturization. Therefore, in this study, we propose 
an underactuated parallel link mechanism to reduce the number of actuators to save space 
and reduce the size of the device. Figure 1 shows the proposed inferior-drive parallel link 
mechanism. The mechanism consists of a rotary joint and a prismatic joint, with the latter used 
as the actuators. The output plate has three degrees of freedom: heaving, surging, and pitching. 
The number of degrees of freedom of the mechanism in Fig. 1 is calculated using Grübler’s 
formula:(10)

	
1

( 1)
n

i
i

F d l n f
=

= − − +∑ ,	 (1)

where F is the number of degrees of freedom of the output plate, d is the number of dimensions 
of the motion space, l is the number of links, n is the total number of joints, and fi is the number 
of degrees of freedom of the joints. In this mechanism, the number of dimensions of the motion 
space is d = 3, the number of links is l = 6 (one for the base plate, one for the output plate, 
and two each for the two actuators), the total number of joints is n = 6 (two for the base plate, 
two for the output plate, and one each for the two actuators), and the total number of degrees 
of freedom of the joints is ∑ fi = 6 (one degree of freedom each for the two actuators and one 
degree of freedom each for the four rotary joints). Substituting these values into Eq. (1), we 
obtain F = 3. Thus, the number of actuators in the mechanism can be reduced by introducing an 
underactuated system. However, the underactuated system has a small area of stability under 
gravity and easily loses stability due to external disturbances. Therefore, in this study, the 
underactuated parallel link mechanism is not used as a stand-alone system but as part of a sway 
reduction system that includes the ship and the land as shown in Fig. 2.

Fig. 1.	 (Color online) Three-degree-of-freedom parallel mechanism.
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2.2	 Motion reduction device

	 This mechanism uses two linear joints as actuators and a rotational joint to connect the 
end-plate to the output plate. Also, two linear joints and a rotational joint are used to represent 
the rocking of the ship, and a linear joint and a rotational joint are used to connect to the land 
side. In the mechanism shown in Fig. 3, the number of dimensions of the motion space is d = 3, 
the number of links is l = 6, the total number of joints is n = 6, the total number of degrees of 
freedom of the joints is six, and the total number of degrees of freedom of the joints is ∑ fi = 11 
(one degree of freedom each for the five actuators and one degree of freedom each for the six 
rotational joints). Substituting these values into Eq. (1), we obtain F = 5. Thus, this mechanism 
has five degrees of freedom. For the entire motion reduction system including the ship and 
the land, the output plate has two degrees of freedom, and the redundancy of the degrees of 
freedom for the actuator is lost. The position and orientation of the output plate are uniquely 
determined by the motion of the ship and the length of the actuator. On the other hand, the three 
degrees of freedom of the ship remain, and the two actuators can cancel the sway of the three 
degrees of freedom, which means that the design can be realized with fewer parts than a general 
sway reduction system using a parallel link mechanism.

3.	 Design of Controller

	 In this section, the design of the control system for the proposed motion reduction system 
is described. First, the control system of the planar mechanism is designed, and then the 
position control controller is designed. Finally, the effectiveness of the system is confirmed by 
simulation.

3.1	 Modeling

	 The planar mechanism including the ship and land is represented in Fig. 4. The following 
eight variables are defined: lL and lR are the lengths of the linear actuators, θ is the tilt angle 
from the horizontal plane, ϕL and ϕR are the angles between the linear actuators and base plate, 
and γ, h, and v represent the ship’s motion. We define a state vector q consisting of the eight 
variables:

Fig. 2.	 (Color online) Ship, motion reduction device, 
gangway, and land.

Fig. 3.	 (Color online) Simplified model. 
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	 [ , , , , , , , ]TL R L Rq l l h vθ φ φ γ= .	 (2)

	 The total length of the output plate is L, the length from the left end of the output plate to the 
rotation joint is Lt, the length of the base plate is Lb, the lengths from the center of gravity of 
the ship to the actuator connection points are a and b, and the vertical distance from the origin 
of the inertial coordinate system to the output plate is Yc. The mechanism has the constraint 
conditions [Φ1, Φ2, Φ3]T = 0, where Φ1 and Φ2 are due to the closed links and Φ3 is due to the 
constraint on the land side. These constraints can be calculated as

	 1 cos cos( ) cos 0L L t R R bl L l LΦ φ θ γ φ= + − − − = ,	 (3)

	 2 sin sin( ) sin 0L L t R Rl L lΦ φ θ γ φ= + − − = ,	 (4)

	 3 sin cos sin( ) sin 0L L ca b l L h YΦ γ γ φ γ θ= + + + + + − = .	 (5)

From these equations, the time derivative of the constraint condition is expressed as

	 ( ) ( ) 0d q A q q
dt
Φ

= = .	 (6)

By using Eq. (6) and a matrix S(q) that satisfies A(q)S(q) = 0, the kinematic model for the 
combined hull and sway reducer is

	 ( ) ( ) ( )
u

q S q F q u G q w
w
 

= = + 
 

 ,	 (7)

Fig. 4.	 (Color online) Definition of the coordinate system and variables.
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where u is the input and represents the velocity of the actuator, and w is the disturbance and 
represents the translational velocity and angular velocity of the wave oscillation.
	 In the position controller design, the actuator length is calculated using the state of the output 
plate as the target state, and position control is performed using the deviation from the current 
actuator length. Therefore, the deviation of e from the current position of the actuator to the 
target length is calculated as

	 ( ) Ld LL

Rd RR

l le
e t

l le
−  

= =    −   
,	 (8)

where x and θ are the control targets and represent the state of the output plate. Also, x is 
obtained using the state variables as

	 ( ) cos sin cos( ) cosLx q v a b l Lγ γ φ γ θ= + − + − + .	 (9)

To linearize Eq. (7), we introduce a virtual input U given by

	 ( ) ( ) ( )hU y q H q F q u G q w
q
∂

= = = +
∂

  .	 (10)

With U as the virtual input, a controller based on proportional–integral–derivative (PID) control 
is used. 

	
0

( ) ( ) ( )
T

p D I
dU K e t K e t K e t dt
dt

= + + ∫ 	 (11)

The virtual input is given by Eq. (11). Here, Kp is the proportional gain, KD is the derivative 
gain, and KI is the integral gain. In practice, assuming that the speed can be controlled inside 
the linear actuator, the following equation is used for control using the input u:

	 1{ ( ) ( )} { { ( ) ( ) }}u H q F q U H q G q w−= − .	 (12)

3.2	 Simulation

	 To verify the effectiveness of the control system design, a simulation is performed using 
MATLAB. In the simulation, the ship is subjected to sway, and the goal of the control is 
to maintain the position and attitude of the output plate in the initial state. We perform the 
simulation using the same parameters as those used in the experiment in Sect. 4. The initial 
position of the output plate is set to x0 = 1350 mm and the initial posture is set to θ = 0 rad. The 
initial lengths of the actuators are set to 400 mm, which is at the middle of the stroke. The ship’s 
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oscillations are given by h(t) = 30cos(0.2πt + 0.5π) and γ(t) = v(t) = 0.  The simulation results 
are shown in Figs. 5–8. The figures show the time histories of lengths of the actuators (Fig. 5), 
the surging of the end-plate (Fig. 6), the heaving of the end-plate (Fig. 7), and the pitching of 
the end-plate (Fig. 8). The figures show that the state of the output plate remains near the target 
value by extending and retracting the two actuators in the same direction for vertical sway (heaving), 
thus confirming the effectiveness of the controller.

4.	 Experiment and Discussion

4.1	 Design of a small-scale experimental device

	 An inverse kinematics calculation is used to analyze the range of motion that the device can 
handle and to determine the mechanical dimensions Lt and Lb. To calculate the length of the 
actuators, we need to perform inverse kinematics calculations using the state of the output plate 
and the sway of the ship. First, positions pA, pB, pC, and pD in Fig. 4 are calculated as follows.

	 0[ cos , sin ]A cp X L Y Lθ θ= − − 	 (13)

	 0[ ( )cos , ( )sin ]B t c tp X L L Y L Lθ θ= − − − − 	 (14)

	 [ cos sin , sin cos ]Cp v hα γ β γ α γ β γ= − − − + 	 (15)

	 [ ( )cos sin , ( )sin cos ]D b bp v L h Lα γ β γ α γ β γ= − − − − − + 	 (16)

Fig. 5.	 (Color online) Time histories of lengths of 
left (blue) and right (red) actuators.

Fig. 6.	 (Color online) Time histories of surging of 
end-plate (red) and ship (blue).

Fig. 7.	 (Color online) Time histories of heaving of 
end-plate (red) and ship (blue).

Fig. 8.	 (Color online) Time histories of pitching of 
end-plate (red) and ship (blue).
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	 From the above equations, the length of the actuators can be calculated as lL = ||PA − PC|| and 
lR = ||PB − PD||. Next, the stroke limits of the actuators lLmin ≤ lLd ≤ lLmax and lRmin ≤ lRd ≤ lRmax 
and the angular limits ϕLmin ≤ ϕLd ≤ ϕLmax and ϕRmin ≤ ϕRd ≤ ϕRmax are given. The dimensions of 
the link parameters are determined to maximize the ranges of γ, h, and v that satisfy the above 
limitations. The range of realized motion of the ship is visualized by plotting only when the 
stroke and angular limits are satisfied by sequentially shaking the ship. 
	 From the conditions of the experimental environment, the length of the top plate is initially 
set to L = 1500 mm, and from the dimensions of the actuator used, the limitations of the lengths 
of the actuators are lLmin = LRmin = 330 mm and lLmax = LRmax = 470 mm, and the limitations of 
the angles are ϕLmin = ϕRmin = 30 deg and ϕLmax = ϕRmax 150 deg. We simulate the combinations 
of Lt = 300, 500, and 700 mm and Lb = 300, 500, and 700 mm. The results of some simulations 
are shown in Figs. 9 (Lt = 300 mm and Lb = 300 mm) and 10 (Lt = 300 mm and Lb = 700 mm). 
From the results, it can be seen that as the length of the upper part of the link Lt decreases and 
the length of the lower part of the link Lb increases, the range of heaving increases. Therefore, 
in this study, the dimensions of the link mechanism are set to Lt = 300 mm and Lb = 700 mm.

4.2	 Experiment

	 We conduct a simple experiment in which only the vertical motion of the ship is given. After 
the start of the experiment, the state is obtained by sensor measurement and calculation from 

Fig. 9.	 (Color online) Result for Lt =300 mm and Lb = 300 mm.

Fig. 10.	 (Color online) Result for Lt =300 mm and Lb = 700 mm.
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the constraint conditions, and the target position of the actuator is calculated to determine the 
input. The angles of the top and base plates, θ and γ, respectively, and the longitudinal sway of 
the ship v are measured by a tilt sensor. The lengths of the actuators, lL and lR, are measured 
by potentiometers mounted on the actuators. The position of the output plate is measured using 
a linear motion measuring device. From these measurements, the forward/backward motion v 
and vertical motion h of the ship are calculated using Eqs. (5) and (9). The experimental setup is 
shown in Fig. 11.
	 The experimental results are shown in Figs. 12–15. The figures show the time histories of 
the lengths of the actuators (Fig. 12), the surging of the end-plate (Fig. 13), the heaving of the 
end-plate (Fig. 14), and the pitching of the end-plate (Fig. 15). According to Fig. 14, the change 
in the vertical direction of the output plate is reduced to 30 mm while the vertical sway of the 
ship (heaving) is 100 mm. This satisfies the target of reducing the height of the output plate to 
50 mm or less.
	 In this experiment, we were able to reduce the sway of the output plate by half compared 
with the vertical sway given to the ship. This indicates that the sway reduction system has the 

Fig. 11.	 (Color online) Experimental setup.

Fig. 12.	 (Color online) Time histories of lengths of 
left (blue) and right (red) actuators.

Fig. 13.	 (Color online) Time histories of surging of 
end-plate (red) and ship (blue).

Fig. 14.	 (Color online) Time histories of heaving of 
end-plate (red) and ship (blue).

Fig. 15.	 (Color online) Time histories of picthing of 
end-plate (red) and ship (blue).
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targeted reduction performance. However, it was not able to maintain the target attitude as in 
the simulation. There are several reasons for this: the sensor used in the device may not have 
acquired the correct state due to large errors; the speed of the sway given in the experiment 
may have been beyond the performance of the actuator; and the actuators may have extended 
or contracted to the stroke limit, resulting in a loss of controllability. Therefore, it is necessary 
to reduce the error of the data obtained from the sensor and to review the actuators. Also, 
it is necessary to design a ship that is easily shaken to make the shaking of the ship in the 
experiment closer to that in the simulation. 

5.	 Conclusions

	 In this paper, a marine transfer system using an inferior-drive parallel link mechanism 
was proposed for use on small vessels as an access method to power generation facilities in 
underserved ports and offshore facilities. As a basic study for this system, the control design 
of a sway reduction device with three degrees of freedom in the plane was conducted. Finally, 
the effectiveness of the proposed system was confirmed in the experiment by the fact that the 
oscillation of the output plate was suppressed to the target value when heaving was given to the 
ship model. In the future, it is necessary to improve the design to accommodate more degrees of 
freedom and to be able to handle larger shaking by increasing the range of motion of the motion 
reduction device. In addition, the effects of mooring ropes and anchors on the ship during 
berthing should be considered, and more accurate modeling and a corresponding controller 
should be designed.
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