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Abstract: The novel coronavirus, which was first reported in Wuhan, China in December 2019,
has been spreading globally at an unprecedented rate, leading to the virus being declared a global
pandemic by the WHO on 12 March 2020. The clinical disease, COVID-19, associated with the
pandemic is caused by the pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Aside from the inherent transmission dynamics, environmental factors were found to be associated
with COVID-19. However, most of the evidence documenting the association was from temperate
locations. In this study, we examined the association between meteorological factors and the time-
varying infectiousness of COVID-19 in the Philippines. We obtained the daily time series from 3 April
2020 to 2 September 2020 of COVID-19 confirmed cases from three major cities in the Philippines,
namely Manila, Quezon, and Cebu. Same period city-specific daily average temperature (degrees
Celsius; ◦C), dew point (degrees Celsius; ◦C), relative humidity (percent; %), air pressure (kilopascal;
kPa), windspeed (meters per second; m/s) and visibility (kilometer; km) data were obtained from the
National Oceanic and Atmospheric Administration—National Climatic Data Center. City-specific
COVID-19-related detection and intervention measures such as reverse transcriptase polymerase
chain reaction (RT-PCR) testing and community quarantine measures were extracted from online
public resources. We estimated the time-varying reproduction number (Rt) using the serial interval
information sourced from the literature. The estimated Rt was used as an outcome variable for model
fitting via a generalized additive model, while adjusting for relevant covariates. Results indicated
that a same-day and the prior week’s air pressure was positively associated with an increase in Rt

by 2.59 (95% CI: 1.25 to 3.94) and 2.26 (95% CI: 1.02 to 3.50), respectively. Same-day RT-PCR was
associated with an increase in Rt, while the imposition of community quarantine measures resulted
in a decrease in Rt. Our findings suggest that air pressure plays a role in the infectiousness of COVID-
19. The determination of the association of air pressure on infectiousness, aside from the testing
frequency and community quarantine measures, may aide the current health systems in controlling
the COVID-19 infectiousness by integrating such information into an early warning platform.

Keywords: time-varying reproduction number; air pressure; community quarantine; tropical;
COVID-19; RT-PCR

1. Introduction

The novel coronavirus, which was first reported in Wuhan, China in December 2019 [1],
has been spreading globally in an unprecedented rate, leading to the virus being declared
as a global pandemic by the World Health Organization (WHO) [2] on 12 March 2020.
The clinical disease, COVID-19, associated with the pandemic is caused by the pathogen
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. Clinical symptoms
associated with the infection included fever, fatigue and dry cough, among others [3],
and is transmitted through droplets [4]. Countries across the globe have been battling
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the pandemic and struggling to keep it under control by imposing stringent control mea-
sures [5]. In Southeast Asia (SEA), several countries have imposed community quarantine
(CQ) measures to combat the pandemic [6]. However, amidst such implementation, the
pandemic is yet to be controlled in several SEA countries.

Among the SEA countries, the Philippines, with a population of more than 108 million,
ranks second in the region with regard to the total number of infected cases, which is at
892,880 as of the 14 April 2021 [6]. The COVID-19 timeline in the Philippines started on 30
January 2020, when a 38-year-old female Chinese national was recorded as the first COVID-
19 case in the country. A month after the first recorded case on March 7, the Department
of Health (DOH) recorded the first local transmission to a 62-year-old female [7]. A day
after, on March 8, the national government declared the pandemic a state of national public
health emergency [8] and subsequently imposed an enhanced community quarantine
(ECQ) measure on 15 March 2020 [9] to curb the progression of the pandemic. The country
has since imposed variants of CQ levels subject to the progression of the pandemic in
the local areas [10]. The highest CQ level, enhanced CQ, entailed stringent limitations on
movement and population. The restrictions were further relaxed as the CQ levels decrease
towards the least stringent modified general CQ, which is a transitional phase between a
general CQ towards the new normal lifestyle [11].

The transmission dynamics of COVID-19 infection [12–15] may be linked to the vari-
ations in the incident cases and the eventual infectiousness of the disease in the country.
Aside from these transmission dynamics, environmental factors (i.e., weather, air pollution
levels) were observed to be linked with COVID-19 incidence [16–18]. Bashir et al. [19]
observed a significant correlation of average temperature, minimum temperature, and
air quality with the COVID-19 in New York. Similar findings were observed by Tosepu
et al. [20] in Jakarta, Indonesia, whereby average temperature was significantly correlated
with the infection. In a recent review paper [21], temperature was noted to affect COVID-19
incidence. The authors particularly noted that COVID-19 incidence increased as tempera-
ture decreased, with the highest COVID-19 incidence at 0–17 ◦C. Bukhari et al. [22] share
a similar finding, whereby they estimated that 3 million reported cases have occurred in
regions with temperatures between 3 ◦C and 17 ◦C. In Japan, lower COVID-19 morbidity
and mortality rates were observed for higher temperature periods [23]. Relative humidity
also exhibited inconsistent yet significant associations with COVID-19 incidence among
temperate countries in Asia [16,24]. On the contrary, meteorological variables such as air
pressure and visibility have been documented to affect the incidence of infectious diseases
such as avian influenza [25] and Middle East respiratory syndrome (MERS) [26].

While incidence and mortality data provide insights in the possible association, these
metrics reflect only a portion of the transmission dynamics. A candidate metric for the
time series modeling, while considering the infectiousness, is a time-varying reproduction
number (Rt). In brief, Rt is the ratio of the number of new infections generated at time
step t, represented by It, to the total infectiousness of the infected individuals at time t,
given by ∑t

s=1 It−sws, the sum of infection incidence up to time step t‡1, weighted by
the infectivity function ws [27]. For a more detailed explanation of Rt, we encourage the
readers to refer to the works of Cori et al. [27]. Rt has been shown to provide information
of how the transmission intensity of the epidemic changes temporally, while accounting
for the relevant transmission dynamics of the infection.

Amidst the increasing number of studies which examined the effect of meteorolog-
ical variables on COVID-19 [17,20,28–33], a majority of these studies mostly focused on
correlations, with a few studies examining possible causal associations. Aside from the
nature of risk estimation, the unique atmospheric dynamics in tropical countries, which
sets it apart from temperate locations, present an opportunity to examine the impact of
meteorological factors on COVID-19. The Philippines, an archipelagic country, located
near the equator experiences two seasons: dry and wet, with annual average temperature
of 28 ◦C and an annual average relative humidity hovering between 70 and 80% [34,35].
The unique tropical characteristic of the Philippines provides an avenue examining the
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progression of the pandemic. Likewise, there is little or no emphasis on the delayed effect
of meteorological factors on COVID-19, apart from what has been mostly examined with
unlagged exposure variables in most studies which heavily utilized COVID-19 incidence
instead of infectiousness. In this study, we examined the association of meteorological
variables and the time-varying infectiousness of COVID-19 in the Philippines.

2. Materials and Methods
2.1. COVID-19-Related Data

We obtained the daily time series from 3 April 2020 to 2 September 2020 of COVID-19
confirmed cases (n = 61,908) from three major cities in the Philippines, namely Manila,
Quezon, and Cebu, through the DOH COVID-19 case tracker data portal [7]. We restricted
the analysis to September 2020, due to the downsizing of testing capacity by several
major institutions. The selection of the cities was based primarily on the magnitude
of the cumulative COVID-19 cases, at the time of data collection, and the existence of
a meteorological station, as shown in Table S1. We also included the location-specific
population and cumulative COVID-19 incidence (per 1000 population). The locations were
sorted based on a descending order wherein Manila city recorded most cases. There are
cities, such as Makati, whereby the COVID-19 cumulative incidence is higher than other
locations; however, due to the lack of a monitoring station, we did not include these in
the study.

We also included detection and intervention-related covariates of testing capacity [36]
and community quarantines [37], as additional covariates which have been observed to
affect COVID-19 infectiousness. We extracted the daily reverse transcription polymerase
chain reaction (RT-PCR) tests from the DOH COVID-19 case tracker data portal [7]. A
detailed description of the extraction and management protocol is documented in the
Supplementary Materials. While COVID-19 incidence was recorded as early as March 2020,
since RT-PCR tests were only available from 3 April 2020, we decided to shorten the study
period to match the RT-PCR test data to be coherent in the subsequent analyses.

CQ measures vary between cities subject to the status of local transmission, thus
the importance of extracting city-specific CQ implementation timeframes (depicted in
Figure S1) of well-defined “start” and “end” dates from the publicly available resolutions
approved and endorsed by the IATF [11]. In brief, the first level (CQ = 1) represents
the modified general community quarantine (MGCQ), the second level (CQ = 2) general
community quarantine (GCQ), the third level (CQ = 3) modified enhanced community
quarantine (MECQ) and the most stringent (CQ = 4) enhanced community quarantine
(ECQ); specifications of each CQ classification are further elaborated in Table S2.

2.2. Meteorological Data

Same period city-specific daily average temperature (degrees Celsius; ◦C), dew point
(degrees Celsius; ◦C), relative humidity (percent; %), air pressure (kilopascal; kPa), wind-
speed (meter per second; m/s) and visibility (kilometer; km) data were obtained from
the National Oceanic and Atmospheric Administration—National Climatic Data Center;
NOAA-NCDC [38]. Locations of the monitoring stations per city are shown in Figure S2.

2.3. Time-Varying Rt Estimation

Rt, in principle, is a function of time-dependent factors, which include but are not lim-
ited to the transmission probability, contact rate specific to the population and susceptible
population, among others [39]. We utilized the COVID-19 serial interval (SI) information
from Li et al. [12] with the mean SI of 7.5 days and a standard deviation of 3.4 days. The
selected parameters were then used to populate the function provided by the EpiEstim
package [40] in R Statistical programming [41] software to calculate the city-specific Rt
(shown in Figure S3, right panels).
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2.4. Statistical Analyses

We utilized a Generalized Additive Model (GAM) in examining the association of Rt
and the relevant exposure variables. In this case, Rt was assumed to follow a Gaussian
distribution. We separately examined the same-day (unlagged) and lagged association
of the exposure variables and Rt, alongside the adjustment for the temporal controls of
time and day of the week (dow). The “base model” only included the temporal controls.
Hereafter, both same-day and lagged exposure variables were adjusted for the covariates
of time and dow. We modelled the association of the lagged exposure variables and Rt using
single lag models with a lag extending to 14 days, as shown in Figures 2 and S3. We set the
maximum lag for 14 days considering the 14-day incubation period of COVID-19 [42,43].
Same-day and lagged covariates which exhibited statistical significance were included in
the initial full model, for stepwise regression. The initial full model included air pressure
Lags 0 to 8, RT-PCR test Lags 0 to 7, and the interaction term for CQ and time. The backward
elimination process posits that the least significant covariates will be dropped one-by-one
until arriving at the final model [44]. Stepwise regression via backward elimination favored
air pressure (Lag 0 and Lag 7), RT-PCR test (Lag 0) and interaction terms for CQ and time
into the final model, which is shown in Equation (1).

Rti,t = α + β1 AirPressurei,t + β2 AirPressurei,t−7 + β3Testi,t + β4dow

+β5CQ : time + β6time + random|city
(1)

Rti,t is the time-varying Rt of city (i) in time (t); α is the intercept; AirPressurei,t and
AirPressurei,t−7 are the terms representing same-day air pressure and 7-day lagged air
pressure, respectively; dow is a categorical variable indicating the day of the week; Testi,t is
the same-day RT-PCR test; CQ is a categorical term with 4 levels; time is a continuous term;
CQ:time is the interaction term for CQ and time; city was assumed as a random effect. All
analyses were carried out using R Statistical Programming Language [41].

3. Results

We observed statistically significant differences in the mean of incident cases, average
temperature, dew point, relative humidity, visibility, RT-PCR tests and Rt among the cities,
except for air pressure, as shown in Table 1. The mean incident cases of Quezon city are
comparatively higher than those of Manila and Cebu cities. Apart from the COVID-19
incidence, the time-varying Rt’s among the cities are substantially different from each other,
with Cebu city having a mean Rt of 1.69, which is greater than Manila (mean Rt = 1.20) and
Quezon city (mean Rt = 1.18). The higher Rt observed in Cebu is mirrored in its cumulative
incidence (per 1000 population), in Table S1, at 11 confirmed cases per 1000 population.
Further examination revealed that only air pressure, albeit weak, was positively correlated
with Rt as depicted in Figure 1. Statistically significant correlations ranging from weak to
strong are shown in gradient colors; statistically not significant associations are depicted
with a blank space.

Statistically significant associations are shown in gradient colors. Positive correlations
are represented with blue gradient, whereas negative associations are shown in red gradient.
The darker the colors, the higher the correlation coefficient. Not significant correlations are
depicted with blank spaces.

GAM results revealed that same-day (unlagged) covariates of air pressure, RT-PCR
tests and interaction terms of CQ and time showed statistically significant associations
with Rt, as shown in Table 2. Same-day air pressure and RT-PCR tests were associated
with an increase in Rt, whereas all CQ categories, except for the first category (CQ = 1),
indicated a statistically significant decrease. Air temperature, dew point, relative humidity,
windspeed and visibility, on the other hand, indicated statistically non-significant positive
effect estimates. Further examination of the delayed association of the covariates, through
single lag models, indicated a range of immediate and delayed effects of air pressure
(Lags 0 to 8) and RT-PCR tests (Lags 0 to 7) on Rt, as shown in Figure 2. We, however,
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did not observe any significant delayed association with average temperature, dew point,
relative humidity, windspeed, and visibility (Figure S5). Same-day RT-PCR tests were
observed to be associated with a significant increase in Rt, which decays until Lag 5
and eventually approached the null association. Whereas, we observed a decay in the
association between air pressure and Rt from Lag 0 to Lag 4, which increased until Lag 7
and gradually decreased towards zero thereafter. Rt was highest when air pressure was
at Lag 7.

Table 1. City-specific health outcome and exposure summary statistics.

Variables 1,2,** Manila City Quezon City Cebu City p-Value 3

Daily COVID-19 cases 101.89 (122.50) 144.75 (182.43) 63.37 (67.99) <0.001
Average temperature (◦C) 30.24 (1.01) 29.13 (1.40) 29.02 (0.99) <0.001

Dew point (◦C) 24.16 (1.15) 23.56 (1.24) 24.25 (0.73) <0.001
Relative Humidity (%) 69.59 (7.62) 72.14 (10.48) 76.15 (5.70) <0.001

Air pressure (kPa) 100.95 (0.15) 100.94 (0.17) 100.95 (0.15) 0.351
Visibility (km) 6.48 (0.31) 5.06 (0.43) 6.14 (0.15) <0.001

Windspeed (m/s) 5.18 (1.30) 2.71 (0.60) 5.01 (1.07) <0.001
Rt 1.20 (0.76) 1.18 (0.74) 1.69 (3.09) 0.0273

RT-PCR tests (per 1000 population) 4 10.21 (6.74) * 10.21 (6.74) * 1.04 (0.73) <0.001
1 Variables are presented in mean (standard deviation); Rt = time-varying effective reproduction number. 2 All variables are on a daily scale.
3 One-way ANOVA test of statistically significant difference. 4 RT-PCR tests are from the daily tests from unique individuals. For the sake
of conciseness, RT-PCR tests were transformed from count to rate. * Due to the difficulty in disentangling the referral health system in the
National Capital Region which includes Manila and Quezon cities, we assumed similar trends for both. More details in the accompanying
text of Supplementary Figure S4. ** Inclusive period: 3 April 2020 to 2 September 2020.
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Table 2. Association of same-day exposure variables and Rt.

− β SE p-Value
1 Base model − − −
+Air Pressure 1.95473 0.69273 0.00500 *

+Air temperature 0.02125 0.07804 0.78600
+Dew point 0.09836 0.09914 0.32169

+Relative Humidity 0.01002 0.01346 0.45692
+Visibility −0.02081 0.19820 0.91643

+Windspeed 0.10784 0.07467 0.14950
+RT-PCR tests 0.08219 0.02551 0.00137 *

+CQ:Time
CQ 1:Time −0.00999 0.00774 0.19739
CQ 2:Time −0.00799 0.00226 0.00045 *
CQ 3:Time −0.00617 0.00271 0.02324 *
CQ 4:Time −0.01546 0.00458 0.00079 *

The base model consists of the temporal control for time and day of the week. All succeeding models included
the base model temporal adjustments. * Asterisks indicate statistical significance at p-value < 0.05. RT-PCR =
reverse transcriptase polymerase chain reaction; CQ = community quarantine; CQ:Time = interaction of CQ with
time; CQ = 1 (Modified General Community Quarantine); CQ = 2 (General Community Quarantine); CQ = 3
(Modified Enhanced Community Quarantine); CQ = 4 (Enhanced Community Quarantine);β = beta coefficient;
SE = standard error.
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Statistically significant associations are shown in red, whereas null associations are in
black. The red vertical dotted line represents the null association.

Covariates which showed statistically significant same-day and delayed association
with Rt were included in the initial full model. Utilizing a stepwise-regression via backward
elimination, the final model shown in Table S3, retained same-day (Lag 0) and delayed
(Lag 7) air pressure, same-day (Lag 0) RT-PCR tests and the interaction of CQ and time.
Rt, while exhibiting a statistically positive association with air pressure, was observed to
have greater magnitude (β = 2.59) of increase with same-day air pressure compared to
the previous week’s (β = 2.26), as shown in Table 3. Similar to air pressure, RT-PCR tests
showed a positively significant association, albeit with lower magnitude (β = 0.14). On the
other hand, all CQ categories indicated strong evidence of a statistically negative association
with Rt, except for the first CQ category, which showed marginal statistical significance.
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Table 3. Summary results of the final model using stepwise regression.

Covariate β SE p-Value

Air Pressure (Lag 0) 2.59425 0.68426 <0.001
Air Pressure (Lag 7) 2.25998 0.63500 <0.001
RT-PCR tests (Lag 0) 0.14491 0.03068 <0.001

CQ:Time
CQ 1:Time −0.01496 0.00807 0.06366
CQ 2:Time −0.01671 0.00417 <0.001
CQ 3:Time −0.01385 0.00486 0.00437
CQ 4:Time −0.02743 0.00616 <0.001

Note: Final model adjusted for temporal trends of time and day of the week. RT-PCR = reverse transcriptase
polymerase chain reaction; CQ = community quarantine; CQ:Time = interaction of CQ with time; CQ = 1
(Modified General Community Quarantine); CQ = 2 (General Community Quarantine); CQ = 3 (Modified
Enhanced Community Quarantine); CQ = 4 (Enhanced Community Quarantine); β = beta coefficient; SE =
standard error.

4. Discussion

In this study, we observed significant positive immediate and delayed effects of
air pressure on the infectiousness of COVID-19 in the Philippines. Furthermore, we
observed that detection and intervention-related covariates showed different directions
in association with COVID-19 infectiousness. RT-PCR tests showed a positive increase,
whereas community quarantines were found to be statistically associated with the decrease
in COVID-19 infectiousness.

4.1. Temperature, Relative Humidity, and Other Meteorological Variables and COVID-19
Infectiousnes

Several studies have examined the association of meteorological variables with COVID-
19, with indications of an association particularly with ambient temperature exposure [16,45].
In China, Qi et al. [16] observed that same-day ambient temperature was negatively
associated (central estimate = −3.61; 95% Confidence Interval (CI): −6.46 to −0.75) COVID-
19 incidence in Hubei, China, whereas Liu et al. [45] observed the delayed negative effects of
temperature on the incidence among 17 cities in China. Tobias and Molina [46], on the other
hand, noted a negative association between COVID-19 and same-day temperature in Spain.
Contrary to these studies, our results indicated the lack of an association. Yao et al. [47]
similarly observed that temperature is not associated with COVID-19 incidence in 224
Chinese cities. Apart from temperature, several studies have noted relative humidity to be
associated with the infectiousness of COVID-19. Qi et al. [16] and Liu et al. [45] observed the
negative association of relative humidity with COVID-19. Our results, however, indicated
the lack of an association. Notwithstanding previous literatures which indicated that the
increase in temperature and relative humidity would lead to a reduction in COVID-19
infectiousness [48,49], our results indicated otherwise. The differences between these
results may have been due to location-specific characteristics, which include but are not
limited to climate variability [50], transmission rates [51] and policy interventions [52].

4.2. Air Pressure and COVID-19 Infectiousness

Almost all meteorological variables exhibited the lack of a clear association with
COVID-19 infectiousness, except for air pressure. In Table 3, air pressure on the same day
and as well as the previous week’s air pressure is linearly associated with the increase in
COVID-19 infectiousness. This was initially observed in the positive correlation shown in
Figure 1. Li et al. [25] observed that the high-risk window of the avian influenza (H5N1)
viral infection corresponded with the air pressure interval of 980 to 1025 kilopascal (kPa),
whereas similar observations were shared by Guo et al. [53] who noted that the risk of
influenza increases with rising atmospheric pressure. Bhaganagar and Bhimireddy [54]
suggest that atmospheric stability with dry conditions may accelerate the viral spread
through short-range droplet transmission. The authors noted that atmospheric stability
regimes that result in low wind speeds, low level turbulence and cool moist ground
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conditions favor the transmission of the disease, with the possibility of virus spreading up
to 30 min in the air, covering a 200-m radius at a time, moving 1–2 km from the original
source [54]. While this may provide an insight into the dynamics of the immediate impact
of air pressure on COVID-19 infectiousness, there is no clear mechanistic/physiological
pathway explaining the delayed association. However, a study in Australia noted that
COVID-19 can remain infectious for extended periods, with the virus persisting even
beyond two weeks in contaminated surfaces, increasing the risk of fomite transmission [55].
While there is a possibility that air pressure, similar to humidity and temperature, may
present both physical and chemical dynamics related to viral viability [56], this remains to
be elucidated, thus warranting further studies.

4.3. Short-Term Impact of Testing on COVID-19 Infectiousness

Apart from air pressure, we observed that COVID-19-related detection and inter-
vention measures were found to be associated with the time-varying infectiousness. An
increase in same-day RT-PCR tests was associated with a positive increase in Rt, which
gradually decayed until Lag 5 and approached the null association thereafter, as shown
in Figure 2. Katul et al. [36] notes that high testing frequency would lead to an increase
in confirmed cases, which subsequently translate to an increase in Rt in the short run,
particularly in the early phase of the pandemic. However, in the long run, increased testing,
holding all other factors constant, should ideally decrease the COVID-19 transmission and
thus decreasing Rt [57]. In a mathematical simulation, Grassly et al. [58] demonstrated that
PCR testing was estimated to reduce SARS-CoV-2 transmission by 23% (95% uncertainty
interval: 16–40%) if carried out effectively. We ran a sensitivity analyses with maximum lag
for 60 days (2 months) to visualize if indeed, in the long run, extended lags of RT-PCR tests
would result in a decrease in the infectiousness; the results are shown in Figure S6. Here,
we observed a significant decrease in Rt around Lags 46 to 55. Caution, however, should
be exercised in the interpretation of intermediate lags since the covariate was lagged for
2 months out of the total of 5-month study period. A longer study period to examine
longer lag effects would be suitable for subsequent examination of the association. Even
so, current results provide hindsight to the relative importance of COVID-19 testing on
infectiousness and should be adjusted accordingly. Non-adjustment of testing would
eventually bias the estimates of the environmental exposures of interest. That being said, it
is equally important to establish the validity, correctness and timeliness of testing so that it
can improve the model, rather than introducing more uncertainty (due to improper and
untimely testing).

4.4. Community Measures and Its Effect on COVID-19 Infectiousnes

CQ, on the other hand, was found to be associated with the decrease in COVID-19
infectiousness, which is similar to several studies assessing the impact of control measures
on the progression of the pandemic [59–61]. The greatest decrease in Rt was observed with
the enhanced CQ (=4), with the remaining CQ categories having nearly similar effects
estimates, as shown in Table 3. In Europe, Flaxman et al. [62] noted that lockdowns,
which are equivalent to enhanced CQ in the Philippines, substantially reduced Rt by 81%
(posterior credible intervals: 75–85%). The lockdown in Wuhan, China, has similarly
resulted in a decrease in COVID-19 transmission and progression, not just in the city, but
also across China [63,64]. Lockdowns can structurally change the mobility of the population,
thereby affecting disease transmission [65,66]. Compliance to these control measures
resulted in discernable decrease in transmission; however, less stringent lockdowns may
lead to a possible rebound of cases [66].

4.5. Limitations

Our study has several limitations. First, the data utilized reflected a portion of the
ongoing pandemic. The data constraints may affect the robustness of the estimates given the
limited period of modeling the association. Second, the ecological nature of the study can be
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affected by both city- and individual-level characteristics such as implementation measure,
behavioral, spatial and sociodemographic factors. Further studies are needed to account for
these factors with sufficient data. Third, the analyses framework presented, particularly on
the covariate selection and modeling framework, may be further improved subject to the
accumulated evidence and availability of data, in the context of the effect of meteorological
variables on COVID-19 infectiousness. Fourth, the association of meteorological variables
and COVID-19 may be beyond a linear theoretical framework [67], and thus non-linear
examination is encouraged. In the current study, however, we did not find any discernable
non-linear association (results not shown). Fifth, several urban dynamics, such as air
pollution levels, were not controlled for in the model. Even so, several studies noted that
air pollution levels during the COVID-19 pandemic have reduced [68]. Thus, we assumed
that, during the pandemic, the effect of air pollution on infectiousness may not be that
substantial. Sixth, the number of cities included as well as the number of covariates in the
study may pose possible biases and residual confounding to the effects estimates. However,
due to the limited data, we were not able to fully examine these limitations. A more
comprehensive analysis utilizing a well-documented data source may provide insightful
outcomes, which should be considered in future studies.

4.6. Strengths

Nevertheless, the study exemplifies several strengths. While the data are limited,
this study utilized a 5-month-long daily COVID-19 dataset, which sets it apart from other
studies utilizing a narrower observation window. Additionally, the study exhaustively
accounted for the major timelines of community quarantine at the city level, shown in
Figure S1 with summaries of community quarantine classification in Table S2. Adjustment
of these community quarantine measures, and its timing are essential in comprehensively
modeling the association. Likewise, the study adjusted for the daily number of RT-PCR
tests. The increasing number of tests may induce bias particularly on its impact on the
number of daily incidences and subsequent estimation of Rt. To the best of our knowledge,
this is the first study which adjusted for the number of tests administered.

5. Conclusions

Same-day and the prior week’s air pressure were found to be positively associated with
COVID-19 infectiousness. COVID-19-related detection and intervention measures resulted
to different directions in association with COVID-19 infectiousness. Same-day RT-PCR tests
resulted in a positive increase, while community quarantines were found to be statistically
associated with a decrease in infectiousness. The determination of the association of air
pressure on infectiousness, aside from the testing frequency and community quarantine
measures, may aide the current health systems in controlling COVID-19 infectiousness via
a more integrated approach of an early warning platform.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atmos12040513/s1, Figure S1. Timeline of community quarantine measures in the three major
cities of the Philippines; Figure S2. Geographical locations of the monitoring stations per city across
the country (left) alongside zoomed-in locations for Manila and Quezon cities (right, upper) and
Cebu city (right, lower); Figure S3. Time-varying Rt and daily number of COVID-19 cases in Cebu city
(upper panel), Manila city (middle panel) and C) Quezon city (lower panel); Figure S4. Geographical
location and administrative boundaries of the National Capital Region (left) and Cebu Island (right);
Figure S5. Lag-specific association of Rt and average temperature (leftmost, upper panel), dewpoint
(middle, upper panel), relative humidity (rightmost, upper panel), visibility (leftmost, lower panel)
and windspeed (middle, lower panel); Figure S6. Extended lagged association of RT-PCR tests and Rt.
Table S1. Characteristics of Top 5 cities in the Philippines with the most COVID-19 cases from 3 April
2020 to 2 September 2020; Table S2. Definition of community quarantine classifications; Table S3.
Stepwise regression via backward elimination results.

https://www.mdpi.com/article/10.3390/atmos12040513/s1
https://www.mdpi.com/article/10.3390/atmos12040513/s1
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