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Abstract 
Purpose. Sitafloxacin (Sfx) is a new fluoroquinolone (FQ) that has shown a strong 

bactericidal effect against Mycobacterium tuberculosis (Mtb) in vitro. However, data on 

Sfx efficacy against Mtb with gyrA/B mutations and its epidemiological cut-off (ECOFF) 

value remain limited. Therefore, we evaluated and compared the in vitro activity of Sfx 

against gyrA/B-mutant Mtb to that of moxifloxacin (Mfx), levofloxacin (Lfx), and 

ciprofloxacin (Cfx), and determined the ECOFF for Sfx.  

Methodology. A total of 109 clinical Mtb isolates, including 73 multidrug-resistant (MDR) 

isolates, were subjected to minimum inhibitory concentration (MIC) analysis in 

oleic-albumin-dextrose-catalase (OADC)-supplemented Middlebrook 7H9 medium. Our 

results showed that Sfx had lower cumulative MIC than Mfx, Lfx, and Cfx. Furthermore, 

we preformed direct DNA sequencing of the quinolone resistance-determining regions 

(QRDRs). 

Results. We identified the following mutations: D94G, D94A, A90V, D94H, D94N, and 

G88A in gyrA; and A543V, A543T, E540D, R485C, D500A, I552S, and D577A in gyrB. 

Based on our results, an ECOFF of 0.125µg/mL was proposed for Sfx. With this ECOFF, 

15% of Lfx-resistant isolates with MIC ≥ 2 µg/mL were susceptible to Sfx.  

Conclusion. Sfx had the lowest cumulative MIC and a relatively low ECOFF value against 

Mtb, indicating that Sfx was more effective against not only gyrA-mutant isolates but also 

MDR isolates in Japan.  

Keywords: Sitafloxacin; Minimum inhibitory concentrations; Gyrase A gene; Gyrase B 
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Introduction 
   The World Health Organization (WHO) reported that approximately 500,000 people 

worldwide developed multidrug-resistant tuberculosis (MDR-TB) in 2015, while additional 

100,000 developed rifampicin-resistant tuberculosis (RR-TB) [1]. Better chemotherapeutic 

interventions are needed to prevent the transmission of drug-resistant TB. Therefore, the 

WHO has updated the guidelines for the treatment of drug-resistant tuberculosis and 

currently recommends fluoroquinolones (FQs) as group A drugs to treat MDR-TB and 

RR-TB [2]. However, FQ-resistant Mycobacterium tuberculosis (Mtb) strains and the 

incidence of FQ-resistant TB have increased [3,4]. 

   Among the group A drugs, levofloxacin (Lfx) is the most frequently used drug to treat 

MDR-TB in Japan [5]. Lfx resistance was reported in 3.2% and 6.1% of isolates from 

patients without and with prior treatment, respectively. The relatively high rate of FQ 

resistance against Mtb may be attributed to the use of these antibiotics before a proper 

diagnosis for TB was made [5]. Moreover, a previous study reported that half of MDR 

isolates in Japan were resistant to FQs (such as Lfx, sparfloxacin, and ciprofloxacin [Cfx]) 

[6]. Thus, it is crucial to determine the most efficacious FQ to treat MDR-TB.  

   Sitafloxacin (Sfx) is a synthetic broad-spectrum 8-methoxyfluoroquinolone approved 

for use in Japan [7]. Studies conducted in Japan and Thailand showed good activity for Sfx 

against Mtb in vitro [8,9] A previous study showed that Cfx-resistant clinical isolates were 

most susceptible to Sfx and gatifloxacin when compared to that to other FQs [10]. However, 

studies that assess the MICs for Sfx and significance of gryA/B mutations with larger 

number of isolates in Japan are lacking. Therefore, we investigated the correlations between 

the MICs of Sfx and other FQs including moxifloxacin (Mfx), Lfx, and Cfx, and mutations 

in gyrA/B as assessed by direct DNA sequencing of the quinolone resistance-determining 

regions (QRDRs). We also determined the tentative epidemiological cut-off (ECOFF) value 

of Sfx against Mtb. To provide a visual comparison of the MICs of different FQs, 

cumulative percentage distribution was used to compare the MICs of Sfx with those of Mfx, 

Lfx, and Cfx. 

 



Materials and Methods  
Bacterial isolates 
  A total of 109 M. tuberculosis clinical isolates were randomly selected from a collection 

maintained and preserved by the Tuberculosis Research Committee (Ryoken; Tokyo, Japan). 

Among the 109 isolates, 73 (67%) were MDR and 36 (33%) were non-MDR isolates. Two 

of the 36 non-MDR isolates were resistant to isoniazid (INH). (Suppl. Table 1) These 

isolates were collected from TB patients with Mtb-positive culture results throughout Japan 

in 2002 and 2007, and each isolate was given a unique identification number.  

   All isolates were confirmed by the conventional biochemical and/or 

immuno-chromatography methods (Capilia TB; TAUNS, Numazu, Japan) [11] and tested 

for drug susceptibility to INH and rifampicin by the conventional proportion method on 1% 

Ogawa medium (equivalent to the Löwenstein-Jensen [LJ] method) [5]. Furthermore, the 

susceptibility to Lfx was also evaluated by the proportion method mentioned above. M. 

tuberculosis H37Rv (ATCC 27294; ATCC, Manassas, VA) was used as a control. 

 

Determination of the minimum inhibitory concentrations  
   The MICs of Sfx (Lot#023WCG; Daiichi Sankyo, Tokyo, Japan), Mfx (#32477; 

Sigma-Aldrich, St. Louis, MO), Lfx (#28266; Sigma-Aldrich), and Cfx (#17850; 

Sigma-Aldrich) were determined in Middlebrook 7H9 broth supplemented with 10% 

oleic-albumin-dextrose-catalase (OADC). A broth microdilution method using 7H9 broth 

has been described previously [12]. Each drug was dissolved in 0.1 NaOH and a serial 

two-fold broth microdilution was performed for this study. Sfx, Mfx, Lfx, and Cfx were 

suspended in 7H9 broth and their final concentrations ranged from 0.008–8, 0.016–16, 

0.03–32, and 0.03–32 µg/mL for Sfx, Mfx, Lfx, and Cfx, respectively. Bacterial growth 

was assessed after 1 week of incubation at 37°C with 5% CO2. Bacterial suspensions were 

prepared by adding 5 mL of 7H9 broth medium into 0.05 mL of the original bacterial 

suspension until an optical density (OD) of 0.15–0.24 was reached. The MIC was defined 

as the lowest concentration of drug that inhibited visible growth of the bacteria. The 



cumulative percentage of MICs was used to compare the MICs for different FQs. 

 

DNA extraction and sequencing 
   Genomic DNA of the Mtb isolates was extracted according to a previously described 

method [13], and 5 µg/mL of DNA was used in the PCR mixtures. Primers for gyrA were 

5′-GAT GAC AGA CAC GAC GTT GC-3′ (forward) and 5′-GGG CTT CGG TGT ACC 

TCA T-3′ (reverse) [14]. Primers for gyrB were 5′-GAG TTG GTG CGG CGT AAG 

AGC-3′ (forward) and 5′-CAA GAT CGT GCT GAT GGC CG-3′ (reverse) [15]. 

AmpliTaq Gold® (Roche, Pleasanton, CA) was used to amplify the DNA. After 

amplification, direct sequencing of the QRDRs was performed. Sequencing primers were 

5′-GAT GAC AGA CAC GAC GTT GC-3′ for gyrA and 5′-GAG TTG GTG CGG CGT 

AAG AGC-3′ for gyrB. The QRDR in gyrA ranged from codon 74 to 113, and the QRDR in 

gyrB ranged from codon 500 to 540 [16,17]. 

 

Statistical analysis 
   The chi-square test was performed to compare the proportions of susceptible and 

resistant isolates for each FQ. The Mann-Whitney U test was performed to compare MIC 

values as continuous variables for each FQ. P value of < 0.05 was considered statistically 

significant. Statistical analyses were performed using SPSS for Windows, version 22.0 

(SPSS Inc., Chicago, IL, USA) 

 

Results 
    

Minimum inhibitory concentrations of fluoroquinolones 
   Fig. 1 shows the cumulative percentage of MICs for Sfx, Mfx, Lfx, and Cfx. The 

approximated cumulative % (50) values were 0.06, 0.25, 0.5, and 0.5 µg/mL for Sfx, Mfx, 

Lfx, and Cfx, respectively. The approximated cumulative % (90) values were 1, 4, 8, and 16 

µg/mL for Sfx, Mfx, Lfx, and Cfx, respectively. The median (interquartile range; IQR) MIC 



of Sfx, Mfx, Lfx, and Cfx against 37 gyrA mutants was 0.5 (0.25–1.0 µg/mL), 2 (1.0–4.0 

µg/mL), 8 (4–8 µg/mL), and 8 µg/mL (4–16 µg/mL), respectively. Four gyrB-mutant 

isolates showed relatively low MICs; against these four isolates, the highest MICs were 

0.125, 0.5, 1, and 1 µg/mL for Sfx, Mfx, Lfx, and Cfx, respectively. The MICs of the 

reference strain (H37Rv) were 0.5, 0.03, 0.5, and 0.125 µg/mL for the four FQs, 

respectively. The MICs for all the isolates evaluated in this study are shown in Suppl. 

Table1. 
 

Correlations between mutations in gyrA and gyrB and the MIC 
values 
   Among the 109 isolates, 37 (34%) isolates had mutations in gyrA with mutation patterns 

of D94G, D94A, A90V, D94H, D94N, and G88A. Among the 73 MDR and 36 non-MDR 

isolates, 30 (41.1%) and 7 (19.4%) were gyrA mutants, respectively. Most mutations 

(75.7%) in the 37 gyrA-mutant isolates were found in codon 94 (Table 1). 

   Among the 109 isolates, 8 (7%) isolates had mutations in gyrB with mutation patterns 

of A543V, A543T, E540D, R485C, D500A, I552S, and D577A. Half of the gryB-mutant 

isolates also had mutations in gyrA and all eight were MDR isolates. Among the four 

isolates with mutations in gyrB only, two had double gyrB mutations, while the other two 

had either the R485C or A543T mutation (Table 2); these four isolates did not considerably 

increase the MICs of the FQs. 

   The MICs were significantly higher against the gyrA mutants than against wild type 

isolates (p < 0.001). Two isolates showed higher MICs for FQs despite the absence of gyrA 

mutations in the QRDR. The MICs against these two isolates were 0.25, 0.125, 4, and 8 

µg/mL, and 0.25, 2, 4, and 8 µg/mL for Sfx, Mfx, Lfx, and Cfx, respectively. 

 
Correlations between different mutation patterns and the MICs 
   One isolate showed amino-acid substitutions in three different gyrA codons 

(G88A+A90V+D94G). The MICs of Sfx, Mfx, Lfx, and Cfx against this isolate were 0.5, 4, 



16, and 32 µg/mL, respectively (Table 1). Two isolates showed substitutions in two 

different gyrB codons (E540D+A543V and I552S+D577A). The MICs of Sfx, Mfx, Lfx, 

and Cfx against these two isolates were 0.125, 0.5, 1, and 1 µg/mL, and 0.125, 0.25, 0.5, 

and 0.5 µg/mL, respectively. Isolates with double gyrB mutations in the vicinity of the 

QRDR had higher MICs (Table 2).  

 

Determination of ECOFF value for fluoroquinolones 
   The distributions of MICs for the four FQs are shown in Fig. 2. Mfx, Lfx, and Cfx, but 

not Sfx, showed bimodal distribution of MICs, which clearly segregated the phenotypically 

wild-type isolates from mutants. As previously described, the tentative ECOFF value can 

be determined by identifying the end of the phenotypically wild-type distribution to 

distinguish the resistant and susceptible isolates [18]. Therefore, we determined the ECOFF 

values as 0.125, 0.5, 1, and 1 µg/mL for Sfx, Mfx, Lfx, and Cfx, respectively. We utilized 

these ECOFFs to screen for Lfx-resistant isolates showing MIC ≥ 2 µg/mL, which is the 

cut-off value for Lfx against Mtb as described in previous studies [19,20]. A total of 39 

isolates were Lfx-resistant showing MIC of ≥ 2 µg/mL. Furthermore, gyrA mutations were 

absence in only two of the isolates. Using these ECOFFs, 15% (6/39), 13% (5/39), and 0% 

of isolates were susceptible to Sfx, Mfx, and Cfx, respectively. All of the six and five Sfx- 

and Mfx-susceptible isolates above were MDR isolates. Except for one Mfx-susceptible 

isolate with no gyrA mutation, all six and four isolates were gyrA mutants.  

   Among the 73 MDR isolates, 26 (35.6%), 28 (38.4%), and 29 (39.7%) isolates were 

resistant to Sfx, Mfx, and Lfx, respectively. Furthermore, gyrA mutations were found in 

24/26 (92.3%) isolates resistant to Sfx and 6/47 (12.8%) isolates susceptible to Sfx (p < 

0.001); 26/27 (92.9%) isolates resistant to Mfx and 4/46 (8.7%) isolates susceptible to Mfx 

(p < 0.001); and 30/32 (93.8%) isolates resistant to Lfx and 0/41 (0%) isolate susceptible to 

Lfx (p < 0.001). There were no significant differences in susceptibility or resistance to Sfx, 

Mfx, and Lfx in isolates with gyrB mutations only. 

 

Discussion 



   Lfx, Mfx, and ofloxacin are currently recommended by the WHO for the treatment of 

MDR-TB [21]. However, data supporting the efficacy of Sfx against TB are limited 

because Sfx has not been used worldwide. In this study, we determined the MICs of Lfx, 

Mfx, Sfx, and Cfx against multiple clinical isolates of Mtb, and performed direct DNA 

sequencing of the QRDRs in these isolates. We evaluated the activity of Stx in vitro against 

gyrA/B mutants as well as MDR isolates obtained from Japan. We found that Sfx had the 

lowest MIC values when compared to other FQs such as Lfx, Mfx and Cfx. Sfx showed the 

lowest cumulative MIC and had a relatively low ECOFF value against Mtb in our study, 

indicating that Sfx is potentially a more effective agent against gyrA-mutant isolates as well 

as MDR isolates in Japan.  

   Using an agar dilution method in 7H11 medium, a previous study showed that Sfx had 

lower MIC50 and MIC90 than Lfx against non-MDR and MDR isolates [22]. As noted above, 

that study utilized solid medium and the proportion of MDR isolates was different from 

that in our study, which may explain the higher MIC50 and MIC90 values than those 

observed in our study. A study conducted in Thailand also showed that Sfx had lower MICs 

for Sfx than other FQs against FQ-susceptible Mtb and isolates with gyrA/B mutations in 

7H10 medium [9]; thus, Sfx was suggested to be more efficacious for Mtb treatment. In 

agreement with these findings, our results showed that Sfx had lower cumulative MICs 

than Mfx, indicating that Sfx may be superior to Mfx for Mtb treatment. To confirm these 

findings, additional studies using 7H9 medium are needed. 

   The WHO does not currently recommend the use of Cfx to treat MDR-TB [21]. In our 

study, Cfx showed the highest MICs among the FQs evaluated; this finding lent further 

support to the WHO recommendation. However, a recent study showed that the use of Lfx 

or Mfx did not significantly influence the final treatment outcome in patients with 

FQ-susceptible MDR-TB [23]. This finding suggested that MIC was not the sole indicator 

of treatment efficacy. Based on this thought, Sfx may not yield a better treatment outcome 

when compared to Mfx or Lfx, despite displaying the lowest MIC values.  

   A previous study using 7H10 agar medium suggested tentative ECOFF values of 1.0 

µg/mL for Cfx and 0.5 µg/mL for Lfx and Mfx [24]. On the basis of findings of the present 



study, we suggested ECOFF values of 0.125, 0.5, and 1 µg/mL for Sfx, Mfx, and Cfx, 

respectively. These values were based on a breakpoint at 2 µg/mL for Lfx in 7H9 medium. 

The proposed breakpoint for Mfx agrees with that recommended by the WHO, which was 

determined using the mycobacteria growth indicator tube (MGIT) medium [25]. Although 

the breakpoints for Cfx and Mfx determined in a previous study were comparable to ours 

[24], additional studies using 7H9 medium should be performed to confirm these 

breakpoints. Since data on the breakpoint of Sfx are limited, we determined the ECOFF of 

Sfx in this study. The appropriate breakpoint setting can influence the choice of drug for the 

most effective treatment; thus, additional information on the breakpoint of FQs, including 

that of Sfx, is needed. In our study, 15% and 13% of the Lfx-resistant isolates were 

susceptible to Sfx and Mfx, respectively, indicating that Sfx is a more effective agent 

against MDR isolates with gyrA mutations.  

   Mtb resistance to FQs can be mainly attributed to mutations in QRDRs [26], 

specifically that in the gyrA gene [27]. The presence of gyrA mutation has also been 

associated with high-level resistance to FQs [28]. The relationship between mutations in 

gyrA/B and the MICs of FQs has been reported in various settings [19,20,29]. Furthermore, 

double mutations in gyrA and gyrA/B-combined mutations were shown to positively 

correlate with resistance to FQs [30]. Mutations in certain gyrB codons were also associated 

with a significant increase in MICs of FQs [31], albeit to a lower extent when compared to 

those observed with gyrA mutant isolates [32]. Isolates with gyrA mutations showed higher 

MICs for the four FQs evaluated in our study. Mutations in codon 90 and 94 of gyrA were 

the most frequently observed mutations (34%), with D94G as the most frequently observed 

mutation pattern. This finding was in agreement with those of previous reports [19,31,33]. 

In particular, mutations in gyrA showed a strong correlation with resistance to FQs among 

the MDR isolates. In non-MDR isolates in our study, nearly 20% of isolates were gyrA 

mutants; these isolates showed high MICs and resistance to FQs. This finding suggested 

that the use of FQs in Japan carries a risk of inducing resistance, even when used to treat 

non-MDR-TB. Since FQs are widely used to treat bacterial infections, the rate of FQ 

resistance may increase. Therefore, as indicated in a previous study, susceptibility test to 



FQs should be considered [6].  

   Similarly, the association between gyrB mutations and FQ resistance has been reported 

in several studies. These reports showed that E540V and E540D mutations were involved 

in resistance to FQs [30,31]. Additionally, G512R mutation was reported to correlate with 

resistance to Mfx and ofloxacin [34]. In our study, E540D and A543V, which were found 

in the same isolate, and R485C, found in a different isolate, were associated with resistance 

to Mfx and Sfx. Moreover, I552S and D577A mutations, found in one isolate, raised the 

MIC of Sfx to its breakpoint of 0.125 µg/mL. However, the A543T mutation in gyrB 

appeared to be less relevant for the efficacy of FQs in our study. Since mutations in gyrB 

are found infrequently, further studies are needed to confirm these findings. Isolates with 

gyrB mutation only did not increase the MICs, indicating that there were no significant 

differences in susceptibility or resistance to different FQs for the gyrB mutants in our study. 

To our knowledge, the D577A mutation of gyrB has not been reported elsewhere. 

   In conclusion, our study confirmed the importance of mutations in gyrA in conferring 

resistance to Sfx, Mfx, Lfx, and Cfx. Furthermore, despite showing less effects than the 

gyrA mutations, several mutations in gyrB were associated with increased MICs for the four 

FQs evaluated. In our study, Sfx displayed the lowest MIC values and had a relatively low 

ECOFF against Mtb, suggesting its superior efficacy against not only gyrA-mutant Mtb 

isolates, but also MDR isolates in Japan. 
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Figure and Table Legends 
 
Figure 1. Cumulative percentage MIC distributions of Lfx, Mfx, Sfx, and Cfx against 
M. tuberculosis isolates.  



The horizontal dotted lines indicate the 50%- or 90%- cumulative frequency. MIC, 

minimum inhibitory concentration; Lfx, levofloxacin; Mfx, moxifloxacin; Sfx, sitafloxacin; 

Cfx, ciprofloxacin. 

 

Figure 2. Association of gyrA/B mutations with increased MIC for different 
fluoroquinolones and the ECOFF of each fluoroquinolone.  

MIC distributions of (a) Lfx, (b) Sfx, (c) Mfx, and (d) Cfx in 7H9 medium for 109 M. 

tuberculosis isolates with or without gyrA/B mutations. Lfx, Sfx, and Mfx showed bimodal 

distributions. MIC, minimum inhibitory concentration; Lfx, levofloxacin; Sfx, sitafloxacin; 

Mfx, moxifloxacin; Cfx, ciprofloxacin; ECOFF, epidemiological cut-off. 

 

Table 1. Minimum inhibitory concentrations (MICs) of fluoroquinolones against 
gyrA-mutant isolates. 
#percentage of total gyrA mutants. 

Lfx, levofloxacin; Mfx, moxifloxacin; Sfx, sitafloxacin; Cfx, ciprofloxacin; MDR, 

multidrug-resistant. 

 

Table 2. Minimum inhibitory concentrations (MICs) of fluoroquinolones against 
gyrB-mutant isolates. 
#percentage of total eight gyrB mutants. 

Lfx, levofloxacin; Mfx, moxifloxacin; Sfx, sitafloxacin; Cfx, ciprofloxacin; MDR, 

multidrug-resistant. 
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Table 1. The minimum inhibitory concentrations (MICs) of fluoroquinolones 

against gyrA-mutant isolates. 

#percentage of total gyrA mutants. 

Lfx, levofloxacin; Mfx, moxifloxacin; Sfx, sitafloxacin; Cfx, ciprofloxacin; MDR, 

multidrug-resistant. 

Mutation patterns Isolates, 

n (%)# 

MIC of Lfx 

(range), µg/mL 

MIC of Mfx

(range), 

µg/mL  

MIC of Sfx

(range), 

µg/mL 

MIC of Cfx 

(range), µg/mL  

Number of MDR 

&(non-MDR) 

isolates, n 

A90V (GCG→ GTG) 7 (18.9) (2–4) (0.5–4) (0.125–0.5) (2–16) 3 (4) 

D94G (GAC→GGC) 13 (35.1) (4–16) (2–8) (0.25–4) (8–32) 12 (1) 

D94H (GAC→CAC) 2 (5.4) 8 (4–8) 1 8 1 (1) 

D94N (GAC→GGC) 2 (5.4) 8 (2–8) (0.25–1) (4–32) 1 (1) 

D94A (GAC→GCC) 8 (21.6) (2–8) (0.25–2) (0.06–1) (2–16) 8 (0) 

A90V(GCG→GTG) 

&D500A(GAC→GCC) 

1 (2.7) 8 1 1 8 1 (0) 

A90V(GCG→GTG) 

&A543V(GCG→GTG) 

1 (2.7) 8 2 0.125 8 1 (0) 

D94A(GAC→GCC) 

&A543V(GCG→GTG) 

2 (5.4) 8 (2–4) 0.25 8 2 (0) 

G88A (GGC→GCC) 

&A90V (GCG→GTG) 

&D94G(GAC→GGC) 

1 (2.7) 16 4 0.5 32 1 (0) 



Table 2. Minimum inhibitory concentrations (MICs) of fluoroquinolones against 

gyrB-mutant isolates without gyrA mutations. 

Mutation patterns Isolates, n 

(%)# 

MIC of Lfx, 

µg/mL 

MIC of Mfx

µg/mL 

MIC of Sfx, 

µg/mL 

MIC of Cfx, 

µg/mL 

Number of MDR 

isolates, n 

R485C (CGT→TGT) 1 (12.5) 1 0.5 0.125 1 1 

A543T (GCG→ACG) 1 (12.5) 0.5 0.25 0.06 0.5 1 

E540D (GAA→GAC) 

&A543V (GCG→GTG) 

1 (12.5) 1 0.5 0.125 1 1 

I552S (ATC→AGC) 

&D577A (GAT→GCT) 

1 (12.5) 0.5 0.25 0.125 0.5 1 

#percentage of total eight gyrB mutants. 

Lfx, levofloxacin; Mfx, moxifloxacin; Sfx, sitafloxacin; Cfx, ciprofloxacin; MDR, 

multidrug-resistant. 

 



 No. Lfx(µg/mL) Mfx(µg/mL) Sfx(µg/mL) Cfx(µg/mL) INH(0.2µg/mL)RFP(40µg/mL) Lfx(1.0µg/mL) MDR isolate or non-MDR isolate mutation in  gyrA mutation in gyrB
1 8 1 1 8 R R R MDR A90V D500A
2 0.25 0.06 0.03 0.25 R R S MDR
3 0.5 0.125 0.03 0.5 R R S MDR
4 0.5 0.06 0.016 0.5 R R S MDR
5 0.5 0.25 0.06 0.5 R R S MDR A543T
6 1 0.25 0.06 1 R R S MDR
7 8 8 1 8 R R R MDR D94H
8 4 4 0.5 16 R R R MDR A90V
9 0.25 0.25 0.125 0.5 R R S MDR

10 8 8 1 16 R R R MDR D94G
11 1 0.25 0.03 0.5 R R S MDR
12 4 2 0.25 8 R R R MDR D94G
13 0.5 0.25 0.06 0.5 R R S MDR
14 0.25 0.25 0.06 0.5 R R S MDR
15 2 1 0.5 2 R R R MDR D94A
16 0.25 0.125 0.03 0.25 R R S MDR
17 0.5 0.125 0.06 0.5 R R S MDR
18 0.25 0.06 0.06 0.25 R R S MDR
19 16 8 1 32 R R R MDR D94G
20 0.25 0.06 0.016 0.25 R R S MDR
21 0.25 0.06 0.03 0.125 R R S MDR
22 4 2 1 8 R R R MDR D94A
23 8 8 1 32 R R R MDR D94N
24 0.25 0.125 0.06 0.25 R R S MDR
25 0.25 0.125 0.03 0.25 R R S MDR
26 4 2 0.25 8 R R R MDR D94A
27 0.25 0.125 0.03 0.25 R R S MDR
28 0.25 0.125 0.03 0.5 R R S MDR
29 0.5 0.25 0.03 0.5 S S R non-MDR
30 4 2 0.25 8 R R R MDR D94G
31 0.25 0.125 0.03 0.25 R R S MDR
32 1 0.5 0.125 1 S S R non-MDR
33 0.5 0.25 0.06 0.5 R R S MDR
34 0.5 0.125 0.06 0.5 S S R non-MDR
35 0.5 0.25 0.125 0.5 R R S MDR
36 0.5 0.125 0.03 0.5 R R S MDR
37 16 8 4 >32 R R R MDR D94G
38 0.5 0.25 0.06 0.5 S S R non-MDR
39 2 0.5 0.125 2 R R R MDR A90V
40 0.25 0.125 0.06 0.25 R R S MDR
41 4 2 0.25 4 S S R non-MDR A90V
42 4 1 0.25 4 S S R non-MDR A90V
43 0.25 0.125 0.03 0.25 R R S MDR
44 8 2 0.25 8 S S R non-MDR D94G
45 8 4 1 8 R S R non-MDR D94H
46 0.25 0.125 0.06 0.25 R R S MDR
47 0.25 0.125 0.03 0.25 S S R non-MDR
48 8 2 0.25 4 S S R non-MDR D94N
49 0.25 0.25 0.03 0.25 R R S MDR
50 4 2 0.5 8 S S R non-MDR A90V
51 4 1 0.5 4 S S R non-MDR A90V
52 0.25 0.125 0.03 0.25 S S S non-MDR
53 0.25 0.125 0.06 0.25 S S S non-MDR
54 0.25 0.125 0.06 0.25 S S S non-MDR
55 0.25 0.125 0.06 0.25 S S S non-MDR
56 0.5 0.25 0.125 1 S S S non-MDR
57 0.25 0.125 0.06 0.5 S S S non-MDR
58 0.5 0.25 0.06 0.5 S S S non-MDR
59 0.5 0.125 0.03 0.5 R S S non-MDR
60 0.25 0.125 0.06 0.5 S S S non-MDR
61 0.25 0.125 0.06 0.5 S S S non-MDR
62 0.5 0.25 0.125 0.5 S S S non-MDR
63 0.5 0.25 0.125 1 S S S non-MDR
64 0.5 0.25 0.06 0.5 S S S non-MDR
65 0.5 0.25 0.125 0.5 S S S non-MDR
66 0.5 0.25 0.06 0.5 S S S non-MDR
67 0.5 0.25 0.06 0.5 S S S non-MDR
68 0.5 0.25 0.06 0.5 S S S non-MDR
69 0.5 0.25 0.125 0.5 S S S non-MDR
70 0.5 0.25 0.125 0.5 S S S non-MDR
71 0.25 0.125 0.03 0.25 S S S non-MDR
72 1 0.5 0.06 1 S S S non-MDR
73 0.25 0.125 0.03 0.25 S S S non-MDR
74 0.5 0.25 0.125 0.5 S S S non-MDR
75 0.25 0.125 0.06 0.25 S S S non-MDR
76 16 8 1 32 R R R MDR D94G
77 8 2 1 16 R R R MDR D94G
78 16 4 0.5 32 R R R MDR G88A A90V D94G
79 1 0.5 0.125 1 R R R MDR E540D A543V
80 8 4 0.25 8 R R R MDR D94A A543V
81 4 1 0.125 4 R R R MDR A90V
82 8 4 0.5 16 R R R MDR D94G
83 4 2 0.25 8 R R R MDR
84 4 1 0.5 4 R R R MDR D94A
85 8 2 0.125 8 R R R MDR A90V A543V
86 8 4 1 16 R R R MDR D94G
87 4 1 0.5 4 R R R MDR D94A
88 4 0.5 0.125 4 R R R MDR A90V
89 8 4 0.5 8 R R R MDR D94G
90 2 0.5 0.06 4 R R R MDR D94A



91 8 4 0.5 16 R R R MDR D94G
92 8 2 0.25 8 R R R MDR D94A A543V
93 4 0.125 0.25 8 R R R MDR
94 0.5 0.125 0.03 0.5 R R S MDR
95 0.06 0.03 0.016 0.06 R R S MDR
96 0.5 0.25 0.125 0.5 R R R MDR I552S D577A
97 0.5 0.125 0.125 0.5 R R S MDR
98 0.5 0.125 0.06 0.5 R R S MDR
99 1 0.25 0.125 1 R R S MDR
100 1 0.5 0.125 1 R R R MDR R485C
101 0.25 0.06 0.03 0.25 R R S MDR
102 0.25 0.125 0.06 0.25 R R S MDR
103 0.5 0.125 0.03 0.5 R R S MDR
104 0.5 0.125 0.03 0.5 R R S MDR
105 0.25 0.125 0.06 0.25 R R S MDR
106 0.25 0.125 0.03 0.25 R R S MDR
107 8 0.25 0.125 16 R R R MDR D94A
108 0.25 0.125 0.06 0.25 R R S MDR
109 8 2 0.5 16 R R R MDR D94G
Rv 0.5 0.5 0.03 0.125 S S S MDR
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