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Abstract: Background: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-
borne infectious disease caused by the SFTS virus (SFTSV). SFTS is mainly prevalent in East Asia.
It has a mortality rate of up to 30%, and there is no approved treatment against the disease. In
this study, we evaluated the effect of loperamide, an antidiarrheal and antihyperalgesic agent, on
the propagation of SFTSV in a cell culture system. Methods: SFTSV-infected human cell lines
were exposed to loperamide, and viral titers were evaluated. To clarify the mode of action of
loperamide, several chemical compounds having shared targets with loperamide were used. Calcium
imaging was also performed to understand whether loperamide treatment affected calcium influx.
Results: Loperamide inhibited SFTSV propagation in several cell lines. It inhibited SFTSV in the
post-entry step and restricted calcium influx into the cell. Furthermore, nifedipine, a calcium channel
inhibitor, also blocked post-entry step of SFTSV infection. Conclusions: Loperamide inhibits SFTSV
propagation mainly by restraining calcium influx into the cytoplasm. This indicates that loperamide, a
Food and Drug Administration (FDA)-approved drug, has the potential for being used as a treatment
option against SFTS.

Keywords: severe fever with thrombocytopenia syndrome virus; antiviral; loperamide

1. Introduction

Severe fever with thrombocytopenia syndrome (SFTS) was found in China in 2011
and has been reported thereafter in several East Asian countries, including Japan, South
Korea, Taiwan, and Vietnam [1–6]. SFTS is an emerging infectious disease caused by the
SFTS virus (SFTSV, SFTS phlebovirus, or Huaiyangshan banyangvirus). SFTSV is a tick-
borne virus and is classified into the genus Banyangvirus of the family Phenuiviridae, order
Bunyavirales [7]. Other phleboviruses that are phylogenetically related to SFTSV, namely
Heartland virus and Malsoor virus, were isolated from Missouri, USA, and western India,
respectively [8,9]. In addition, a novel virus closely related to SFTSV and Heartland virus
was identified in China [10]. At present, there is no established prophylaxis or treatment
against SFTS. It is critical to develop such prophylaxis/treatment, and elucidation of the
virus replication mechanism could help determine treatment strategies. Despite the lack
of established treatments against SFTS, several compounds, including Food and Drug
Administration (FDA)-approved drugs, have been reported to inhibit SFTSV replication
both in vivo and in vitro [11]. In this study, we focused on the FDA-approved antidiarrheal
drug loperamide because diarrhea is a prominent symptom of SFTS [5]. Intriguingly,
loperamide has shown to inhibit multiplications of several human coronaviruses including
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which also cause diarrhea
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in humans [12,13]. In addition, loperamide was proposed to exert its antidiarrheal effect by
blocking calcium channels [14] and several calcium channel blockers have been reported to
inhibit the SFTSV replication in vivo and in vitro [11]. These findings encourage efforts to
investigate the potential clinical use of loperamide to reduce viral load and simultaneously
to alleviate diarrhea in SFTS patients. In this study, we demonstrated that loperamide
inhibited SFTSV propagation in two human cell lines and in a simian cell line, and its main
target is the post-entry step due to the inhibition of the calcium influx.

2. Materials and Methods
2.1. Cells, Viruses, and Materials

Huh-7, Vero 76, and SW13 cells were maintained in Dulbecco’s Modified Eagle’s
Medium (DMEM) supplemented with 1% penicillin-streptomycin and 10% fetal bovine
serum (FBS), as described previously [15]. The source of SFTSV (YG-1) and production of
polyclonal antibodies against SFTSV N protein have been described previously [15]. Rhod-
4 AM (21121), used as the calcium indicator, was obtained from AAT Bioquest (Sunnyvale,
CA, USA). Loperamide (L0154) was purchased from Tokyo Chemical Industry (Tokyo,
Japan). Amantadine (21364), ivabradine (15868), naloxone (15594), and nifedipine (11106)
were obtained from Cayman (Ann Arbor, MI, USA).

2.2. Virus Infection and Treatment with Compounds

Confluent cell monolayers of Huh-7, SW13, or Vero 76 cells (2× 104 cells) were infected
with SFTSV, at a multiplicity of infection (MOI) of 0.1, in 96-well plates. Fresh medium
containing different concentrations of the compounds was added to wells containing the
infected cells. At 24 and 48 h post infection (h p.i.), the culture supernatants were collected,
and virus titers were measured as per the procedure described below (Huh-7 and SW13
cells). In case of Vero76 cells, infected cells were fixed and stained for SFTSV N at 24 h p.i.

2.3. Viral Titration

The SFTSV titer was determined using an immunofocus assay. Vero 76 cells (3× 104 cells/well)
were seeded in a 96-well plate 1 day prior to infection. The cells were infected with 1:10 serial
dilutions of the virus and incubated for 16 h at 37 ◦C in 5% CO2. The cells were fixed with
4% paraformaldehyde (PFA) for 30 min at 15–25 ◦C, and then incubated in PBS containing 0.1%
Tween®20 for 1 h at 15–25 ◦C. The cells were blocked with a solution of 10% FBS in dilution buffer
(3% BSA, 0.3% Triton X-100/PBS (−)) at 4 ◦C overnight. SFTSV N protein was detected using a
primary anti-SFTSV N antibody, followed by a secondary anti-rabbit IgG-FITC antibody (ab6009,
Abcam, Cambridge, UK). SFTSV N-positive cells were counted and calculated as fluorescent focus
units (FFU/mL).

2.4. Time-of-Addition Infection Assay

Huh-7 cells (2 × 104/well) were seeded in a 96-well plate. Culture medium in the
wells was replaced with fresh medium containing loperamide (20 µM), and the cells were
incubated for 1 h (pre-entry treatment (Pre-)). For the remaining samples (Ctrl, During-,
and Post-), the culture medium was replaced with fresh medium. All samples were infected
with SFTSV at an MOI of 1 for 1 h. For the during-entry treatment (During-), loperamide
(final concentration 20 µM) was included in media containing the virus. After the viral
infection step, the culture medium was replaced with fresh medium containing either
DMSO (Ctrl, Pre-, and During-) or 20 µM loperamide (post-entry treatment (Post-)). After
incubation for 16 h, the cells were fixed with 4% PFA and stained with an anti-SFTSV N
antibody. Images were captured using a BZ-X700 microscope (Keyence, Osaka, Japan).

2.5. Counting Fluorescent (SFTSV N-Positive) and DAPI-Stained Cell Numbers

SFTSV N-positive and DAPI-stained cells, captured by BZ-X700, were counted auto-
matically using a BZ-X Analyzer (Keyence), and from four independent fields belonging to
more than three independent wells. For SFTSV N-positive and DAPI-positive cell numbers,
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relative positive cell numbers were calculated, normalized with the control (DMSO) cell
number, and presented as the mean ± standard deviation (SD).

2.6. Calcium Imaging and Analysis

Huh-7 cells (2 × 104/well) were seeded in 96-well plates and treated with either
DMSO or 10 µM loperamide in the presence or absence of SFTSV (MOI = 0.1). After 48 h of
treatment, the culture medium was replaced with Rhod-4AM (final concentration of 10 µM)
diluted in Opti-MEM and incubated for 20 min at 37 ◦C in 5% CO2. After incubation,
the cells were fixed with 4% PFA. Fixed cells were imaged (fluorescent and bright fields)
using BZ-X700. Fluorescence intensity from three independent wells was measured using
SpectraMAX iD5 (Molecular Device, San Jose, CA, USA).

2.7. Statistical Analysis

Excel and GraphPad Prism 5 (GraphPad Software, Inc., San Diego, CA, USA) software
were used for all statistical analyses. Quantitative data were presented as the mean ± SD
from at least three independent experiments (unless indicated otherwise). For all calcula-
tions, p < 0.05, was considered significant and was represented using an asterisk (*). Group
comparisons were performed using one-way analysis of variance (ANOVA), followed by
Dunnett’s multiple comparison test. Welch’s t-test was used to compare the two groups.

3. Results
3.1. Loperamide Treatment Inhibited SFTSV Propagation

It was reported that SFTSV-infected cells could be detected in several organs from
the patients, including liver and adrenal gland [16]. To examine if loperamide has an
anti-SFTSV effect in vitro, Huh-7 (human liver originated cell line) and SW13 (human
adrenal cortex originated cell line) cells, in which apparent cytopathic effect upon SFTSV
infection was not observed [15], were infected with SFTSV (MOI = 0.1), followed by
loperamide or DMSO (control) treatment. At 24 and 48 h p.i., culture supernatants were
collected to measure virus titers. In case of both cell lines, virus titers were significantly
reduced in supernatants of loperamide-treated samples in comparison to those for the
DMSO-treated controls (Figure 1A,B). In Huh-7 cells, loperamide treatment reduced SFTSV
titers approximately 3-fold and 24-fold at 24 and 48 h p.i., respectively (Figure 1A). In
SW13 cells, when compared to the controls, loperamide treatment reduced SFTSV titers
approximately 3-fold and 90-fold at 24 and 48 h p.i., respectively (Figure 1B). To determine
if the reduction in SFTSV titers was due to the cytotoxic effects of loperamide, Huh-7 cells
infected with SFTSV shown in Figure 1A were fixed and stained with DAPI for both 24 h
(Figure 1C) and 48 h (Figure 1D) post infection. The relative percentages of DAPI-positive
Huh-7 cells 24 and 48 h post loperamide treatment were 89.1% and 88.6%, respectively.
The 50% inhibitory concentration (IC50) of loperamide against SFTSV was also evaluated
in Huh-7 cells. Huh-7 cells were infected with SFTSV (MOI = 0.1) for 1 h and loperamide
was administered at concentrations of 1, 5, 10, and 20 µM for 48 h. Cells treated with
DMSO instead of loperamide were used as controls. Culture supernatants were collected
to measure virus titers and the IC50 of loperamide was found to be 4.4 µM (Figure 1E).
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Figure 1. Loperamide treatment inhibited severe fever with thrombocytopenia syndrome virus 
(SFTSV) propagation. Huh-7 (A) or SW-13 (B) cells were infected with SFTSV (multiplicity of in-
fection (MOI) = 0.1) and treated with loperamide (lop, 20 μM). Culture supernatant was collected 
at 24 and 48 h post infection (h p.i.) to measure the virus titers using Vero 76 cells. (C,D) Infected 
cells were fixed with 4% paraformaldehyde (PFA) and stained with DAPI for counting the num-
bers of viable cells. Relative DAPI-positive cell numbers from Huh-7 cells at 24 h (C) and 48 h (D) 
post loperamide treatment, respectively. (E) 50% inhibitory concentration (IC50) of loperamide 
against SFTSV in Huh-7 cells was calculated. Huh-7 cells were infected with SFTSV at an MOI = 
0.1 and treated with 1, 5, 10, or 20 μM of loperamide. At 48 h p.i., culture media was collected to 
measure SFTSV titer. IC50 was calculated using GraphPad Prism 5. Data correspond to the mean ± 
SD (ns; not significant, * p < 0.05). 

3.2. Loperamide Inhibited Post-Entry Step, but Not Pre- and during-Entry Stages, of SFTSV 
Infection 

To determine the inhibitory step of loperamide on SFTSV infection, a time-of-addi-
tion infection assay was performed in Huh-7 cells (Figure 2A). An image representative 
of SFTSV N-positive cells across the different stages is shown in Figure 2B, while Figure 
2C shows the average number of SFTSV N-positive cells per field. Pretreatment with 
loperamide did not affect N-positive cell number, and during-treatment of loperamide led 

Figure 1. Loperamide treatment inhibited severe fever with thrombocytopenia syndrome virus (SFTSV) propagation. Huh-7
(A) or SW-13 (B) cells were infected with SFTSV (multiplicity of infection (MOI) = 0.1) and treated with loperamide (lop,
20 µM). Culture supernatant was collected at 24 and 48 h post infection (h p.i.) to measure the virus titers using Vero
76 cells. (C,D) Infected cells were fixed with 4% paraformaldehyde (PFA) and stained with DAPI for counting the numbers
of viable cells. Relative DAPI-positive cell numbers from Huh-7 cells at 24 h (C) and 48 h (D) post loperamide treatment,
respectively. (E) 50% inhibitory concentration (IC50) of loperamide against SFTSV in Huh-7 cells was calculated. Huh-7 cells
were infected with SFTSV at an MOI = 0.1 and treated with 1, 5, 10, or 20 µM of loperamide. At 48 h p.i., culture media was
collected to measure SFTSV titer. IC50 was calculated using GraphPad Prism 5. Data correspond to the mean ± SD (ns; not
significant, * p < 0.05).

3.2. Loperamide Inhibited Post-Entry Step, but Not Pre- and during-Entry Stages, of SFTSV Infection

To determine the inhibitory step of loperamide on SFTSV infection, a time-of-addition
infection assay was performed in Huh-7 cells (Figure 2A). An image representative of SFTSV
N-positive cells across the different stages is shown in Figure 2B, while Figure 2C shows
the average number of SFTSV N-positive cells per field. Pretreatment with loperamide
did not affect N-positive cell number, and during-treatment of loperamide led to modest
increase in the number of N positive cells, when compared with the DMSO control. In
contrast, post-treatment with loperamide significantly reduced (four- to five-fold reduction)



Viruses 2021, 13, 869 5 of 12

the number of SFTSV N-positive cells compared to the control treatment. This result indicated
that loperamide targets the post-entry, which includes the replication, transcription, and
translation, but not the pre- and during-entry steps, of SFTSV infection.
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Figure 2. Loperamide affected the post-entry step, but not the pre- and during-entry steps, of the
SFTSV infection. (A) Schematic representation of the time-of-addition infection assay, used to study
the effect of loperamide on SFTSV infection. SFTSV was infected at an MOI of 1. (B,C) Loperamide-
treated cells were fixed at 17 h p.i. (1 h for infection and 16 h for incubation) and stained with
anti-SFTSV N antibody, followed by a secondary, FITC-conjugated anti-rabbit-IgG antibody. Images
of stained cells were captured using a BZ-X700 microscope (B) and analyzed using the BZ-X analyzer
software to automatically count the FITC-positive cell number in the fields. Four different fields
were randomly selected from three independent wells to count the cells. Normalized FITC-positive
cell numbers with control treatment were shown (C). Data correspond to the mean ± SD (ns; not
significant, * p < 0.05).
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3.3. Nifedipine, but Not Ivabradine, Amantadine, or Naloxone, Inhibited Post-Entry Step of
SFTSV Infection

Loperamide targets L- and T-type calcium channels [14,17], hyperpolarization-activated
cyclic nucleotide-gated (HCN) channels [18–20], N-methyl-D-aspartate (NMDA) recep-
tors [21], and µ-opioid receptors [22–24]. To determine the target of loperamide for inhibit-
ing the post-entry step of SFTSV infection, several small chemical compounds known to
specifically inhibit the shared aforementioned targets with loperamide were used. Nifedip-
ine inhibits L-type calcium channels. Ivabradine is known to target HCN channels [19].
Amantadine is known to inhibit NMDA receptors [25]. Naloxone is a µ-opioid receptor
antagonist [26,27]. First, we examined the cytotoxic effects of these compounds by counting
the number of DAPI-positive cells (Figure 3A) after treatment with the above-mentioned
compounds. None of the compounds exhibited significant cytotoxic effects in Huh-7 cells at
the concentrations used in this study. Huh-7 cells were infected with SFTSV (MOI = 0.1) and
the compounds listed above were administered (nifedipine (250 µM), ivabradine (250 µM),
amantadine (625 µM), or naloxone (1 mM)). At 16 h p.i., infected cells were fixed. Fixed
cells were then stained with anti-SFTSV N-antibody, and the number of N-positive cells was
counted and analyzed (Figure 3B). DMSO-treated control cells and ivabradine, amantadine,
and naloxone-treated cells had equivalent numbers of SFTSV N-positive cells. In contrast,
the number of SFTSV N-positive cells in nifedipine-treated wells was reduced significantly;
it approximately halved in comparison to that for the DMSO control. Naloxone is known to
antagonize loperamide; therefore, we evaluated the effect that co-administering naloxone
and loperamide (Figure 3C) would have on the SFTSV N-positive cell numbers. Loperamide
alone and in combination with naloxone was found to reduce the SFTSV N-positive cell
number equivalently. To examine if the anti-SFTSV effect of loperamide was related to the
anti-viral response including the type I interferon signaling, Vero 76 cells, which is known
to be deficient for the type I interferon production, was infected with SFTSV and treated
with and without loperamide. As shown in Figure 3D, the relative N positive cell number
upon loperamide treatment was significantly reduced (five-fold) compared to that of the
DMSO treatment.

3.4. Calcium Influx Was Inhibited by Loperamide Treatment in Huh-7 Cells

Our previous experiment showed that nifedipine inhibited the post-entry step of
SFTSV infection (Figure 3B). To examine if loperamide indeed affects calcium influx in
Huh-7 cells, calcium imaging and analysis were performed. Representative images were
presented in Figure 4A and the analysis in Figure 4B. The calcium probe (Rhod-4AM), in
red, was located in the cell cytoplasm. Relative fluorescence intensity was measured, and
we found that loperamide treatment significantly reduced the fluorescence intensity to 40%.
Calcium influx was also examined in the presence of the SFTSV infection (Figure 4C,D).
Loperamide treatment reduced the calcium influx approximately five-fold compared to
DMSO treatment (Figure 4C). The culture supernatant from the samples used in Figure 4C
was used to measure the virus production. Loperamide treatment reduced SFTSV titers
approximately six-fold (Figure 4D).
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Figure 3. Identification of the mechanism of action of loperamide on the post-entry step of SFTSV
infection. (A) Relative DAPI-positive cell numbers upon nifedipine (nife, 250 µM), ivabradine (ivab,
250 µM), amantadine (aman, 625 µM), or naloxone (nalo, 1 mM) treatments compared to DMSO
treatment, in Huh-7 cells at 24 h post-treatment. (B) Relative SFTSV N-positive cell numbers per
field at 16 h p.i. in Huh-7 cells. (C) Relative SFTSV N-positive cell numbers per field upon DMSO,
loperamide (lop, 20 µM), or lop (20 µM) with nalo (1 mM) treatment at 16 h post-treatment. (D) Vero
76 cells were infected with SFTSV and treated with either DMSO or loperamide (20 µM). Relative
N-positive cell numbers per field at 24 h p.i. were shown. Data correspond to the mean ± SD (ns; not
significant, * p < 0.05).
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Figure 4. Calcium imaging and analysis upon loperamide treatment in Huh-7 cells. Huh-7 cells were
treated with either DMSO or 10 µM of loperamide (lop) and incubated for 48 h in the absence (A,B) or
in the presence (C,D) of SFTSV. (A) Culture supernatant of Huh-7 cells was replaced with Rhod-4AM
(10 µM) diluted in Opti-MEM and incubated for further 20 min at 37 ◦C in 5% CO2. Fluorescent and
bright field images of the fixed cells were captured. (B) Fluorescence intensity was measured and
the relative mean ± SD (* p < 0.05) is shown. (C) Same treatment described in (A), but infected with
SFTSV (moi = 0.1), was performed. Fluorescence intensity was measured and the relative mean ± SD
(* p < 0.05) is shown. (D) The supernatant of the cells measured in (C) was collected to measure the
viral titration. Data correspond to the mean ± SD (* p < 0.05).

4. Discussion

Due to its high fatality rate and lack of approved prophylaxis and drugs, SFTS was
listed by the World Health Organization among the top 10 priority infectious diseases with
an urgent need for established treatment [28]. Since its discovery in China in 2011, many
efforts have been made to identify effective drugs to treat SFTS [11]. We have previously
shown that several chemical compounds that restrain fatty acid and cholesterol synthe-
sis (fenofibrate and lovastatin) inhibited SFTSV propagation [15]. One of the prominent
small chemical compounds is T-705 (favipiravir), whose anti-SFTSV effect was observed
both in vitro [29] and in vivo [30]. The anti-SFTSV effects of the chemical compounds
ribavirin [31,32], caffeic acid [33], amodiaquine [34], hexachlorophene [35], and 2′-FdC [36]
and those of the biologics interferon-α, -β, and -γ [32,37] have been demonstrated previ-
ously. Recently, the anti-SFTSV effects of several catechins and flavonols from green tea [38]
and NF-κB inhibitor SC75741 [39] have also been reported. Calcium channel inhibitors,
drugs against high blood pressure such as benidipine and nifedipine, were also reported to
reduce SFTSV propagation both in vitro and in vivo [40]. To identify additional drugs or
compounds that might inhibit SFTSV propagation, we focused on loperamide, an FDA-
approved anti-diarrhea drug. In the current study, we showed that loperamide reduced
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SFTSV propagation in two human cell lines (Huh-7 and SW13) and had an IC50 of 4.4 µM in
Huh-7 cell line (Figure 1). Although the treatment of loperamide in Huh-7 cells for 48 h at
20 µM affected to the cell viability, slightly but statistically significantly, 25-fold reduction
of the SFTSV production was observed from the loperamide-treated cells compared to
the DMSO-treated cells, concluding to us that loperamide inhibited SFTSV propagation
in Huh-7 cells. Previous study reported that the IC50 of loperamide against Middle East
respiratory syndrome coronavirus (MERS-CoV) is 3–8 µM [12]. Similar IC50 values between
SFTSV and MERS-CoV implied parallels in the anti-viral effect of loperamide. To ascertain
how loperamide inhibited post-entry step of SFTSV infection, a time-of-addition infection
assay was performed (Figure 2). Although the treatment of loperamide during the infection
increased the relative SFTSV N positive cell numbers slightly, but statistically significantly
(1.22 times compared to Ctrl.), we focused on the significant reduction of the SFTSV N
positive cell number upon the post-treatment (3.6-fold reduction compared to Ctrl.). These
experiments indicated that the main target of loperamide is the post-entry step, rather than
the pre- or during-entry step.

Although small chemical compounds are designed to specifically bind to a target, many
compounds could affect non-primary targets. Loperamide has been reported to affect L-type and
T-type calcium channels, HCN channels, NMDA receptors, and µ-opioid receptors. To identify
the main target of loperamide for inhibiting post-entry step of SFTSV infection, small chemical
compounds targeting the L-type calcium channels (nifedipine), HCN channel (ivabradine),
NMDA receptor (amantadine), µ-opioid receptor (naloxone) were used (Figure 3). Nifedipine
inhibited post-entry step of SFTSV infection (Figure 3B) similar to loperamide (Figure 2),
suggesting that calcium influx was involved in the post-entry step of SFTSV infection, consistent
with a previous report [40]. Since the IC50 of ivabradine for HCN channels was approximately
2 µM in HEK-293 cells [19], and ivabradine treatment in our study (250 µM) did not affect the
post-entry step of the SFTSV infection, we concluded that HCN channels are not involved in
post-entry step of SFTSV infection (Figure 3B). Amantadine is known to antagonize the NMDA
receptor and is used to treat Parkinson’s disease. The antiviral effect of amantadine has also
been reported for several viruses. For example, the anti-influenza A virus activity of amantadine
was reported to be 1–10 µM by inhibiting M2 ion channel activity [41–43]. Similarly, ion channel
activities of Chikungunya virus 6 K [44], hepatitis C virus p7, human immunodeficiency virus
type 1 Vpu, and picornavirus 2 B, were also reported to be inhibited by amantadine [45]. The
anti-dengue virus effect of amantadine was also reported at a concentration of 50 µg/mL
(=330 µM) (IC90), which is close to 250 mM that we used in the study [46]. Naloxone was
reported to affect neural stem cells via a receptor-independent pathway [47,48], suggesting that
naloxone alone could affect the cells. Naloxone was also reported to antagonize the activation of
loperamide-mediated µ-opioid receptor signaling [26]. However, in our study, naloxone alone
did not affect the post-entry step of SFTSV infection. Additionally, our study also revealed
that naloxone does not antagonize the loperamide-mediated reduction of the post-entry step of
SFTSV infection, thereby suggesting that µ-opioid receptors are not involved in the post-entry
step of SFTSV infection in Huh-7 cells.

To explore if the anti-SFTSV effect of loperamide is the result of the host anti-viral
response or not, Vero 76 cells, which is known to be deficient for the type I interferon (IFN)
production, were infected with SFTSV and treated with and without loperamide. The
significant reduction of the N positive cells upon loperamide treatment compared to the
control treatment, strongly suggested that the main anti-SFTSV effect of loperamide was
not due to the type-I IFN response.

Since nifedipine inhibited the post-entry step of SFTSV infection in Huh-7 cells, it
was speculated that loperamide also inhibited the post-entry step of SFTSV infection by
inhibiting calcium influx in Huh-7 cells. To assess this, calcium imaging was used to
monitor calcium influx upon loperamide treatment in Huh-7 cells (Figure 4). In Huh-7 cells
treated with DMSO control, calcium-dependent fluorescence was detected in almost all
cells. In contrast, when the cells were treated with loperamide, florescence was detected
only in a few cells. Quantification of the fluorescence intensity revealed that compared
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to DMSO, loperamide treatment significantly reduced the fluorescence intensity. Similar
results were observed in the presence of the SFTSV (Figure 4C). These results indicated
that loperamide inhibited calcium influx in Huh-7 cells.

Taken together, loperamide blocks post-entry step of SFTSV infection and propagation,
and one of the mechanisms underlying its anti-SFTSV effects was the inhibition of calcium
influx. In the past, a few studies have demonstrated the effect of loperamide on virus
propagation or virus-related symptoms. As an antiviral agent, loperamide was found to
inhibit MERS-CoV [12] and SARS-CoV-2 [13] replications through FDA-approved com-
pound library screening, although its mechanism of action was not examined. Loperamide
was also described to improve herpes simplex virus type-1 induced allodynia through the
stimulation of µ-opioid receptors [49]. Furthermore, a perspective review proposed the
use of loperamide for the treatment of voluminous diarrhea caused by the Ebola virus
disease [50]. These observations suggested loperamide as a broad spectrum antiviral and
symptom-improving agent.
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