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Abstract

heart disease.

induced calcium overload in H9¢c2 cells.

Background: Radiation-induced heart disease has been reported, but the underlying mechanisms remain unclear.
Mesenchymal stem cells (MSCs), also residing in the heart, are highly susceptible to radiation. We examined the
hypothesis that the altered secretion of extracellular vesicles (EVs) from MSCs is the trigger of radiation-induced

Methods: By exposing human placental tissue-derived MSCs to 5 Gy y-rays, we then isolated EVs from the culture
medium 48 h later and evaluated the changes in quantity and quality of EVs from MSCs after radiation exposure.
The biological effects of EVs from irradiated MSCs on HUVECs and H9c2 cells were also examined.

Results: Although the amount and size distribution of EVs did not differ between the nonirradiated and irradiated
MSCs, miRNA sequences indicated many upregulated or downregulated miRNAs in irradiated MSCs EVs. In vitro
experiments using HUVEC and H9c2 cells showed that irradiated MSC-EVs decreased cell proliferation (P < 0.01), but
increased cell apoptosis and DNA damage. Moreover, irradiated MSC-EVs impaired the HUVEC tube formation and

Conclusions: EVs released from irradiated MSCs show altered miRNA profiles and harmful effects on heart cells,
which provides new insight into the mechanism of radiation-related heart disease risks.
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Background

In the 1960s, clinicians first recognized that cardiovascu-
lar complications occurred in patients who underwent
radiotherapy (RT) for chest tumors [1]. Subsequent
studies involving patients who received relatively high
thoracic RT doses demonstrated an excess risk of
radiation-induced heart disease (RIHD) [2—4]. The inci-
dence of RIHD declined considerably with decreased
cardiac radiation exposures using modern RT techniques
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(intensity-modulated RT, image-guided RT, etc.) [5]. In-
deed, Darby and van den Bogaard et al. identified that
the mean heart doses linearly correlated with the risk of
RIHD [5, 6]. However, the minimum threshold dose
remained unclear. Epidemiological data revealed in-
creased heart disease risks in atomic bomb survivors
with individually estimated doses over 0.5 Gy [7]. In
addition, individuals with other traditional risk factors
(e.g., hypertension, hyperlipidemia, diabetes mellitus,
smoking), or at a young age, seemed to be more vulner-
able to developing RIHD [8]. The rising radiation expos-
ure potentiality of medical imaging, galactic cosmic, or
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terrestrial ionizing resources makes it reasonable to
worry about RIHD.

The clinical presentations of RIHD are currently well
documented, including coronary artery atherosclerosis,
pericarditis, cardiomyopathy, and conduction defects [9].
RIHD usually takes years or decades to manifest, making
it challenging to interpret the underlying cellular and
molecular mechanisms. Currently, ionizing radiation
causes endothelial dysfunction and inflammatory re-
sponses, preceding the development of atherosclerosis,
cardiac fibrosis, and tissue remodeling [9]. Sustained
DNA lesions, oxidative stress, mitochondrial dysfunc-
tion, epigenetic regulation, and telomere erosion are also
related to the development of RIHD [10-12]. Notably,
these molecular changes interact with each other and
act diversely in different types of heart cells. Therefore,
the pathophysiological mechanisms of RIHD are unclear.

Classical radiobiology identifies that cells with high
proliferative rates and immature features are more sus-
ceptible to ionizing radiation. Cardiomyocytes, the pri-
mary cell type in the heart, are postmitotic and
incapable of proliferating. Hence, the dogma heart, as a
radioresistant organ, has lasted for a long time. However,
apart from cardiomyocytes, other cells such as micro-
vascular endothelial cells, fibroblasts, and recently identi-
fied mesenchymal stem cells (MSCs) [13] also reside in
the heart. Although there is no consensus on the num-
ber of MSCs in various tissues/organs, rare resident
MSCs are known to play a critical role in maintaining
tissue homeostasis. Following myocardial infarction, car-
diac CD45CD44'DDR2" MSCs proliferated and
exhibited typical characteristics with multipotent differ-
entiation capacity and clonogenic expansion [14]. Previ-
ous studies identified that injuries to hematopoietic stem
cells (0.01 to 0.05% in the bone marrow) after radiation
exposure are acknowledged to contribute to a future in-
creased leukemia risk [15]. We have recently demon-
strated that cardiac MSCs are highly radiosensitive [16,
17], and whole-body irradiation with 3 Gy y-rays impairs
the endogenous regeneration of infarcted mouse hearts
[18]. Thus, MSCs theoretically reveal higher radiosensi-
tivity than other mature heart tissue cells such as endo-
thelial cells and cardiomyocytes. In response to different
stimuli, MSCs release abundant extracellular vesicles
(EVs), which are essential mediators of intercellular
communication [19]. Hypoxia-primed bone marrow
MSCs promoted cardiac function in a mouse model of
myocardial infarction via upregulated EV miR-125b-
mediated cell protection [20]. Thus, we hypothesize that
radiation exposure alters the secretion of EVs from
MSCs, which subsequently initiates/triggers the damage
of other heart tissue cells with less radiosensitivity.

By exposing human placenta-derived mesenchymal
stem cells (hp-MSCs) to 5 Gy y-rays, we investigated the
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radiation-induced change in the secretion of EVs from
hp-MSC:s in this study. We further evaluated the poten-
tial role of EVs from irradiated hp-MSCs in regulating
the survival and function of heart tissue cells in vitro.

Methods

Culture of hp-MSCs, HUVEC, and H9¢2 cells

hp-MSCs derived from three donors were obtained as a
gift [21]. hp-MSCs were maintained in Dulbecco’s modi-
fied Eagle’s medium (DMEM) (Wako, Osaka, Japan) sup-
plemented with 10% fetal bovine serum (FBS, HyClone
Laboratories, Logan, UT, USA), 10 ng/ml human recom-
binant basic fibroblast growth factor (Wako), and 1%
penicillin (100 U/ml)/streptomycin (100 U/ml) solution
(Life Technologies). The HUVEC cell line was purchased
from PromoCell GmbH (Germany) and grown in endo-
thelial cell growth medium 2 (PromoCell) supplemented
with 10% fetal bovine serum and 1% penicillin/strepto-
mycin. The H9c2 cell line was purchased from ATCC
(CRL-1446) and grown in DMEM supplemented with
10% fetal bovine serum and 1% penicillin/streptomycin.
All cells were cultured in a 5% CO, incubator at 37 °C.

Flow cytometry analysis

When grown to 80% confluence, the twice passaged hp-
MSCs (n=3) were harvested with 0.25% trypsin. Then,
the cells were washed with phosphate-buffered saline
(PBS) (Wako, Osaka, Japan) and centrifuged at 300 g for
3 min. The cell pellets were resuspended in 800 ul of 1%
BSA and aliquoted into 8 EP tubes. Cells were then
stained with CD44-phycoerythrin (PE) (IM7), CD105-PE
(SN6), CD90-FITC (eBio5E10), CD73-FITC (AD2),
CD45-PE (HI30), and CD44-phycoerythrin (PE) (IM?7).
Unstained cells were included as blank controls. Cells
stained with respective isotopes were included as a nega-
tive control. Flow cytometry analysis was performed
using a FACSCalibur (Becton Dickinson, Franklin Lakes,
Nj, USA). The acquired data were analyzed using Cell
Quest software (Becton Dickinson).

Radiation exposure and EV isolation

hp-MSCs (passaged 2-5, 3x10° cells) were plated on a
10-cm dish. The next day, the culture medium was aspi-
rated, and the cells were washed with PBS to remove the
residual FBS. Fresh culture medium supplemented with
10 ml 10% exosome-depleted FBS (System Biosciences)
was added. Then, the hp-MSCs were exposed to 0 or 5
Gy y-rays at a dose rate of 1 Gy/min using a PS-3100SB
y-ray irradiation system with a Cs source (Pony Industry
Co., Ltd. Osaka, Japan) [16].

After 48 h of incubation, culture medium (10 ml) from
hp-MSCs that irradiated or not was collected for EV iso-
lation as previously described with minor modifications
[22]. Briefly, the culture medium was centrifuged at 300
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g for 3 min, at 4 °C and 2000 g for 30 min to remove cell
debris and apoptotic bodies. The supernatant was ultra-
centrifuged at 4 °C and 100,000 g for 120 min to collect
EVs. Then, the pellet was washed with PBS and under-
went another step of ultracentrifugation at 4°C and
100,000 g for 120 min to concentrate and purify EVs. Fi-
nally, the pellet was resuspended in PBS and passed
through a 0.22-um filter (Millex) for further experiments
or stored at —-80°C. EVs isolated from a 30-ml culture
medium were pooled together as one sample for further
experiments.

EVs imaging and size distribution
The image of EVs (n=1) was taken by a transmission
electron microscope. Briefly, 5 ul of EVs was dropped on
a copper net and incubated at room temperature (RT)
for 5 min. Then, excess liquids were removed by filter
paper. Five microliters of 1% phosphotungstic acid was
added to the copper mesh and incubated for 1 min at
RT. Excess liquids were also removed by filter paper. De-
ionized water was added to the copper mesh to remove
excess dye solution. EVs were observed under an elec-
tron microscope after drying at RT.

The size distribution of EVs (n=1) was estimated by
nanoparticle tracking analysis using a Particle Metrix
Zeta view.

EV protein preparation and Western blotting

The protein concentration of EVs (n=4) was tested by
Micro BCA protein analysis as described in the instruc-
tions (Thermo Scientific Pierce 23235). Expression of
the EVs markers CD63 and TSG101 (System Biosci-
ences) was verified by Western blot analysis (1n=1).

EV miRNA sequences

EVs from three donors of hp-MSCs were pooled for
miRNA sequences. EV miRNAs were analyzed using
gene chip miRNA 4.0 by Filgen Company. Briefly, EV
miRNAs were extracted using the miRNeasy® Serum/
Plasma Kit. The extracted miRNAs (150 ng) were further
concentrated by Micro Vac™, and their volume was ad-
justed to 8 pl using nuclease-free water. Then, the
hybridization solution was prepared by mixing the
hybridization master mix with a biotin-labeled sample
according to the manual (FlashTag™ Biotin HSR RNA
Labeling Kit for GeneChip™ miRNA Arrays). The array
that added hybridization solution was incubated in the
GeneChip™ Hybridization Oven 645 for 18 h (48°C, 60
rpm). Later, the array was washed using GeneChip™ Flu-
idics Station 450. Finally, the array was screened by the
GeneChip™ Scanner 3000 7G and analyzed according to
the GeneChip™ Command Console (AGCC) 4.0 User
Manual.
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Uptake of EVs

EVs (n=1) derived from non-irradiated (non-irradiated-
EVs) and irradiated hp-MSCs (irradiated-EVs) were la-
beled with the PKH26 Red Fluorescent Cell Linker Kit
(Sigma-Aldrich) according to the manufacturer’s proto-
col with minor modifications. Non-irradiated or
irradiated-EVs diluted in PBS were added to 1 ml diluent
C (Sigma-Aldrich). In parallel, 4 pl PKH26 dye was
added to 1 ml diluent C and incubated with the EV solu-
tion (10 pg/ml) for 4 min. To bind excess dye, 2 ml 0.5%
BSA/PBS was added. The labeled EVs were washed at
100,000 g for 1 h, and the EV pellet was diluted in 100
pl PBS and used for uptake experiments. PKH26 labeled
non-irradiated or irradiated-EV were cultured with the
HUVEC and H9c2 cell lines, respectively. Images of EV
uptake were taken after coculture at 3 and 24 h using
confocal microscopy.

Evaluation of cell proliferation and DNA damage

To evaluate the effects of EVs on cell proliferation and
DNA damage, HUVEC (4x10% and H9c2 cells (4x10%
were seeded on 4-well chamber culture slides. After 72 h
of culture with 10 pg/ml non-irradiated-EVs or
irradiated-EVs (n=3), the cells were washed with PBS
and fixed in 4% paraformaldehyde for 10 min. After the
incubation of protein block serum-free (DAKO) with
0.01% Triton X-100, the cells were incubated with Ki67
monoclonal antibody (SolA15, Invitrogen), anti-53BP1
antibody (ab36823, Abcam), or anti-gamma H2A.X
(ab2893, Abcam), followed by associated Alexa flour
488-conjugated second antibody. Nuclei were stained
with DAPI, the positively stained cells were counted
under fluorescence microscopy at 200-fold magnifica-
tion, and 20 fields per section were randomly selected
for quantitative counting. The percentage of positive
cells in each field was calculated as (positively stained
cells/all cells in the field)x100%.

Annexin-V flow cytometry

To evaluate the effects of EVs on HUVEC and H9c2 cell
apoptosis, HUVEC (3x10°) and H9¢2 (3x10°) cells were
seeded on 10-cm culture dishes. After 48 h of culture
with 10 pg/ml non-irradiated-EVs or irradiated-EVs (n=
3), the cells were collected and washed with cold D-PBS
by centrifugation for 5 min at 500xg at 4°C. Cells treated
with 3% formaldehyde in a buffer for 30 min were in-
cluded as a positive control. The cell pellets were sus-
pended with 100 pl cold D-PBS and then added 5 pl of
Annexin V-FTIC solution, and 2.5 pl dissolved PI were
added as described in the manual (Beckman Coulter).
The samples were kept on ice and incubated for 10 min
in the dark. Finally, 400 ul ice-cold 1x binding buffer
was added to the samples for further experiments. Flow
cytometry analysis was performed using a FACSCalibur
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(Becton Dickinson, Franklin Lakes, NJ, USA). The ac-
quired data were analyzed using Cell Quest software
(Becton Dickinson).

Tube formation

Corning® Matrigel® Matrix (356230) was thawed over-
night on the ice at 4°C according to the guidelines in the
manual. All pipets and procedures were previously kept
on ice. Then, 289 pl chilled Corning Matrigel® matrix
into 24-well culture plates to avoid air bubbles. Plates
were incubated at 37°C for 30-60 min. The medium
remaining was removed carefully without disturbing the
matrix layer, and the plates were ready to use. HUVEC
cells were previously cocultured with 10 pg/ml non-
irradiated-EVs or irradiated-EVs for 48 h (n=3). Then,
300-pl cell suspensions were collected and added to each
well and incubated at 37°C, in a 5% CO, atmosphere.
Tube formation was observed 3 h later under micros-
copy at 100-fold magnification and 10 fields per section
were randomly selected for quantitative counting. The
photo was further analyzed by Image].

Intracellular calcium detection

Intracellular calcium was examined by loading H9c2
cells with Fluo 3 (Dojindo Molecular Technologies, Inc.)
according to the instructions. Briefly, 3x10° H9c2 cells
were previously seeded on 10-cm culture dishes and
cocultured with 10 pg/ml non-irradiated-EVs or
irradiated-EVs for 48 h (n=3). Cells were harvested and
then plated on 96-well plates. The culture medium was
carefully removed without injuring the cells. Cells were
washed gently with PBS and then incubated with loading
buffer at 37°C for 1 h. Loading buffer was removed care-
fully, and a warm recording medium was added. Finally,
the fluorescence was examined by a multifunctional mi-
croplate detector.

Statistical analysis

All the results are presented as the mean + SD. The stat-
istical significance was determined by one-way ANOVA
followed by Turkey’s multiple comparisons test (Graph-
Pad Prism). Differences were considered significant
when P < 0.05.

Results

Characterization of hp-MSCs and hp-MSC EVs

Primarily expanded hp-MSCs exhibited a fibroblast-like
morphology (Fig. 1A) and were identified as the bio-
logical properties of MSCs according to their expression
pattern on the cell surface markers CD44, CD105,
CD90, CD73, CD45, and CD34 (Fig. 1 B, C). To investi-
gate the impact of IR on the EVs secretion, hp-MSCs
(passaged 2-5) were exposed to 5 Gy y-rays and the
medium was collected 48 h later for EVs isolation by
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ultracentrifugation. The successful isolation of EVs was
confirmed by electron microscopy (Fig. 1 D), nanoparti-
cle track analysis (Fig. 1E), and Western blot analysis of
the expression of membrane markers of CD63 and
TSG101 (Fig. 1F). The size distribution (Fig. 1E) and
protein concentration (Fig. 1G) were not obviously dif-
ferent between the EVs from the non-irradiated and irra-
diated MSCs. These data indicated very limited changes
in the amount and size distribution of EVs from hp-
MSCs within 48 h after exposure to 5 Gy y-rays.

EVs from non-irradiated and irradiated hp-MSCs exhibited
different miRNA expression profiles

We further measured the expression of miRNAs in EVs
by gene chip miRNA 4.0. In contrast to the small
changes in the secretion amount and size distribution,
the analysis of miRNA sequences indicated that many
miRNAs in irradiated MSC-EVs were upregulated or
downregulated more than two-fold relative to the levels
of the miRNAs of non-irradiated hp-MSCs (Fig. 1H).
The top 20 miRNAs of upregulation (Table 1) or down-
regulation (Table 2) in EVs from irradiated hp-MSCs
were listed in the table. Only miR-4655-5p was
upregulated over three-fold, but miR-4443, miR-7110-
5p, miR-520g-3p, miR-382-5p, miR-424-3p, miR-3197,
and miR-6824-5p were downregulated over three-fold in
irradiated hp-MSC EVs.

Uptake of EVs by HUVEC and H9c2 cells

Then, we evaluated the biological effects of EVs from
the non-irradiated and irradiated hp-MSCs on endothe-
lial cells and cardiomyocytes. By culturing HUVEC and
H9c2 cells with the supplement of PKH26-labeled EVs
(10 pg/ml) in the medium, the uptake of EVs by cells
was observed using a confocal microscope. Red fluores-
cence was clearly detectable in the cytoplasm at 3 h and
further enhanced after 24 h (Fig. 2 A, B). However, the
uptake of EVs from either non-irradiated or irradiated
hp-MSCs was quite similar by HUVEC and H9¢2 cells,
demonstrating that EVs from non-irradiated or irradi-
ated hp-MSCs could be internalized by the HUVEC and
H9c2 cells.

EVs from irradiated hp-MSCs significantly impaired the
survival of HUVEC and H9c2 cells

The impact of non-irradiated and irradiated hp-MSC
EVs on cell proliferation and DNA damage was observed
after 72 h of coculture using an immunofluorescence
assay (Fig. 3A, D). Ki67 expression in HUVEC and H9c2
cells was increased by non-irradiated hp-MSC EVs but
decreased by irradiated hp-MSC EVs (Fig. 3B, C). Due to
the different specificities of antibodies between HUVEC
and H9c2 cells, DNA damage in cells was detected by
the formation of 53BP1 or y-H2AX foci in nuclei. EVs
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Fig. 1 Characterization of hp-MSCs and hp-MSC EVs. A Human placental tissue-derived mesenchymal stem cells (hp-MSCs) displayed identical
fibroblast morphology. Representative images are shown. Scale bar: 200 um. Representative histograms (B) and quantitative data (C) of flow
cytometry analysis of the expressions of CD44, CD105, CD90, and CD73, but not CD45 and CD34 in hp-MSCs from two passages. D
Representative images from electron microscopy show EVs (white arrow) from non-irradiated and irradiated hp-MSCs (n=1). Scale bar: 100 nm. E
Nanoparticle track analysis of the size-distribution of EVs from non-irradiated and irradiated hp-MSCs (n=1). F Western blotting analysis of CD63
and TSG101 expression in EVs from non-irradiated and irradiated hp-MSCs (n=1). G Protein concentration of EVs from non-irradiated and
irradiated hp-MSCs determined by Micro BCA protein assay. H EVs from three donors of hp-MSCs were pooled for miRNA sequences. Scatter plot
image indicated miRNAs that were upregulated or downregulated more than two-fold in EVs from non-irradiated and irradiated hp-MSCs. The
axis values indicate the expression values after normalization of miRNAs. Values are the mean + SD. Non-irradiated-EVs: EVs isolated from
conditioned medium of non-irradiated hp-MSCs, Irradiated-EVs: EVs isolated from conditioned medium of irradiated hp-MSCs
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Table 1 The top 20 miRNAs that were upregulated in EVs from irradiated hp-MSCs (versus non-irradiated hp-MSCs)

miRNA

Ratio: irradiated-EVs to non-irradiated-EVs

Irradiated-EVs (expression values)

Non-irradiated-EVs (expression values)

hsa-miR-4655-5p
hsa-miR-6506-5p
hsa-miR-4635
hsa-miR-129-5p
hsa-miR-6772-3p
hsa-mir-3689b
hsa-miR-212-5p
hsa-miR-3157-3p
hsa-miR-3120-5p
hsa-miR-16-1-3p
hsa-miR-4638-5p
hsa-miR-2392
hsa-miR-4330
hsa-miR-3652
hsa-miR-4686
hsa-miR-7850-5p
hsa-miR-324-3p
hsa-miR-4535
hsa-miR-4538
hsa-miR-5087

320
2.92
2.89
2.81
2.81
281
2.71
2.60
235
2.35
2.32
2.32
231
2.26
2.22
222
2.15
215
213
2.12

15.08
9.08
1353
713
6.10
1045
8.65
848
6.55
7.59
7.65
6.18
4.98
7.15
6.34
542
20.76
12.89
13.57
9.64

4.71
3.1
468
2.54
217
372
3.20
3.26
278
3.24
329
267
2.16
3.17
2.86
244
9.65
6.01
6.36
455

Non-irradiated-EVs EVs isolated from conditioned medium of non-irradiated hp-MSCs Irradiated-EVs EVs isolated from conditioned medium of irradiated hp-MSCs

Table 2 The top 20 miRNAs that were downregulated in EVs from irradiated hp-MSCs (versus non-irradiated hp-MSCs)

miRNA Ratio: irradiated-EVs to non-irradiated-EVs Irradiated-EVs (expression values) Non-irradiated-EVs (expression values)
hsa-miR-4443 0.25 10.98 44.66
hsa-miR-7110-5p  0.26 55.08 21258
hsa-let-7a-5p 0.28 2.15 7.66
hsa-miR-520g-3p  0.29 6.96 23.87
hsa-miR-382-5p 030 537 1820
hsa-miR-424-3p 0.30 859 28.78
hsa-miR-3197 031 6.71 21.56
hsa-miR-6824-5p 033 481 14.62
hsa-miR-3178 0.34 204.21 60047
hsa-miR-32-3p 035 3.96 11.39
hsa-miR-1273g-3p 035 35265 1008.29
hsa-miR-23a-5p 0.35 4.19 1193
hsa-miR-29a-3p 0.36 8.09 22.58
hsa-miR-3663-5p 036 7.25 20.14
hsa-miR-146a-5p 0.36 1.65 4.56
hsa-miR-517a-3p 0.38 3.51 9.29
hsa-miR-517b-3p  0.38 351 9.29
hsa-miR-3190-5p 0.38 325 8.50
hsa-miR-516b-5p  0.38 6.76 17.66
hsa-miR-4692 038 2.08 542

Non-irradiated-EVs EVs isolated from conditioned medium of non-irradiated hp-MSCs Irradiated-EVs EVs isolated from conditioned medium of irradiated hp-MSCs
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from non-irradiated hp-MSCs significantly decreased the
percentages of cells with 53BP1 or y-H2AX foci com-
pared with the control (Fig. 3E, F). However, the per-
centages of cells with 53BP1 or y-H2AX foci were
significantly increased by EVs from irradiated hp-MSCs
compared with the non-irradiated hp-MSCs (Fig. 3E, F).
All these results indicated that irradiated hp-MSC EVs
impaired the proliferation and induced DNA damage in
HUVEC and H9¢2 cells.

Cell apoptosis was also evaluated after 48 h of cocul-
ture using an Annexin-V flow cytometry assay (Fig. 4A,
D). The non-irradiated hp-MSC EVs significantly pro-
tected the HUVEC and H9c2 cells from apoptosis (Fig. 4
B, E). However, the apoptosis of HUVEC and H9c2 cells
was less decreased by EVs from irradiated hp-MSCs than
by EVs from non-irradiated hp-MSCs (Fig. 4B, E). Add-
itionally, the necrosis of HUVEC cells was less decreased
by EVs from irradiated hp-MSCs than by EVs from non-
irradiated hp-MSCs (Fig. 4 C). However, neither the
non-irradiated nor the irradiated hp-MSC EVs affected
the necrosis of H9c2 cells (Fig. 4 F). In contrast to non-
irradiated hp-MSC EVs, irradiated hp-MSC EVs showed
a very poor ability to protect HUVEC and H9c2 cells
from apoptosis.

EVs from irradiated hp-MSCs revealed functional
impairments to HUVEC and H9c¢2 cells

To evaluate the potential roles of EVs from irradiated
hp-MSCs in cell function, we observed HUVEC cells
tube formation (Fig. 5A) and calcium transient in H9c2
cells (Fig. 5D) 48 h after coculture. The tube formation
of HUVEC cells was significantly increased by EVs from

non-irradiated hp-MSCs but slightly decreased by EVs
from irradiated hp-MSCs (Fig. 5B, C). However, the cal-
cium transients of H9c2 cells were significantly in-
creased by EVs from irradiated hp-MSCs, but were not
changed significantly by EVs from non-irradiated hp-
MSCs (Fig. 5D). These results indicated the functional
impairment of irradiated hp-MSC EVs to HUVEC and
H9c2 cells.

Discussions

Emerging findings have identified the contribution of
stem cell injury to radiation-induced tissue toxicity
[23, 24]. EVs seem to be essential mediators of com-
munication between MSCs and heart cells [25]. Resi-
dent MSCs in the heart are known to play an
essential role in cardiac homeostasis [26], and their
dysfunction may contribute to heart disease develop-
ment [27]. Thus, following radiation exposure, the
relatively highly radiosensitive MSCs may secrete spe-
cific EVs to induce injury to heart tissue cells, includ-
ing cardiomyocytes and endothelial cells, which
ultimately develop heart disease. To verify our hy-
pothesis, we exposed hp-MSCs to 5 Gy y-rays and
then evaluated how EVs from irradiated hp-MSCs
affect the biological properties of HUVEC and H9c2
cells.

We successfully isolated EVs from non-irradiated or
irradiated hp-MSCs culture medium using ultracentrifu-
gation, which was confirmed by electron microscopy
and the expressions of CD63 and TSG101. As we
isolated EVs for experiments before the publication of
MISE2018 [22], we missed to examine the ratio of
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Fig. 3 Effects of hp-MSC-derived EVs on the proliferation and DNA damage of HUVEC and H9c2 cells after 72 h of culture. A Representative
images of immunofluorescence analysis show Ki67-positive HUVEC or H9c2 cells. Scale bar: 50 um. Quantitative data (n=3) indicate the
percentage of Ki67-positive HUVEC cells (B) or H9c2 cells (C). D Representative images of immunofluorescence analysis show the DNA damage in
HUVEC (53BP1 foci) or H9c2 (y-H2AX foci) cells. Scale bar: 20 um. Quantitative data (n=3) on the percentage of 53BP1-positive HUVEC cells (E) and
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from conditioned medium of irradiated hp-MSCs. Values are the mean + SD. ns P > 0.5, *P < 0.5, **P < 0.1, ***P < 0.01, ****P < 0.001
J

proteins:particles, lipids:particles, or lipids:proteins. MSC-derived EVs have been demonstrated to possess
Despite the similar amount and size distribution, EVs  regenerative potential comparable to the regenerative
from non-irradiated and irradiated hp-MSCs revealed potential of MSCs [28]. We next investigated the poten-
large differences in the expression of miRNAs, indicating  tial effects of EVs on heart tissue cells using HUVEC
radiation-induced alternation of EVs secreting MSCs in  and H9c¢2 cells. Correspondingly, EVs from non-
quality rather than in quantity. irradiated hp-MSCs clearly showed beneficial effects on
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cell proliferation, DNA damage, and cell apoptosis. In
contrast, EVs from irradiated hp-MSCs revealed much
less beneficial, and sometimes even harmful effects on
HUVEC and H9c2 cells. We also aimed to identify
whether EVs from irradiated hp-MSCs impair the

functions of HUVEC and H9c2 cells. MSC-derived EVs
promote angiogenesis by transferring signals to endothe-
lial cells [29]. Tube formation of HUVEC cells was facili-
tated by EVs from non-irradiated hp-MSCs, but not

irradiated hp-MSCs. The homeostasis of calcium
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structure formation on Matrigel®. HUVEC cells were previously cocultured with 10 ug/ml EVs from non-irradiated/irradiated hp-MSCs or not for 48
h. Scale bar: 200 um. B, C Quantitative data (n=3) on tube formation relative to nontreated cells. D Quantitative analyses (n=3) of the calcium
fluorescence intensity in H9c2 cells cocultured with 10 pg/ml EVs from non-irradiated/irradiated hp-MSCs or not for 48 h. Non-irradiated-EVs: EVs
isolated from conditioned medium of non-irradiated hp-MSCs, irradiated-EVs: EVs isolated from conditioned medium of irradiated hp-MSCs.
Values are the mean = SD. ns P > 0.5, *P < 0.5, **P < 0.1

transients is a crucial factor for maintaining normal car- irradiated hp-MSCs. Among the upregulated miRNAs in
diac rhythm [30]. Following ischemia/reperfusion injury, the EVs from irradiated hp-MSCs, the roles of miR-129-
the internal levels of calcium in H9c2 cells increased in ~ 5p, miR-212-5p, miR-3120-5p, miR-16-1-3p, miR-4638-
a time-dependent manner [31], and calcium overload in  5p, miR-2392, and miR-324-3p have been reported
H9c2 cells may further accelerate reperfusion injury mostly in cancer development, but rarely in cardiovascu-
[32]. We found that calcium transients in H9c2 cells lar diseases. Geng et al. found that high fat diet-induced
were significantly enhanced by EVs from only the irradi-  upregulation of miR-129-5p contributes to atheroscler-
ated hp-MSCs, indicating the induction of calcium over-  osis development via beclin-1 inhibition [33]. Zhao et al.
load in cells. All these data suggested the harmful, rather  identified that IgE activates miR-212-5p in asthmatic
than beneficial effects of EVs from irradiated MSCs in  mice and causes decreased blood tension by downregu-
heart cells. lating vascular NCX1 expression [34]. Li et al. found that

Using miRNA sequencing, we found extensive changes ~ miR-3120-5p interacted with IncRNA WTAPP1 sup-
in miRNAs between EVs from non-irradiated and pressing endothelial progenitor cell migration and



Luo et al. Stem Cell Research & Therapy (2021) 12:422

angiogenesis by decreasing MMP-1 levels and inhibiting
the PI3BK/Akt/mTOR pathway [35]. Ge et al. reported
that miR-324-3p promoted high glucose-induced renal
fibrosis via activation of MAPK and ERK1/2 pathways
[36]. Among the downregulated miRNAs in EVs from ir-
radiated hp-MSCs, the roles of miR-4443, let-7a-5p,
miR-382-5p, miR-424-3p, miR-3197, miR-3178, miR-32-
3p, miR-1273g-3p, miR-23a-5p, miR-29a-3p, miR-146a-
5p, miR-517a-3p, and miR-516b-5p have also been re-
ported mostly in cancer progression. In addition, the
roles of miR-1273g-3p, miR-23a-5p, miR-29a-3p, and
miR-146a-5p in heart disease development have been
studied broadly. Guo et al. determined that miR-1273g-
3p promotes HUVEC cell dysfunction caused by acute
glucose fluctuation [37]. miR-23a-5p enhances athero-
sclerotic plaque progression [38] and hepatic fibrosis
[39, 40]. However, Lu et al. identified that miR-23a-5p
was enriched in bone marrow-derived M2 macrophages
with a reparative potential [41]. miR-29a-3p is known to
reduce cardiac hypertrophy [42, 43] and ischemia-
reperfusion injury [44]. miR-146a-5p is reported to at-
tenuate ischemia/reperfusion injury by downregulating
Irakl and Traf6 and consequently blunting Toll-like re-
ceptor signaling [45]. miR-146a-5p deficiency in
doxorubicin-treated mice leads to more severe cardio-
toxicity [46]. Importantly, EVs from cardiosphere-
derived cells have an abundant expression of miR-146a-
5p, conferring cardiac regenerative therapeutic effects
[47]. However, Oh et al. found that miR-146a-5p was
enriched in extracellular vesicles isolated from failing
hearts reducing cardiac contractility by suppressing
SUMO1/SERCA2a signaling [48]. In contrast, Fang et al.
found that patients with upregulated serum levels of
miR-29a-3p and miR-146a-5p are more likely to develop
diffuse myocardial fibrosis [49]. Thus, the exact roles of
miR-23a-5p, miR-29a-3p, and miR-146a-5p need more
in-depth investigation.

This study has several limitations (but is not limited
to) that need further addressing. First, the culture scale
of cardiac MSCs makes it difficult for us to obtain
enough EVs for further experiments. As a proof-of-
concept of study, we used MSCs from human placental
tissues instead of the resident MSCs of the heart because
of the availability of cell sources. MSCs are highly vari-
able and heterogonous depending on source tissue and
age. Therefore, it is of interest to estimate whether var-
ied MSCs would respond differently to ionizing radi-
ation. Second, hp-MSCs were exposed to only 5 Gy at a
high dose rate (1 Gy/min) which is equivalent to the
daily dose generally used in clinical radiotherapy for can-
cers. As the biological effects on cells vary greatly de-
pending on the dose and dose rate of radiation [50, 51],
it is necessary to evaluate the quantity and quality of
EVs from MSCs by exposing the cells to different doses
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and dose rates of radiation. Third, we analyzed only
miRNAs, but radiation exposure may also change other
components such as lipids, proteins, and IncRNAs in
EVs. Otherwise, we did not try to further confirm the
role of each upregulated or downregulated miRNA in
EVs from irradiated MSCs to HUVEC and H9c2 cells.
Most importantly, we examined our hypothesis using
only in vitro cell models, and animal models that mimic
the in vivo changes after IR are worth studying. Finally,
the pathological development of RIHD is complex, influ-
enced by comprehensive factors released from all cells
that resided in the heart (cardiomyocytes, endothelial
cells, fibroblasts, stem cells). Herein, the interaction be-
tween these cells needed further investigation.

Conclusions

Overall, although the number of EVs secreted from hp-
MSCs was not changed by 5 Gy y-ray exposure, EVs
from irradiated hp-MSCs caused damage to HUVEC
and H9c2 cells. Our preliminary data from an in vitro
study demonstrated that EVs from MSCs may indirectly
contribute to radiation-induced heart disease. Further
studies, including interventional experiments and in vivo
mouse models, are required to confirm our concept.
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