
 

 

Near real-time N-nitrosodimethylamine monitoring in potable water reuse 1 

via online high-performance liquid chromatography-photochemical 2 

reaction-chemiluminescence 3 

Revised manuscript submitted to 4 

Environmental Science: Water Research & Technology 5 

September 2017 6 

Takahiro Fujioka,†,* Taketo Tanisue,‡ Shannon L. Roback,§  7 

Megan H. Plumlee,§ Kenneth P. Ishida,§ Hitoshi Kodamatani,‡ 8 

†Water and Environmental Engineering, Graduate School of Engineering, Nagasaki 9 

University, 1-14 Bunkyo-machi, Nagasaki 85 2-8521, Japan 10 

‡Division of Earth and Environmental Science, Graduate School of Science and Engineering, 11 

Kagoshima University, Kagoshima 890-0065, Japan 12 

§Orange County Water District, 18700 Ward Street, Fountain Valley, CA 92708, USA 13 

_______________________  14 

* Corresponding author: Takahiro Fujioka, Email: tfujioka@nagasaki-u.ac.jp, Tel: +81 095 819 2695, Fax: 15 

+81 95 819 262016 



1 

 

TOC contents 17 

Online NDMA Monitor

Every 20 min

Reverse Osmosis 

TimeN
D

M
A 

co
nc

en
tra

tio
n

 18 

Near real-time monitoring of the concentration of N-nitrosodimethylamine (NDMA) in 19 

recycled wastewater was achieved by adapting a newly developed analytical technique—20 

online high-performance liquid chromatography-photochemical reaction-chemiluminescence. 21 

22 
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Abstract 23 

Direct potable reuse requires stringent water quality assurance to protect public health. This 24 

study developed an online analytical technique—high-performance liquid chromatography 25 

followed by photochemical reaction and chemiluminescence detection (HPLC-PR-CL)—for 26 

determination of the concentration of N-nitrosodimethylamine (NDMA) and three other N-27 

nitrosamines. Its feasibility for near real-time analysis was evaluated by analyzing an 28 

ultrafiltration (UF)-treated wastewater before and after a pilot-scale reverse osmosis (RO) 29 

treatment system. The online instrument with a method detection limit of 0.3–2.7 ng/L 30 

requires a direct injection (i.e., no sample pre-concentration) of only 20–200 µL sample 31 

volume for the determination of N-nitrosamine concentrations every 20 min. NDMA 32 

concentrations in UF-treated wastewater were successfully monitored in a range of 50–200 33 

ng/L over the course of 24 h. Likewise, NDMA concentrations in RO permeate ranged from 34 

25–80 ng/L over the course of 48 h. The online monitor was capable of recording variations 35 

in N-nitrosamine concentration in RO permeate that occurred following changes in feedwater 36 

concentration and temperature. This study demonstrates the potential for online water quality 37 

assurance that directly measures trace levels of organic contaminants, which is highly 38 

relevant to the implementation of potable reuse. 39 

40 
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Water Impact Statement 41 

Potable reuse requires robust water quality assurance for public safety. Particularly for direct 42 

reuse, there is a critical need for online monitoring. This work demonstrated an analytical 43 

technique to measure the probable human carcinogen N-nitrosodimethylamine (NDMA), 44 

adapting it for the first time to online use. NDMA concentration was measured automatically 45 

in ultrafiltration-filtered wastewater and reverse osmosis permeate every 20 min.  46 
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1 Introduction 47 

Water reuse is critical for augmentation of potable water supplies in many regions.1, 2 One 48 

major challenge in the use of highly treated wastewater for potable reuse is risk management 49 

and water quality assurance for trace organic chemicals (TOrCs). Most TOrCs including 50 

pharmaceuticals and endocrine disrupting compounds are well removed by reverse osmosis 51 

(RO). However, N-nitrosodimethylamine (NDMA, C2H6N2O), a probable human carcinogen 52 

3, readily permeates through an RO membrane4-6 due to its small and uncharged nature.7 A 53 

subsequent advanced oxidation process (AOP) comprised of ultraviolet (UV) light with an 54 

oxidant such as hydrogen peroxide can be used to reduce TOrCs to non-detectable levels4, 8, 9 55 

and is commonly employed in potable reuse to remove NDMA to below relevant limits such 56 

as the California regulatory notification level (NL)10 and the Australian Guidelines of 10 57 

ng/L.11 As direct potable reuse (DPR) is being implemented, rigorous treatment and 58 

monitoring is essential for public safety. In DPR, water is reclaimed for potable use after 59 

advanced treatment without the use of an environmental buffer (e.g., aquifer storage) which 60 

can provide additional treatment, dilution, and response time.12, 13 DPR serves the advanced 61 

treated water immediately upstream of a drinking water treatment plant (“raw water 62 

augmentation”) or directly into the drinking water distribution system (“treated drinking 63 

water augmentation”).   64 

Online monitoring is expected to play a vital role in ensuring water quality and process 65 

integrity for DPR, with emphasis on the need for real-time or near real-time monitoring.14 66 

Online monitors for use in DPR scenarios are currently limited to bulk parameters such as 67 

total organic carbon (TOC), electrical conductivity, UV254, and fluorescence.15 These 68 

surrogates are meant to indicate process performance and signal problems if out of range, 69 

rather than serve as a direct measure of specific compounds of concern.   70 
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The ability to monitor NDMA concentrations continuously (real-time) or with high frequency 71 

(near real-time) can improve the safety of water by providing an early warning of unforeseen 72 

spikes of NDMA and by indicating drift or failures in treatment processes (e.g., membrane 73 

defects). Current analytical methods for NDMA are incapable of online or frequent 74 

measurements. These methods require a pre-concentration step using solid or liquid-phase 75 

extraction to enable detection at trace concentrations, which is time consuming and labor 76 

intensive. This is typically followed by gas or liquid chromatography (GC or LC) and tandem 77 

mass spectrometry detection (MS/MS).4, 16 The conventional methods require a large sample 78 

volume (200–1000 mL) for pre-concentration, increasing project complexity for monitoring 79 

programs and constraining research design. Moreover, the addition of isotope-labelled 80 

NDMA to samples is necessary to calculate the loss of NDMA during the sample preparation 81 

step. Due to the complexity of these analytical procedures, the analysis of NDMA at full-82 

scale plants is performed with limited frequency (e.g., weekly, monthly). In contrast, a novel 83 

analytical method using automated high-performance liquid chromatography separation 84 

coupled with photochemical reaction (PR) and detection by chemiluminescence (CL)17 85 

allows for a direct injection of a small sample volume (20–200 µL) with no pre-concentration 86 

step for  quantification of N-nitrosamines including NDMA. It requires only 15–20 min from 87 

the time of sample injection to the determination of N-nitrosamine concentrations and 88 

provides a similar or even lower detection limit than conventional methods. 89 

HPLC-PR-CL for NDMA analysis has been validated in prior work including comparison 90 

with a conventional method (solid phase extraction followed by GC-MS/MS) and evaluation 91 

of interference by common process chemicals (monochloramine, hydrogen peroxide and 92 

hypochlorite) and organic compounds in treated wastewaters.18 Among the process chemicals, 93 

only hypochlorite interfered with NDMA analysis but the interference was eliminated by 94 

dosing a reducing agent, which is a standard procedure for NDMA analysis to prevent 95 
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NDMA formation in the sample bottle prior to analysis. Interference from organic 96 

constituents in secondary and ultrafiltration (UF)-treated wastewaters was also avoided by 97 

reducing the sample injection volume, while no interference was identified with RO 98 

permeate.18 In the prior work the analytical technique was developed for laboratory use with 99 

a manual or autosampler-assisted injection of manually collected samples using a bench top 100 

HPLC-PR-CL instrument.  101 

The HPLC-PR-CL method has the potential to be adapted for online NDMA analysis due to 102 

its high speed, relative simplicity, and sensitivity. This study developed an online monitor 103 

using HPLC-PR-CL for automated determination of NDMA concentration and three other N-104 

nitrosamines in near real-time. The online monitor was validated by continuously measuring 105 

the concentrations of N-nitrosamines in a pilot-scale UF-treated wastewater and RO permeate 106 

to track the variation in N-nitrosamine concentration as a function of changes in temperature 107 

and feed concentration. To our knowledge, in contrast to online monitors of water quality 108 

surrogates such as TOC and UV254, this system is the first online monitor for high frequency 109 

detection of a trace-level organic compound of public health concern in drinking water.   110 

2 Methods 111 

2.1 Chemicals 112 

All chemicals used in this study were of analytical grade. Solutions containing N-113 

nitrosamines – NDMA, N-nitrosomethylethylamine (NMEA), N-nitrosopyrrolidine (NPYR) 114 

or N-nitrosomorpholine (NMOR) (Table S1) – at 100 mg/L were purchased from Ultra 115 

Scientific (Kingstown, RI, USA). A stock solution of each N-nitrosamine was prepared at 1 116 

mg/L in pure methanol. Luminol (5-amino-2,3-dihydro-1,4-phthalazinedione) was purchased 117 

from Wako Pure Chemical Industries (Tokyo, Japan). A luminol stock solution was prepared 118 
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at 20 mM in a 0.5 M carbonate buffer. UF-treated wastewater was prepared using a pilot-119 

scale UF system by filtering an activated sludge treatment effluent collected at a municipal 120 

wastewater treatment plant in Japan. TOC, electrical conductivity and pH of the UF-treated 121 

wastewater were 16.1 mg/L, 1,290 µS/cm and 6.6, respectively. 122 

2.2 Analytical techniques 123 

The online monitor for N-nitrosamines used in this study was configured as an HPLC-PR-CL 124 

instrument19 equipped with a six-port valve (Fig. 1 and Fig. S2). The target sample was fed 125 

to the six-port valve at a flow rate of 0.7–1 mL/min which resulted in <2 min travel time of 126 

the sample between the system sampling port and the online analyzer. At programmed 127 

intervals, the six-port valve injected a specific sample volume, 20 µL for UF-treated 128 

wastewater and 200 µL for RO permeate, into the HPLC-PR-CL. The injected sample first 129 

reached the HPLC where the separation of the N-nitrosamines occurred via an octadecylsilyl 130 

(ODS) column. Eluent solution (10 mM phosphate buffer with 5% methanol) was fed to the 131 

instrument in isocratic mode at a flow rate of 1.5 mL/min. Thereafter, each separated N-132 

nitrosamine eluting from the column at different times was irradiated in the PR with UV light 133 

to produce nitric oxide which was transformed to peroxynitrite after reacting with superoxide 134 

anion radical, which was generated via the reaction of UV light with the eluent solution. 135 

Reaction details were previously specified in a study by Kodamatani et al.17 A 0.05 mM 136 

luminol solution prepared with 0.5 M carbonate buffer (pH 10) was injected into the sample 137 

line at 0.5 mL/min. The reaction of peroxynitrite with luminol induced chemiluminescence 138 

and the concentrations of each N-nitrosamine were determined based on the intensity of the 139 

chemiluminescence. The method detection limit for NDMA (see Supporting Information S3) 140 

is 0.3 to 2.7 ng/L depending on the injection volume. 141 
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The online HPLC-PR-CL monitor was assembled with commercially available components: 142 

DGU-20A3 degasser (Shimadzu), six-port valve (HV-2080-01, JASCO, Tokyo, Japan), valve 143 

controller (Nichiri Mfg. Co. Ltd., Chiba, Japan), CTO-20AC column oven (40 °C), 144 

InertSustain C18-AQ column (5 µm, 4.6 mm i.d., 250 mm GLsciences, Tokyo, Japan), CL-145 

2027 chemiluminescence detector (JASCO, Tokyo, Japan), and Chromato-PRO data 146 

processor (Runtime Instruments, Kanagawa, Japan). In addition, a low-pressure mercury 147 

lamp (15 W, CL-15, Panasonic, Tokyo, Japan) was used to construct the photochemical 148 

reactor. 149 

Position A: 
Sampling

Position B: 
Analysis

Sample
loop

Pump

6-port 
valve Column Photochemical 

reactor
CL 
detector

Data 
Processor

Luminol
solution
pH 
conditioning
solution

Eluent

Degasser

Effluent

HPLC-PR-CL

Sampling side

Target
system

HPLC-PR-CL

Sampling side

 150 

Fig. 1 – Schematic diagram of the online HPLC-PR-CL instrument with a 6-port valve.  151 

2.3 Validation protocol 152 

Prior studies have demonstrated the accuracy of the HPLC-PR-CL method for NDMA 153 

analysis in waters.18, 19 In the present study, an online adaptation of the instrument was 154 

validated for UF-treated wastewater. The sampling system consisted of a 200 mL beaker 155 

holding UF-treated wastewater, a magnetic stirrer, a peristaltic pump and 6 mm i.d. PTFE 156 

tubing (Fig. S4a). The UF-treated wastewater was well mixed throughout the experiment. 157 

The validation for RO permeate was performed using a pilot-scale cross-flow RO filtration 158 

system comprised of a 4 in. glass-fibre pressure vessel containing a 4-in. spiral wound RO 159 
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membrane element with a 7.43-m2 membrane area (ESPA2-LD-4040,  Hydranautics/ Nitto, 160 

Oceanside, CA, USA) (Fig. S4b). The filtration experiment was conducted with UF-treated 161 

wastewater spiked with 50–200 ng/L of NDMA. Permeation of the other three N-162 

nitrosamines (NMEA, NPYR, and NMOR) through RO membranes is far less than NDMA 163 

due to their larger size in molecular dimension,20 thus, the three N-nitrosamines were dosed at 164 

500–2000 ng/L to attain a measurable concentration in the RO permeate. RO permeate and 165 

concentrate streams were recirculated into the feed reservoir and the sampling to the six-port 166 

valve was conducted after 2 h operation. Throughout the experiments, permeate flux was 167 

maintained constant at 20 L/m2h with a constant recovery of 15%. Unless otherwise stated, 168 

feed solution temperature was maintained at 20 ± 0.5 °C in the reservoir using a titanium heat 169 

exchanging pipe connected to a chiller unit (CA-1116A, Tokyo Rikakikai Co. Ltd., Tokyo, 170 

Japan). The instrument was calibrated at the beginning of each experiment. Method 171 

calibration standards were prepared at 5–100 ng/L for NDMA and 50–1000 ng/L for the other 172 

N-nitrosamines. During continuous analysis, a standard N-nitrosamine solution was manually 173 

injected twice per day to ensure that the instrument response did not change. 174 

3 Results and discussion 175 

3.1 Online analysis in UF-treated wastewater 176 

Online analysis of NDMA was tested using a bench-scale wastewater recirculation system by 177 

spiking step-wise. Concentrations of NDMA and the other N-nitrosamines in the UF-treated 178 

wastewater were successfully monitored every 20 min for 24 h as shown in Fig. S5. A 179 

gradual decrease in N-nitrosamine concentration in the effluent was observed after 8 h, 180 

perhaps due to minor sorption of the N-nitrosamines to recirculating system components.  181 
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3.2 Online analysis in RO permeate 182 

Online analysis for N-nitrosamines in RO permeate was performed by drawing samples from 183 

a pilot-scale RO system. NDMA concentrations in the RO permeate were successfully 184 

analyzed every 20 min over two days. The targeted (spiked) concentrations of NDMA and 185 

the other N-nitrosamines in the RO feed were 100 and 1000 ng/L, respectively. During the 186 

first 18 h when the feed temperature was maintained at 20 ± 0.5 °C, NDMA concentrations in 187 

the RO permeate remained constant at 50–52 ng/L (Fig. 2). The impact of feed temperature 188 

on N-nitrosamine permeation was then evaluated between 18 – 23.5 h. When the RO feed 189 

temperature was increased from 12 to 28 °C, the NDMA concentration in the RO permeate 190 

increased considerably from 35 ng/L (67% rejection) to 70 ng/L (34% rejection). Similar 191 

changes in permeate concentrations were observed for NMEA, NPYR and NMOR (Fig. S6). 192 

This is consistent with a previous study20 where feed temperature was identified to be a 193 

critical factor governing the permeation of NDMA. The permeation of N-nitrosamines 194 

increased with an increase in solution temperature under conditions of constant permeate flux 195 

due to increased diffusivity of solutes through the RO membrane against a fixed water 196 

permeation rate.20     197 
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Fig. 2 – Online analysis of NDMA concentration in RO permeate (NDMA concentration in 199 

RO feed = 106 ± 3 ng/L, permeate flux = 20 L/m2h).  200 

At 23.5 h, the concentration of NDMA in RO feed was reduced from 108 to 68 ng/L by 201 

diluting the feed with UF-treated wastewater (Fig. 3). At 44 h, the impact of N-nitrosamine 202 

feedwater concentration was evaluated by a step-wise increase of NDMA from 68 to 204 203 

ng/L (Fig. 3). In response, the NDMA concentration in RO permeate increased from 26 to 81 204 

ng/L, resulting in near constant rejection at 60–62%. A similar observation in solute 205 

permeation was attained for NMEA, NPYR and NMOR (Fig. S7). The results demonstrated 206 

that the online monitor can be used as a tool to accurately identify changes in N-nitrosamine 207 

concentration in RO permeate, improving data quality through more frequent sampling. 208 
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Fig. 3 – Online analysis of NDMA concentration in RO permeate (feed temperature = 20 °C, 210 

permeate flux = 20 L/m2h, transmembrane pressure = 0.51 MPa). NDMA concentrations in 211 

the RO feed were determined based on manual samplings.  212 

4 Conclusion 213 

Online measurement of NDMA in near real-time was successfully demonstrated in this study. 214 

Because wastewaters contain a complex matrix of substances that could decrease the life of 215 

the separation column and influence the method accuracy, implementation at full scale will 216 

require a long-term investigation to identify any changes in separation performance and 217 

determine an appropriate replacement schedule. For example, periodic injection of matrix 218 

spike standards at known concentrations is recommended to confirm online monitor accuracy 219 

over time. Further validation of the HPLC-PR-CL method compared to conventional mass 220 

spectrometry-based methods18 using treated wastewaters representing different potential 221 

facility installation locations (e.g. fully treated water after UV/AOP, ozone/biological 222 

activated carbon treated wastewaters) is also necessary to confirm the accuracy of the method 223 

in a host of different water matrices. 224 

Use of this online monitor for NDMA/N-nitrosamine analysis in water reuse facilities could 225 

enhance the current portfolio of constituents monitored online continuously or near real-time 226 

to ensure the safety of potable reuse. There are several potential benefits: 227 
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• To our knowledge, online HPLC-PR-CL for NDMA/nitrosamines analysis is the only 228 

available (near) real-time monitor for direct measurement of a public health-relevant 229 

contaminant and TOrC in drinking water. Enhanced monitoring (higher frequency) 230 

ultimately provides more public health protection. 231 

• Online data for NDMA in finished water from reclamation plants may improve 232 

compliance with permits and regulations. For example, early detection of process drift, 233 

a spike in the feedwater concentration, or membrane failure could prevent exceedance 234 

of NLs or other limits for NDMA. Similarly, other critical constituents may correlate 235 

with spikes or increases in NDMA. 236 

• Online monitoring of NDMA in UV/AOP product water could be used to ensure 237 

removal of NDMA prior to delivery of treated water. UV/AOP is employed by many 238 

potable reuse plants to reduce NDMA to at-or-below the detection limit.  The success 239 

of this process is essential to ensure confidence in the safety of the finished water. 240 

However, online NDMA monitoring would have to be justified given there are 241 

accepted, simpler methods for continuous performance documentation such as online 242 

monitoring of UVT and UV train power. 243 

• Whether using HPLC-PR-CL as a bench top instrument or with online capability, 244 

staff time and sample volume required for NDMA/nitrosamine analysis is greatly 245 

reduced compared to conventional methods requiring sample pre-concentration and 246 

mass spectrometry for detection; for this reason, conventional methods are not 247 

suitable for online monitoring. 248 
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Table S1 – Structure of the selected N-nitrosamines. 
Compound NDMA NMEA NPYR NMOR 
Structure 
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Fig. S2 – Photograph of the online HPLC-PR-CL instrument with a 6-port valve. 
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Supporting information S3 – Method detection limits: 

The method detection limits (MDLs) were determined based on the Method Detection Limit 

Procedure of the U.S. Environmental Protection Agency (40CFR 136, Appendix B, revision 

1.11). MDLs with a 200 µL injection volume for NDMA, NMEA, NPYR and NMOR were 

0.3, 0.7, 1.4 and 0.8 ng/L, respectively. MDLs with a 20 µL injection volume for NDMA, 

NMEA, NPYR and NMOR were 2.7, 6.3, 7.7 and 11.8 ng/L, respectively. 
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Fig. S4a – Schematic diagram of a wastewater recirculation system. 
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Fig. S4b – Schematic diagram of the RO treatment system. The system comprised of a 4-in. 

glass-fibre pressure vessel (ROPV, Nangang, China), 65-L stainless steel reservoir, a high-

pressure pump (25NED15Z, Nikuni Co., Ltd., Kawasaki, Japan), digital flow meters (FDM, 

Keyence Co., Osaka, Japan), digital pressure indicators (GPM, Keyence Co., Osaka, Japan), a 

pressure gauge, stainless steel pipes in the feed stream and PVC pipes and PTFE tubing in the 

permeate stream). The membrane element was rinsed with pure water to eliminate residual 

preservatives on the RO element. 
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Fig. S5 – Online analysis of concentrations of N-nitrosamines in the UF-treated wastewater 

using the HPLC-PR-CL with a sample injection volume of 20 µL. 
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Fig. S6 – Online analysis of three N-nitrosamines (NMEA, NPYR and NMOR) in RO 

permeate (permeate flux = 20 L/m2h, transmembrane pressure = 0.51 MPa). Concentrations 

of NMEA, NPYR, and NMOR in RO permeate were 900, 990, and 1,040 ng/L, respectively. 
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Fig. S7 – Online analysis of three N-nitrosamines (NMEA, NPYR and NMOR) in RO 

permeate (feed temperature = 20 °C, permeate flux = 20 L/m2h, transmembrane pressure = 

0.51 MPa). N-nitrosamine concentrations in the RO feed were determined based on manual 

samplings. 
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