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ABSTRACT
Background The sympatheticnervous systemregulates immunecell dynamics.However, thedetailed roleof
sympathetic signaling in inflammatory diseases is still unclear because it varies according to the disease situ-
ation and responsible cell types. This study focused on identifying the functions of sympathetic signaling in
macrophages in LPS-induced sepsis and renal ischemia-reperfusion injury (IRI).

Methods We performed RNA sequencing of mouse macrophage cell lines to identify the critical gene that
mediates the anti-inflammatory effect of b2-adrenergic receptor (Adrb2) signaling. We also examined the
effects of salbutamol (a selective Adrb2 agonist) in LPS-induced systemic inflammation and renal IRI.
Macrophage-specific Adrb2 conditional knockout (cKO) mice and the adoptive transfer of salbutamol-
treated macrophages were used to assess the involvement of macrophage Adrb2 signaling.

Results In vitro, activation of Adrb2 signaling in macrophages induced the expression of T cell Ig andmucin
domain 3 (Tim3), which contributes to anti-inflammatory phenotypic alterations. In vivo, salbutamol adminis-
tration blocked LPS-induced systemic inflammation and protected against renal IRI; this protection was mit-
igated in macrophage-specific Adrb2 cKO mice. The adoptive transfer of salbutamol-treated macrophages
also protected against renal IRI. Single-cell RNA sequencing revealed that this protection was associated
with the accumulation of Tim3-expressing macrophages in the renal tissue.

Conclusions The activation of Adrb2 signaling in macrophages induces anti-inflammatory phenotypic alter-
ations partially via the induction of Tim3 expression, which blocks LPS-induced systemic inflammation and
protects against renal IRI.

JASN 32: 1599–1615, 2021. doi: https://doi.org/10.1681/ASN.2020121723

The sympathetic nervous system (SNS) plays impor-
tant roles in the maintenance of homeostasis. The
SNS is known to innervate lymphoid organs, includ-
ing the spleen and lymph nodes.1,2 This anatomic
finding suggests that sympathetic neurotransmitters
directly affect immune cell dynamics. Although
many previous reports have clarified that SNS
activity certainly affects immune systems,3,4 the
direction of its immunologic regulation is not
straightforward and varies according to the disease
situation and responsible cell types. For example,
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activation of sympathetic signaling enhances retention-
promoting signals and consequently inhibits lymphocyte egress
from lymph nodes (anti-inflammatory direction).5 In contrast,
SNS activation induces the accumulation of pathogenic CD4-
positive T cells in the fifth lumbar cord, which is involved in
the pathogenesis of experimental autoimmune encephalomy-
elitis (proinflammatory direction).6 Moreover, adrenergic
receptors, which receive sympathetic signaling, are ubiqui-
tously expressed in various cell types in the body, which makes
it difficult to precisely understand the sympathetic regulation of
inflammatory diseases. Thus, the effect of sympathetic signal
activation in vivo is heterogeneous, and “the critical receiver
of sympathetic signaling (immune cells, epithelial cells, or other
cell types)” may differ depending on the situation.

Therefore, it is important to clarify the detailed role of
sympathetic signaling in specific cell types in specific inflam-
matory situations. Hence, in this study, we focused on sympa-
thetic signaling in macrophages and sought to determine its
detailed roles in systemic inflammation (LPS-induced sepsis)
and local inflammation (renal ischemia-reperfusion injury).

METHODS

Cell Culture and Reagents
RAW 264.7 cells (mouse macrophage cell line) were main-
tained in DMEM–high-glucose media (D5796; Sigma-
Aldrich, St. Louis, MO) containing 10% FBS (F7524, lot
#BCBT 3830; Sigma-Aldrich). U937 cells (human monocyte
cell line) were maintained in RPMI-1640 media (R8758;
Sigma-Aldrich) with 10% FBS. U937 cells were differentiated
into macrophages by 48-hour stimulation with 100 nM phor-
bol 12-myristate 13-acetate (P1585; Sigma-Aldrich). All cells
were cultured in a humidified 5% CO2-enriched atmosphere
at 37�C. TNF-a was induced by 100 ng/ml LPS (L4391;
Sigma-Aldrich). L-NE (25304–31; Nacalai tesque, Kyoto,
Japan), salbutamol (S8260; Sigma-Aldrich), butoxamine
hydrochloride (B1385; Sigma-Aldrich), and the protein kinase
A (PKA) inhibitor 14–22 amide (476485; Sigma-Aldrich)were
used in this study.

Measurement of TNF-a and ILs
The TNF-a concentration wasmeasured using TNF-aMouse
Uncoated ELISA Kit with Plates (88–7324–22; Thermo Fisher
Scientific,Waltham,MA) or TNF-aHumanUncoated ELISA
Kit with Plates (88–7346–86; Thermo Fisher Scientific)
according to the manufacture’s protocol. The concentrations
of IL-6 and IL-10 were measured using Mouse IL-6 ELISA
Kit (KE10007; Proteintech, Rosemont, IL) and Mouse IL-10
ELISA Kit (KE10008; Proteintech).

RNA Sequencing
Total RNA was isolated using the RNeasy Mini Kit (74106;
Qiagen, Hilden, Germany). Poly (A)–containing mRNA

molecules were isolated from the total RNA and then converted
to cDNAwith poly A primers using a TruSeq RNASample Prep-
aration kit v2 (Illumina). High-throughput sequencing was per-
formed using a Hiseq2500 (Illumina) system. Sequenced
paired-end reads were mapped onto the mouse genome build
mm10 using hisat2 with the parameter “-q–dta-cufflinks.” The
SAM file was converted into BAM format, and the fragments
perkilobaseof transcriptpermillionmapped fragmentswere sub-
sequently calculated using cuffdiff and cummerBund. Genes
commonly induced by b2-adrenergic receptor (Adrb2) signaling
were extracted using the log fold change, which was calculated
from log(fragments per kilobase of transcript permillionmapped
fragments10.001) counts. The data were deposited in the Geno-
mic Expression Archive (GEA) under accession number E-
GEAD-404.

Quantitative Real-Time PCR
Total RNA was isolated using the RNeasy Mini Kit (74106)
and reverse transcribed using PrimeScript RT master mix
(Takara, Shiga, Japan). The cDNAwas then subjected to quan-
titative real-time PCR (qPCR) using the THUNDERBIRD
qPCR Mix (Toyobo, Tokyo, Japan) and a CFX96 Real Time
System (Bio-Rad). b-actin was used to standardize the
mRNA expression levels. The primer sequences are listed in
Supplemental Table 1.

Small Interfering RNA Transfection
Small interferingRNA(siRNA) transfectionwas conductedusing
Opti-MEMIReducedSerumMedium(31985070;ThermoFisher
Scientific) and Lipofectamine RNAiMAX Transfection Reagent
(13778150;ThermoFisherScientific).T cell Ig andmucindomain
3 (Tim3) knockdown was conducted by Silencer Select Pre-
Designed siRNA for mouse Tim3 (s101150 [#1] and s101148
[#2]; Thermo Fisher Scientific). Silencer Select Negative Control
No. 1 siRNA (4390843; Thermo Fisher Scientific) was used as
the negative control.

Gene Overexpression
Tim3 (Havcr2) plasmid (green fluorescent protein tagged;
MG227499; Origene Technologies, Inc., Rockville, MD) or

Significance Statement

The detailed role of neural activity in inflammatory diseases is still
unclear because it varies according to the disease situation and
responsible cell types. This study shows that activation of b2-adre-
nergic receptor (Adrb2) signaling in macrophages induces the
expression of T cell Ig and mucin domain 3 (Tim3), which contrib-
utes to anti-inflammatory phenotypic alterations. Experiments
using conditional knockout mice reveal that macrophage Adrb2
signaling directly mitigates LPS-induced systemic inflammation
and renal ischemia-reperfusion injury (IRI). The adoptive transfer
of Adrb2 signal–activated macrophages also protects against
renal IRI, in association with the accumulation of Tim3-expressing
macrophages in the renal tissue. These results indicate that mac-
rophage Adrb2 signaling plays critical roles in the severity of AKI.
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empty plasmidwas introducedusing aNeonTransfection Sys-
tem (Thermo Fisher Scientific) according to the manufac-
turer’s protocol. The overexpression of Tim3 was validated
by immunocytochemistry.

Animal Experiments
Male mice (8–12 weeks of age, 20–25 g) were used for all
experiments. Wild-type (WT) C57BL/6 mice were purchased
from Nippon Bio-Supp. Center (Tokyo, Japan). Macrophage-
specific Adrb2 conditional knockout (cKO) mice were gener-
ated by crossbreeding lysozymeM (LysM)-Cre andAdrb2 flox
mice. Genotyping was confirmed by tail PCR using published
primers. LysM-Cremice were obtained from the Jackson Lab-
oratory (Bar Harbor, ME).Adrb2 floxmice7 were provided by
Wataru Ogawa (Kobe University, Kobe, Japan) and Gerard
Karsenty (Columbia University, New York, NY). All experi-
ments were approved by the University of Tokyo Institutional
Review Board (approval nos. P18–051 and H19–164). All ani-
mal procedures were performed according to the National
Institutes of Health guidelines (Guide for the Care and Use
of the Laboratory Animals). BUN and plasma creatinine
(Cre) levels were measured by SRL Inc. (Osaka, Japan).

Preparation of Peritoneal Macrophages
After the mouse was euthanized, 8 ml of sterile PBS was injected
into the peritoneal cavity. The injected fluid was collected after a
gentle massage of the peritoneum. The fluid was centrifuged at
5003g for 5 minutes, and the supernatant was discarded. The
cell pellets were resuspended in RPMI-1640 media (R8758;
Sigma-Aldrich) with 10% FBS and 1% penicillin-streptomycin,
and they were plated in culture dishes. The cells were washed
with PBS 1 hour after plating, and the culture medium was
refreshed. The next day, the cells were used for experiments.

Renal Bilateral Ischemia-Reperfusion Injury
Mice were anesthetized by the intraperitoneal administration
of medetomidine 0.3mg/kg, butorphanol 5mg/kg, and mida-
zolam 4mg/kg. Renal bilateral ischemia-reperfusion injury
(bIRI) was performed by clamping the renal pedicles for 26
minutes. The clamps were removed, and the wound was
sutured after restoration of blood flow was visually observed.
Sham-operated mice underwent the same procedure, without
clamping of the renal pedicles.

Splenectomy
Mice were anesthetized by the intraperitoneal administration
of medetomidine 0.3mg/kg, butorphanol 5mg/kg, and mida-
zolam 4mg/kg. The splenic vasculature was ligated, and the
spleen was removed via a small incision.

Immunohistochemistry
Kidney samples were fixed inMildform 10N (133–10311;Wako,
Osaka, Japan) before being embedded in paraffin. Tissue sections
were subjected to periodic acid–Schiff staining for the histologic

examination of tubular necrosis. Semiquantitative tubular injury
scores were graded on the basis of the proportion of injured
tubules as follows: (0) none, (1) ,25%, (2) 25%–50%, (3)
50%–75%, and (4) .75%. The average score of four fields in
the outer medulla was calculated for each sample.

For Tim3 immunostaining, anti-Tim3 rabbit mAb (1:200,
83882S; Cell Signaling, Danvers, MA) was used as the primary
antibody. The sections were stained with Histofine Simple
Stain Mouse MAX PO (R) (414341; Nichirei, Tokyo, Japan)
and ImmPACTDAB substrate (SK-4105;Vector, Burlingame,
CA), which were then counterstained with Mayer Hematoxy-
lin (Wako).

Three-Dimensional Visualization of the SNS in
the Spleen
Three-dimensional (3D) visualization of the SNS in the spleen
was performed using Clear, Unobstructed Brain/Body Imaging
Cocktails and Computational (CUBIC)8–10 analysis as described
in our previous papers.11,12 In brief, the fixed mouse spleen was
immersed in CUBIC-L for delipidation and then subjected to
immunofluorescence staining. Finally, the refractive index was
matched by the placement of the sample in CUBIC-R1. The pri-
mary antibody used for staining was antityrosine hydroxylase
antibody (sheep polyclonal, 1:100, ab113; Abcam, Cambridge,
United Kingdom). The secondary antibody was Alexa Fluor
555–conjugated donkey anti-sheep IgG (1:100, A-21436; Invitro-
gen, Carlsbad, CA). The raw image data were acquired with a
custom-built light sheet fluorescence microscopy (MVX10-LS;
developed by Olympus, Tokyo, Japan). The 3D-rendered image
was visualized with Imaris (Bitplane).

Adoptive Transfer of Splenic Macrophages
Spleens were harvested from donor mice, and single-cell sus-
pensions were made through a 40-mm cell strainer with sterile
PBS. The single-cell suspensions were labeled with anti-F4/80
MicroBeads (130–110–443; Miltenyi Biotec, Bergisch Glad-
bach, Germany), and F4/80-positive splenocytes were selected
by the magnetic cell separation method. The cells were incu-
bated with vehicle or 100 mM salbutamol for 1 hour, and
they were washed twice with PBS. The macrophages were
intravenously administered to recipient mice.

Single-Cell RNA Sequencing
Digestion buffer was prepared as a mixture of DMEM–high-
glucose media (D5796) with 10% FBS (F7524, lot #BCBT
3830), RQ1 RNase-Free DNase (20 U/ml, M6101; Promega,
Madison, WI), collagenase type 1 (2 mg/ml, CLS1; Worthing-
ton, Columbus, OH), collagenase type 2 (2 mg/ml, CLS2,
Worthington), andDispase II (1mg/ml, 04942078001; Roche,
Mannheim, Germany). Kidneys were harvested, minced into
1-mm3 cubes, and digested using the digestion buffer with
shaking at 37�C. The supernatant buffer was collected after
shaking for 10 minutes, and fresh digestion buffer was added
to the remaining cell aggregations. After this process was
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Figure 1. Activation of sympathetic signaling suppresses the inflammatory response of macrophages via Adrb2. (A) TNF-a induction by
LPS was suppressed by NE treatment in RAW 264.7 cells (n56). (B) Butoxamine mitigated the anti-inflammatory effect of NE in RAW
264.7 cells (n58). (C) Salbutamol also suppressed TNF-a induction by LPS in RAW 264.7 cells (n56). All data are presented as means
6 SEM. Statistical comparisons were analyzed by (B) one-way ANOVA or (A and C) two-way ANOVA with a post hoc Tukey multiple
comparisons test. n.s., not significant. **P,0.01; ***P,0.001; ****P,0.0001.
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Figure 2. Tim3 is downstream of Adrb2 signaling and partially mediates its anti-inflammatory effects. (A) RNA sequencing was con-
ducted for three different in vitro macrophage models. The detailed experiment protocols are shown in Supplemental Figure 3: (1)
707 genes were extracted with log fold change (log FC) more than one (NE per vehicle) and log FC less than zero (NE 1 butox-
amine/NE), (2) 991 genes were extracted with log FC more than one (salbutamol per vehicle), and (3) 1189 genes were extracted
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repeated four times, the solution was passed through 70- and
40-mm cell strainers successively. The solution was then cen-
trifuged at 3003g for 5 minutes, and the resulting cell pellet
was diluted with the digestion buffer again. The solution was
passed through 40-mm cell strainers three times, and a
single-cell suspension was obtained.

The single-cell suspension was loaded onto a well on the
103 Chromium Single Cell instrument (103 Genomics,
Pleasanton, CA). Bar coding and cDNA synthesis were per-
formed using Chromium Single Cell 3’ Reagent Kits v3.1
(103 Genomics) according to the manufacturer’s instruc-
tions. High-throughput sequencing was performed using a
NovaSeq6000 (Illumina) system at Takara Bio Inc. (Shiga,
Japan).

Data Processing and Analysis of Single-Cell RNA-
Sequencing Data
The raw data were processed using Cell Ranger v3.1 (103
Genomics) to obtain the filtered feature bar code matrices.
Seurat v3 was used for the detailed analysis. We analyzed
each sample separately and excluded cells with ,200 or
.5000 genes detected or with ,20,000 unique molecular
identifiers detected. We also excluded cells with a relatively
high percentage of genes mapped to mitochondrial genes
($50%). Subsequently, we log normalized the data and
obtained 2000 highly variable genes for principal
component analysis (PCA) from each dataset with
“FindVariableFeatures.” We then merged the list with the
standard workflow using “FindIntegrationAnchors” and
“IntegrateData.” We subsequently performed PCA for the
integrated data using the variable genes and determined sig-
nificant principal components on the basis of the jackstraw.
Clustering was performed using “FindNeighbors” and subse-
quently, “FindClusters”with a resolution of 0.6.We visualized
the data on t-distributed stochastic neighbor embedding
(tSNE) using “RunTSNE.” Marker genes in each cluster
were identified using “FindAllMarkers” with min.pct50.25
and logfc.threshold50.25. The marker genes sorted by the
average log fold change are presented in Supplemental Table
2. Macrophage subclustering was performed as follows. First,
we extracted the macrophage cluster and changed the default
assay from “integrated” to “RNA.” Then, we log normalized
the data and obtained 2000 highly variable genes for PCA
with “FindVariableFeatures.”Clustering was performed using
“FindNeighbors” and subsequently, “FindClusters”with a res-
olution of 0.8. We visualized the data on tSNE using

“RunTSNE.”The datawere deposited in theGEAunder acces-
sion number E-GEAD-405.

Statistical Analyses
All data are presented as means 6 SEM. An unpaired two-
tailed t test was used to analyze the data for only two groups.
For multiplex comparisons, a one-way or two-way ANOVA
followed by a post hoc Tukey multiple comparisons test, if
appropriate, was applied. P,0.05 was considered statistically
significant. All statistical analyses were performed with
GraphPad Prism 8 software (GraphPad Software, San Diego,
CA).

RESULTS

Activation of Sympathetic Signaling Suppresses the
Inflammatory Response of Macrophages via Adrb2
We first examined the effects of sympathetic signaling on the
inflammatory response of macrophages using RAW 264.7
cells (mouse macrophage cell line). Norepinephrine (NE), a
sympathetic neurotransmitter, suppressed TNF-a induction
by LPS in a dose-dependent manner (Figure 1A). This anti-
inflammatory effect was mitigated by butoxamine, a selective
Adrb2 antagonist (Figure 1B). The dose-dependent anti-
inflammatory effect was also induced by salbutamol, a selec-
tive Adrb2 agonist (Figure 1C, Supplemental Figure 1).
Thus, activation of sympathetic signaling suppresses the
inflammatory response of macrophages via Adrb2. Further-
more, we conducted the same experiment using mouse
peritoneal macrophages and differentiated U937 cells (human
macrophages) and confirmed that the anti-inflammatory
effect of Adrb2 signaling was common inmacrophages of var-
ious origins (Supplemental Figure 2).

Tim3 Is a Mediator of Anti-Inflammatory Effect Induced
by Adrb2 Signaling
We attempted to identify the critical gene that mediates the
anti-inflammatory effect of Adrb2 signaling. RNA sequencing
was conducted for three different in vitromacrophagemodels.
Adrb2 signaling–induced genes were respectively selected in
each model: (1) 707 genes, (2) 991 genes, and (3) 1189 genes
(Figure 2A, Supplemental Figure 3). Among 37 genes, which
were commonly selected in the three models (Supplemental
Table 3), we focused on Tim3, given its reported anti-
inflammatory role in immune cells. qPCR also confirmed

with log FC more than one (salbutamol per vehicle). A total of 37 genes, including Tim3, were commonly induced by the activation of
Adrb2 signaling in the three different models. (B) qPCR confirmed that Tim3 expression was upregulated by the salbutamol treatment in
RAW 264.7 cells and peritoneal macrophages (Pmacs; n53). (C) Tim3 induction by salbutamol was counteracted by the inhibition of PKA
in RAW 264.7 cells (n56). (D) Tim3 knockdown by siRNA partly inhibited the anti-inflammatory effect of salbutamol in RAW 264.7 cells
(n56). All data are presented as means 6 SEM. (B) An unpaired two-tailed t test was used to analyze the data for only two groups. For
multiplex comparisons, (C) a one-way ANOVA or two-way (D) ANOVA with a post hoc Tukey multiple comparisons test was applied. PKI,
protein kinase A inhibitor; siNC, negative control siRNA; siTim3, Tim3 knockdown by siRNA. **P,0.01; ***P,0.001; ****P,0.0001.
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levels were reduced, whereas plasma IL-10 level was increased by the salbutamol treatment (n53 or n55). (B) Macrophage-specific
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thatTim3 expressionwas upregulated by the salbutamol treat-
ment in RAW 264.7 cells and peritoneal macrophages (Figure
2B). Moreover, the inhibition of PKA, the canonical Adrb2
signaling downstream pathway component, counteracted
the salbutamol-induced upregulation of Tim3 expression in
macrophages, confirming that Tim3 is downstream of
Adrb2 signaling (Figure 2C).

Next,weexamined theanti-inflammatoryroleofTim3expres-
sion in the macrophage inflammatory response. Tim3 knock-
down by siRNA partially inhibited the anti-inflammatory effect
of salbutamol in RAW 264.7 cells (Figure 2D, Supplemental
Figure 4). In contrast, Tim3 overexpression suppressed the
inflammatory response of RAW 264.7 cells (Supplemental
Figure 5). Thus, Tim3 is downstream of Adrb2 signaling and

partially mediates the anti-inflammatory phenotypic alteration,
which cannot be simply explained by the conventional macro-
phage M1/M2 axis (Supplemental Figure 6).

Adrb2 Signaling in Macrophages Plays a Critical Role in
the In Vivo Systemic Inflammatory Response
Next, we attempted to clarify the role of macrophage Adrb2
signaling in the systemic inflammatory response using the
LPS-induced mouse septic model. First, LPS (5 mg/kg) was
intraperitoneally administered toWTmice, immediately after
intraperitoneal administration of vehicle or salbutamol
(15 mg/kg). We measured plasma cytokine levels as the
parameter of the systemic inflammatory response 4 hours after
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salbutamol (15 mg/kg) was intraperitoneally administered 24 hours before renal bIRI. Blood and kidney samples were obtained 24 hours
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LPS administration (Figure 3A). As a result, plasma TNF-a
and IL-6 levels were significantly lower in the salbutamol-
treated group than in the vehicle-treated group, whereas the
level of IL-10, an anti-inflammatory cytokine, was higher in
the salbutamol-treated group. Although renal histologic
injury was not apparently observed at this stage, the expres-
sion of neutrophil gelatinase–associated lipocalin, one of the
AKI biomarkers, was significantly reduced in the
salbutamol-treated group, suggesting the protective effects
of Adrb2 signaling against kidney injury (Supplemental
Figure 7).

However, we were unable to determine whether the sys-
temic anti-inflammatory effect of salbutamol was associated
with macrophages because sympathetic signaling plays vari-
ous physiologic roles in many cell types in the body. Thus,
we generated macrophage-specific Adrb2 cKO mice by cross-
breeding LysM-Cre and Adrb2 flox mice and conducted the
same experiment (Figure 3B). Deletion of Adrb2 on macro-
phages then partially abolished the salbutamol-induced sup-
pression of the systemic inflammatory response, showing
the importance of macrophages in this context.

Salbutamol Pretreatment Protects the Kidney from bIRI
Thus far, we clarified that Adrb2 signaling on macrophages
plays a critical role in the systemic inflammatory response.
Next, we aimed to determine the role of macrophage Adrb2
signaling in local acute inflammation. For this purpose, we
opted to utilize the renal bIRI model, which is generated by
26 minutes of renal ischemia followed by 24 hours of
reperfusion.

Vehicle or salbutamol (15 mg/kg) was intraperitoneally
administered 24 hours before renal bIRI. Blood and kidney
samples were obtained 24 hours after renal bIRI (Figure
4A). Pretreatment with salbutamol provided strong protec-
tion from kidney injury as shown by the lower BUN, lower
plasmaCre (Figure 4B), and lesser degree of histologic tubular
injury (Figure 4, C and D). Thus, systemic pretreatment with
salbutamol protects the kidney from bIRI.

Splenic Immune Cells May Play Important Roles in the
Protective Effect of Salbutamol against Renal bIRI
Next, we tested whether immune systems were involved in the
salbutamol-induced protection against renal bIRI. The spleen
is central to the immune system, and splenic immune cell
dynamics are thought to be influenced by the degree of
sympathetic signaling because the sympathetic nerves are
densely distributed in the spleen, as visualized by our tissue

clearing–based 3D immunofluorescence staining of sympa-
thetic nerves (Figure 4E). We conducted a splenectomy 10
days before the bIRI experiment. As a result, the protective
effects of salbutamol against renal bIRI were not observed in
splenectomized mice (Supplemental Figure 8), suggesting
the importance of splenic immune cells in the renoprotective
effects of salbutamol.

Macrophage Adrb2 Signaling Is Critical for the
Protective Effect of Salbutamol against Renal bIRI
In order to determine whether macrophages are involved in
the salbutamol-induced protection against renal bIRI, we con-
ducted renal bIRI experiments using macrophage-specific
Adrb2 cKO and littermate WT mice (Figure 5A). As a
result, deletion of Adrb2 on macrophages abolished the
salbutamol-induced protection against renal bIRI, as shown
by the reversal of plasma Cre levels (Figure 5B) and histologic
tubular injury scores (Figure 5, C and D). Thus, the protective
effects of salbutamol against renal bIRI are primarily due to
the activation of Adrb2 signaling in macrophages.

Adoptive Transfer of Salbutamol-Treated Macrophages
Protects the Kidney from bIRI
Given that Adrb2 signaling on macrophages is critical to pro-
tection against kidney injury, we pondered whether Adrb2
signal–activated macrophages themselves provide protection
against renal bIRI and conducted the adoptive transfer exper-
iment (Figure 6A). Adoptive transfer of 1.63105 salbutamol-
treated (Adrb2 signal–activated) macrophages from donor
mice protected the kidneys from bIRI in recipient mice, as
shown by the lower BUN, lower plasma Cre (Figure 6B),
and lesser degree of histologic tubular injury (Figure 6C).

Next, we performed single-cell RNA sequencing (scRNA-
seq) of renal tissues to analyze the renoprotective role of
salbutamol-treated (Adrb2 signal–activated) macrophages in
detail (Figure 7A).We visualized the single-cell datasets using
tSNE and identified 19 cell-type clusters (Figure 7B,
Supplemental Table 2). For example, the expression of kidney
androgen–regulated protein clearly identified proximal tubu-
lar cells in the S3 segment, the most vulnerable sections to
ischemic injury (Figure 7B, Supplemental Figure 9A). The vio-
lin plot of kidney injury molecule 1 (Kim1) expression in this
cluster showed that the degree of tubular injury was lower in
the bIRI after salbutamol-treated macrophage transfer (Sal_
bIRI) condition than in the bIRI after vehicle-treated macro-
phage transfer (Ctl_bIRI) condition (Figure 7C).

and 136 cells (Sal_bIRI). (D) The violin plot of Tim3 expressions in the macrophage cluster is drawn. The total numbers of cells in this
cluster are as follows: 30 cells (Ctl_sham), 71 cells (Ctl_bIRI), 45 cells (Sal_sham), and 91 cells (Sal_bIRI). Tim3-expressing macrophages
were accumulated in the injured kidney after salbutamol-treated macrophage transfer (17% [Ctl_sham], 21% [Ctl_bIRI], 4% [Sal_sham],
and 33% [Sal_bIRI] of total macrophages in the renal tissue). ATL, ascending thin limb; CD_IC, intercalated cell of the collecting duct;
CD_PC, principal cell of the collecting duct; DCT, distal convoluted tubular cell; DTL, descending thin limb; EC, endothelial cell; Mw,
macrophage; PT (S1/2), proximal tubular cell in the S1/2 segments; PT (S3), proximal tubular cell in the S3 segment; SMC, smoothmuscle
cell; TAL, thick ascending limb; i.v., intravenous.

BASIC RESEARCH www.jasn.org

1610 JASN JASN 32: 1599–1615, 2021

http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020121723/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020121723/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020121723/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020121723/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020121723/-/DCSupplemental
https://www.jasn.org


25

A

0

tS
N

E
_2

–25
Macrophage

–50

–50 –25 0 –25 50
tSNE_1

5

0

tS
N

E
_2

–5

Sub-clustering of macrophages

–15 –10 –5 0 5 10
tSNE_1

B
Circulating M�

Resident M�

Cluster 3
(sham)

Cluster 4
(sham & bIRI)

Cluster 2
(bIRI)

Cluster 1
(bIRI) Ctl_sham

Ctl_bIRI

Sal_sham

Sal_bIRI

25

0tS
N

E
_2

–5

–15 –10 –5 0 5 10
tSNE_1

C
Circulating M�

Resident M�

5

0

tS
N

E
_2

–5

2

1

0

–10 0 10
tSNE_1

Tim3

Figure 8. The accumulating Tim3-expressing macrophages after bIRI are mainly composed of circulating macrophages. (A) Unbiased
subclustering of macrophages is visualized as the tSNE plots. (B) In the tSNE plots with sample information, clusters 1 and 2 are mostly
composed of macrophages from bIRI groups (circulating macrophages), whereas cluster 3 is composed of macrophages from sham
groups, and cluster 4 contains macrophages from both groups (tissue-resident macrophages). (C) The expression levels of Tim3 are visu-
alized on the tSNE plots. Tim3-expressing macrophages were preferentially distributed on the left side (circulating macrophages).
Ctl_bIRI, bilateral ischemia-reperfusion injury after vehicle-treated macrophage transfer; Ctl_sham, sham operation after vehicle-
treated macrophage transfer; Mw, macrophage; Sal_bIRI, bilateral ischemia-reperfusion injury after salbutamol-treated macrophage
transfer; Sal_sham, sham operation after salbutamol-treated macrophage transfer.

www.jasn.org BASIC RESEARCH

JASN 32: 1599–1615, 2021 Macrophage Adrb2 Signaling in AKI 1611

https://www.jasn.org


We especially focused on Tim3 expression in the macro-
phage cluster because high Tim3 expression is a marker of
Adrb2 signal–activatedmacrophages according to our in vitro
data (Figure 2). The macrophage cluster was clearly identified
in the tSNE plot of single-cell data (Figure 7B) by the expres-
sion of two representative markers, Cd68 and LysM
(Supplemental Figure 9B). The violin plot of Tim3 expression
in this cluster illustrated that Tim3-expressing macrophages
(Adrb2 signal–activated macrophages) were particularly
accumulated in the renal tissue of the bIRI after salbutamol-
treated macrophage transfer condition (Figure 7D), which
was also confirmed by immunohistochemistry
(Supplemental Figure 10). Furthermore, we investigated the
origin of these Tim3-expressing macrophages from scRNA-
seq data. Unbiased subclustering of macrophages yielded
four subclusters (Figure 8A). Clusters 1 and 2 were mostly
composed of macrophages from bIRI groups (circulating
macrophages), whereas cluster 3 was composed of macro-
phages from sham groups, and cluster 4 contained macro-
phages from both groups (tissue-resident macrophages)
(Figure 8B). As Tim3 was preferentially expressed on the left
side of the tSNE plots (Figure 8C), the accumulating Tim3-
expressingmacrophages after bIRImight be circulatingmacro-
phages. Therefore, Adrb2 signal–activated macrophages with
high Tim3 expressionmay come from outside the renal tissues
and play critical roles in the protection against renal bIRI.

DISCUSSION

In this study,we demonstrated that activation ofAdrb2 signal-
ing in macrophages blocks LPS-induced systemic inflamma-
tion and protects the kidney from IRI. Furthermore, Adrb2
signaling induces Tim3 expression, which contributes to
anti-inflammatory phenotypic alterations in macrophages.

Adrb2 agonists are known to exert anti-inflammatory
effects in several inflammatory diseases, such as LPS-
induced sepsis3,13 and acute lung injury.14 However, these
in vivo observations could not precisely identify the cell type
responsible for the anti-inflammatory effect. In our data, the
anti-inflammatory effect of salbutamol was mitigated in
monocyte-derived macrophage-specific Adrb2 knockout
mice (Figure 3), demonstrating the importance of macro-
phage Adrb2 signaling in this process. Although sympathetic
signaling is known to affect other immune cells, including
CD4-positive T cells4 and tissue-resident macrophages,15,16

our data clearly demonstrated the importance of monocyte-
derived macrophages as the critical receiver of sympathetic
signaling in LPS-induced systemic inflammation and renal
IRI.

Adrb2 signaling has various effects on local inflammation
in the kidney (diabetic kidney disease,17 nephrotoxic injury,18

and septic kidney injury19) because adrenergic receptors are
ubiquitously expressed in the body.Of note, theAdrb2 agonist
formoterol (postinjury administration) was reported to

restore kidney function after renal IRI viamitochondrial bio-
genesis in the proximal tubules.20,21 In contrast, we observed
the anti-inflammatory effect of salbutamol pretreatment in
the acute phase of renal IRI, which was mainly derived from
macrophage Adrb2 signaling (Figures 4 and 5, Supplemental
Figure 8). The adoptive transfer of Adrb2 signal–activated
macrophages also protected the kidney from IRI (Figures
6–8). Taken together, the critical receiver of Adrb2 signaling
in renal IRImay differ depending on the timing:Macrophages
are important in the acute injury phase, and proximal tubules
are important in the recovery phase. Future studies are needed
to clarify the interaction between these receivers of Adrb2 sig-
naling and the renal SNS. Prior denervation of renal SNS is
known to alleviate the severity of renal IRI in animal studies.22

In contrast, we have previously shown that the renal SNS is
denervated after IRI, which results in NE depletion inside
the kidney.11 Thus, determination of the influence of renal
SNS activity or damage on the dynamics of macrophages
and the proximal tubules may aid elucidation of the SNS’s
role in kidney disease progression.

In this study, we also found that Tim3 expression was
induced by the activation of Adrb2 signaling inmacrophages
(Figure 2). Tim3 was included in the 37 genes, which were
commonly selected as Adrb2 signal–induced genes from
our RNA sequencing data of three in vitromacrophage mod-
els (Supplemental Table 3). Tim3 is expressed on many
immune cells, including T cells,23,24 natural killer cells,25

and dendritic cells,26 and suppresses the immunologic activ-
ity as one of the immune checkpoints. Previous studies have
shown that Tim3 is also expressed onmacrophages and plays
immunosuppressive roles.27–30 In our data, Tim3 knock-
down promoted the inflammatory response of macrophages
and mitigated the anti-inflammatory effect of salbutamol
(Figure 2D, Supplemental Figure 4). In contrast, Tim3 over-
expression attenuated the inflammatory response of macro-
phages (Supplemental Figure 5). Taken together, these
findings indicate that Tim3 is downstream of Adrb2 signal-
ing and contributes to its anti-inflammatory effect, which
cannot be simply explained by the conventional macrophage
M1/M2 axis (Supplemental Figure 6). In our scRNA-seq
dataset, Tim3-expressing macrophages were accumulated
in the renal tissue of IRI after the adoptive transfer of
Adrb2 signal–activated macrophages (Figure 7D,
Supplemental Figure 10), in association with neutrophil’s
phenotypic change and reduced renal tubular injury (Figure
7C, Supplemental Figure 11–13). Thus, Tim3-expressing
macrophages induced by Adrb2 signaling may elicit direct
protective effects against renal IRI.

Although themechanism of Tim3 induction by Adrb2 sig-
naling was not clarified in detail, we at least confirmed that
Tim3 expression induced by Adrb2 activation was dependent
on PKA signaling (canonical downstream component of
Adrb2 signaling) in macrophages (Figure 2C). As cAMP/
PKA signaling is reported to induce promoter/enhancer
activity of Tim3 in Jurkat T cells,31 the induction of Tim3 in
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macrophages may also be explained by promoter/enhancer
activity.

The spleen is widely innervated by sympathetic nerves,
which is also illustrated in our immunofluorescence staining
(Figure 4E). Thus, splenic immune cells may be susceptible
to sympathetic signaling. In our experiments, prior splenec-
tomy abolished the protective effects of salbutamol against
renal IRI (Supplemental Figure 8). In addition, the adoptive
transfer of Adrb2 signal–activated splenic macrophages pro-
vided strong protection against renal IRI (Figures 6–8).
Thus, splenic macrophages may play important roles in the
anti-inflammatory effects of systemic salbutamol administra-
tion. The critical role of the spleen in neuroimmune interac-
tions was also reported in the cholinergic anti-inflammatory
pathway.32–35 The cholinergic anti-inflammatory pathway,
which is activated by electrical stimulation of the vagus nerve,
ismediated by the spleen.36–38 Vagus nerve induces the activa-
tion of splenic sympathetic nerves, leading to the NE-induced
activation of CD4-positive T cells in the spleen.39–41 Various
types of splenic immune cells, including macrophages and T
cells,may interactwith one another and alter the immunologic
dynamics in responding to sympathetic signaling. Further
studies using single-cell analysis are needed to elucidate the
immunologic dynamics in the spleen in response to splenic
SNS activation.

Finally, it is important to determine whether the anti-
inflammatory role of ADRB2 signaling can be applied in clin-
ical treatment for inflammatory diseases. In our study,ADRB2
activation induced an anti-inflammatory response in differen-
tiatedU937 cells (humanmacrophages) as well asmousemac-
rophages (Figure 1, Supplemental Figure 2), suggesting that
our concept can be applied to human inflammatory diseases.
Indeed, genetic variation of ADRB2 was associated with
increased mortality and more organ dysfunction in septic
shock in a clinical study.42 However, a multicenter, random-
ized controlled trial (BALTI-2) failed to show the benefits of
intravenous salbutamol treatment in the course of acute respi-
ratory distress syndrome.43 In this previous study, salbutamol
treatmentwas poorly tolerated due to the problemof hemody-
namics, including tachycardia and arrhythmia.43 Thus, cell
type–specific activation of ADRB2 signaling may be needed
to prevent such cardiac side effects. In our data, macrophages
were the critical receiver of Adrb2 signaling in the protection
against renal IRI. As demonstrated in our experiment (Figures
6–8), the adoptive transfer of ADRB2 signal–activated
immune cells is a promising candidate for clinical application,
although infection risks during immune cell harvest and treat-
ment cannot be ignored in the clinical setting.

Our study has several limitations. First, the scRNA-seq data
in our study lacked sufficient statistical power with respect to
the dispersion of Kim1 expression in proximal tubules and
Tim3 expression in macrophages in the renal tissues (Figure
7). Although we need to increase kidney samples to make a
conclusion by the scRNA-seq data alone, the resultswere com-
patible with in vitro and in vivo data in the rest of our study,

providing the potential mechanism for the protection against
renal IRI induced by the adoptive transfer of salbutamol-
treated macrophages. Second, our study did not examine
how the Adrb2 signal–activated macrophages affect other
immune cell dynamics, such as T cells, B cells, natural killer
cells, and dendritic cells. The renoprotective effect of the adop-
tive transfer of salbutamol-treatedmacrophagesmight be par-
tially induced by the interaction with other immune cells. The
analysis of immune cell dynamics in the lymphoid tissues after
the adoptive transfer of Adrb2 signal–activated macrophages
would provide additional insights concerning the role of mac-
rophages in the whole immune dynamics.

In conclusion, the activation of Adrb2 signaling in macro-
phages induces anti-inflammatory phenotypic alterations
partially via the induction of Tim3 expression, which blocks
LPS-induced systemic inflammation and protects against
renal IRI. Our data provide important insights concerning
neuroimmune interactions in the pathophysiology of inflam-
matory diseases.
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Supplemental Figure 1 

 
Supplemental Figure 1. The effect of β2-adrenergic receptor signaling on various 

inflammatory cytokines 

The expressions of pro-inflammatory cytokines such as tumor necrosis factor (Tnf), 

interleukin 6 (IL6) and interleukin 1 beta (IL1b) tended to be suppressed, whereas the 

expression of interleukin 10 (IL10), an anti-inflammatory cytokine, was upregulated by 

the salbutamol treatment (n = 4). 

All data are presented as means ± standard error of the mean. Statistical comparisons were 

analyzed by a two-way analysis of variance with a post hoc Tukey’s multiple comparisons 

test. ***P < 0.001, ****P < 0.0001, n.s.; not significant. 
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Supplemental Figure 2 

 

Supplemental Figure 2. The anti-inflammatory effect of β2-adrenergic receptor 

signaling is common in macrophages of various origins 

(A) Salbutamol, a selective β2-adrenergic receptor agonist, suppressed tumor necrosis 

factor-α (TNF-α) induction by lipopolysaccharide (LPS) in peritoneal macrophages 

(Pmacs) (n = 3-4).  

(B) U937 cells (human monocyte cell line) were differentiated into macrophages by 

phorbol 12-myristate 13-acetate (PMA) stimulation. Salbutamol suppressed TNF-α 

induction by LPS in human macrophages (n = 4 or 8). 

All data are presented as means ± standard error of the mean. Statistical comparisons were 

analyzed by a two-way analysis of variance with a post hoc Tukey’s multiple comparisons 

test. ****P < 0.0001. 
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Supplemental Figure 3 

 

Supplemental Figure 3. The detailed protocols of RNA sequencing experiments 

RNA sequencing (RNA-seq) was conducted for three different in vitro macrophage-

models. β2-adrenergic receptor signaling-induced genes were respectively selected in 

each model ([i] 707 genes, [ii] 991 genes and [iii] 1,189 genes). 
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Supplemental Figure 4 

 

Supplemental Figure 4. The effect of T-cell immunoglobulin and mucin domain 3 

knockdown using another small interfering RNA on the inflammatory response of 

macrophages 

(A) Quantitative real-time polymerase chain reaction confirmed the efficient knockdown 

of T-cell immunoglobulin and mucin domain 3 (Tim3) by small interfering RNA (siRNA). 

siTim3 (#1) was used in Figure 2D and siTim3 (#2) was used in Supplemental Figure 4B 

(n = 3). 

(B) The same experiment as Figure 2D was performed using siTim3 (#2) (n = 6). 

All data are presented as means ± standard error of the mean. For multiplex comparisons, 

a one-way analysis of variance (ANOVA) (A) or two-way ANOVA (B) with a post hoc 

Tukey’s multiple comparisons test was applied. ****P < 0.0001. 

TNF-α, tumor necrosis factor-α. 
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Supplemental Figure 5 

 

Supplemental Figure 5. The effect of T-cell immunoglobulin and mucin domain 3 

overexpression on the inflammatory response of macrophages 

T-cell immunoglobulin and mucin domain 3 (Tim3) overexpression suppressed the 

inflammatory response of RAW 264.7 cells (n = 9).  

Data are presented as means ± standard error of the mean. The statistical comparison 

was analyzed by an unpaired two-tailed t test. ****P < 0.0001.  

LPS, lipopolysaccharide; TNF-α, tumor necrosis factor-α. 
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Supplemental Figure 6 

 

Supplemental Figure 6. The effect of β2-adrenergic receptor signaling on 

macrophage M1/M2 markers 

β2-adrenergic receptor (Adrb2) signal-induced phenotypic alterations in macrophages 

could not be straightforwardly explained by the conventional M1/M2 axis because 

salbutamol treatment (100 nM) upregulated the expressions of M1 marker Cd86 as well 

as M2 marker arginase 1 (Arg1). T-cell immunoglobulin and mucin domain 3 (Tim3) 

knockdown showed the opposite effects on these M1/M2 markers. 

All data are presented as means ± standard error of the mean. Statistical comparisons 

were analyzed by an unpaired two-tailed t test. ***P < 0.001, n.s.; not significant. 
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Supplemental Figure 7 

 

Supplemental Figure 7. Assessment of renal damage in the lipopolysaccharide-

induced septic model 

(A) Representative Periodic acid-Schiff staining of the renal tissues in Figure 3A is 

shown. Renal histological injury was not observed 4h after lipopolysaccharide (LPS) 

administration. Scale bar = 100 μm. 

(B) The expression of neutrophil gelatinase-associated lipocalin (Ngal) in the renal 

tissues 4h after LPS administration was significantly suppressed in the salbutamol-

treated group compared with vehicle-treated group (n = 3 or 5). 

Data are presented as means ± standard error of the mean. The statistical comparison 

was analyzed by a two-way analysis of variance with a post hoc Tukey’s multiple 

comparisons test. *P < 0.05, ****P < 0.0001, n.s.; not significant. 
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Supplemental Figure 8 

 
Supplemental Figure 8. Prior splenectomy abolishes the protective effect of 

salbutamol pretreatment against renal ischemia/reperfusion injury 

(A) Vehicle or salbutamol was intraperitoneally administered to splenectomized mice 24 

h before renal bilateral ischemia/reperfusion injury (bIRI). Blood and kidney samples 

were obtained 24 h after bIRI. The blood urea nitrogen (BUN) and plasma creatinine 

(Cre) levels did not differ between the vehicle and salbutamol groups (n = 9-10).  

(B) Representative Periodic acid-Schiff staining of the renal outer medulla is shown on 

the left side (Scale bar = 100 μm). The histological tubular injury scores did not differ 

between groups (n = 9-10).  All data are presented as means ± standard error of the 

mean. Statistical comparisons were analyzed by an unpaired two-tailed t test. 
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Supplemental Figure 9 

 

Supplemental Figure 9. Cell-type marker gene expression levels for unbiased 

clustering of single-cell RNA sequencing data 

(A) The expression level of kidney androgen-regulated protein (Kap), a representative 

marker of proximal tubules in the S3 segment (PT [S3]), is visualized on t-distributed 

stochastic neighbor embedding (tSNE) plots of the single-cell RNA sequencing data in 

Figure 7. 

(B) The expression levels of two representative macrophage markers (Cd68 and 

lysozyme M [LysM]) are visualized on tSNE plots of the single-cell RNA sequencing 

data in Figure 7. 
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Supplemental Figure 10 

 

Supplemental Figure 10. Immunostaining of T-cell immunoglobulin and mucin 

domain 3 on renal tissues of the adoptive transfer experiment 

T-cell immunoglobulin and mucin domain 3 (Tim3) immunostaining of the renal tissues 

in the adoptive transfer experiment (Figure 6) is shown (Scale bar = 100 μm). Tim3-

positive cells were particularly accumulated in the renal tissue after renal bilateral 

ischemia/reperfusion injury (bIRI) followed by the adoptive transfer of salbutamol-

treated macrophages. 
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Supplemental Figure 11 

 

Supplemental Figure 11. Assessment of infiltrating neutrophils in the single-cell 

RNA sequencing data 

The expression of C-X-C chemokine receptor type 2 (Cxcr2) identified the neutrophil 

cluster in the single-cell RNA sequencing data. The total number of cells in this cluster 

is as follows: 13 cells (Ctl_sham), 55 cells (Ctl_bIRI), 13 cells (Sal_sham), and 62 cells 

(Sal_bIRI). The expressions of pro-inflammatory markers such as neutrophil gelatinase-
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associated lipocalin (Ngal) and matrix metallopeptidase 8 (Mmp8) in this cluster 

showed that the phenotype of infiltrating neutrophils might be different between 

Ctl_bIRI and Sal_bIRI conditions. 

Ctl_sham: sham operation followed by vehicle-treated macrophage transfer, Ctl_bIRI: 

bilateral ischemia/reperfusion injury (bIRI) followed by vehicle-treated macrophage 

transfer, Sal_sham: sham operation followed by salbutamol-treated macrophage 

transfer, Sal_bIRI: bIRI followed by salbutamol-treated macrophage transfer. 
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Supplemental Figure 12 

 
Supplemental Figure 12. M1/M2 marker gene expression levels on the macrophage 

sub-clustering data in the single-cell RNA sequencing 

The expressions of representative M1/M2 markers on the macrophage (Mφ) cluster are 

shown on the t-distributed stochastic neighbor embedding (tSNE) plots. Arginase 1 

(Arg1) or interleukin-10 (IL10)-positive macrophages were small in number and 

preferentially distributed on the left side (circulating macrophages). In contrast, Cd86 

(M1 marker) or Cd206 (M2 marker)-positive macrophages were large in number and 

distributed on both sides (circulating and tissue-resident macrophages). 



16 
 

Supplemental Figure 13 

 

Supplemental Figure 13. The adoptive transfer of salbutamol-treated macrophages 

two days before renal ischemia/reperfusion injury does not provide protection 

(A) The study protocol is shown. Salbutamol-treated macrophages (Mφ) from donor 

mice treated with salbutamol were adoptively transferred to recipient mice 2 days before 

bilateral ischemia/reperfusion injury (bIRI). Blood and kidney samples were obtained 

24 h after bIRI. 

(B) The blood urea nitrogen (BUN) and plasma creatinine (Cre) levels as well as (C) 

histological tubular injury did not differ between the vehicle and salbutamol groups (n = 

8), suggesting that the protective effects of adoptive transfer is not maintained for two 

days.  

All data are presented as means ± standard error of the mean. Statistical comparisons 

were analyzed by an unpaired two-tailed t test. 
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Supplemental Table 1. Primer sequences for the quantitative real-time polymerase 

chain reactions 

 

Supplemental Table 2. A list of the marker genes of each cluster in the single-cell 

RNA sequencing 

The marker genes sorted by average log fold-change (FC) of each cluster in the single-

cell RNA sequencing are presented. 

 

Supplemental Table 3. A list of the 37 genes commonly selected in the RNA 

sequencing from the three in vitro models 

The expression of each gene is presented as log (fragments per kilobase of transcript per 

million mapped fragments [FPKM] + 0.001). 

 

(Supplemental Tables were prepared as Excel files.) 


