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Abstract: As water in a rainwater regulating reservoir at the Sankyo landfill site in Nagasaki City
tends to be alkalized and to exceed the pH upper limit of 7.5, measures to suppress the alkalization
should be implemented. Inhibiting photosynthesis in algae is required to suppress the alkalization.
Shading is one of the methods for inhibiting algal photosynthesis. In this study, we evaluated the pH
reduction effect of shading on a pilot scale. pH decreased from 7.28 to 7.15 when 3% of the total area
of the rainwater regulating reservoir was shaded. In addition, a clear decrease in pH was observed
with more than 60% shading.
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1. Introduction

High pH has been reported in lakes, rivers and waterways, and it is assumed that
photosynthesis in algae is one of the causes of this phenomenon [1–7]. Photosynthesis
promotes the absorption of inorganic carbon in water (IC, dissolved CO2) by algae, which
alkalizes the water [1,8,9]. CO2 and carbonate ions in water are in equilibrium with CO2
in air, as shown in Equations (1) and (2). During photosynthesis in algae, CO2 in water is
consumed, causing the reaction in Equation (2) to shift to the left, which decreases H+ and
results in an increase in pH [10,11].

CO2 (g)� CO2 (`) (1)

CO2 (`) + H2O � H2CO3 � H+ + HCO3
− (2)

At the Sankyo landfill site (N 32.83735, E 129.77051), which is a final disposal site for
municipal solid waste in Nagasaki City, the tendency of alkalization is high in the rainwater
regulating reservoir (RRR) in summer, and the water turns green. We believe that one of
the causes of alkalization is photosynthesis in blue-green algae. In Japan, national effluent
standards apply to discharge into public waters such as rivers. The water in the Sankyo
RRR is neutralized with chemicals, resulting in long-term treatment costs. Therefore, it is
necessary to develop a low-cost method to control alkalization in the long term.In order to
suppress alkalization, it is necessary to inhibit algal growth and photosynthesis. Measures
to inhibit algal growth in closed water bodies include aeration, removal, ultraviolet light
treatment, electric and magnetic field treatment and shading [12]. Shading causes algae
to self-consume and decrease [13]. As the objective of the Sankyo RRR is to reduce the
cost of chemicals for neutralization, we avoided methods that incur an ongoing cost and
selected shading.

In our previous work [14], we evaluated the relationship between the shading effect
and the alkalization suppression effect by applying several shading materials to a large
outdoor water tank filled with water from the Sankyo RRR, and found that the light
quantum should be kept below approximately 20 µmol/(m2s). In addition, we proposed a
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low-cost shading material such as a shading cover. Conventional methods of inhibiting
algal blooms in water storage tanks are based on the use of closed shading to prevent light
from reaching the water surface [12,15]. It has been reported that abnormal algal growth
can be inhibited by covering 30–60% of the water surface with a plastic floating plate [16].
Lowering water temperature by shading also inhibits algal growth [12]. In a reservoir in
Los Angeles, black plastic balls (shade balls) are floated to shade the water [17]. In the
laboratory, shading reduced algal blooms [18,19]. In pilot-scale experiments (1 to 10 m2 for
approximately one week), chlorophyll decreased and pH decreased as well [20,21].

From the above, we considered that if the shading effect were high, algal growth would
be reduced, the decrease in IC by photosynthesis would be inhibited, and subsequently,
alkalization would be suppressed. In order to control the alkalization of the RRR, Sankyo
is planning to shade the RRR based on our previous report [14]. Determining the shading
ratio and the alkalization suppression effect in the actual RRR is crucial for field application.

In this study, we conducted a pilot-scale shading experiment and evaluated the pH
reduction effect in a RRR.

2. Water Alkalization Problem in Rainwater Regulating Reservoir at Sankyo
Landfill Site

At the Sankyo landfill site, incinerated ash of combustible waste and the residue
obtained after recycling incombustible and bulky waste from households are landfilled.
The RRR at the landfill site stores rainwater at and around the site and controls the discharge
of rainwater to the downstream area. Therefore, rainwater that has washed over the soil
in the site is collected in the RRR by gutters, and not seepage water from the landfilled
waste (called leachate). In other words, there is no relationship between the waste and the
water in the RRR. Leachate, on the other hand, is collected in a leachate regulating reservoir
and treated by biological oxidation, coagulative precipitation, sand filtration and activated
carbon adsorption.

The RRR has a catchment area of 1,080,000 m2, a regulating reservoir area of 22,430 m2

and a volume of 204,000 m3. By simply dividing the volume by the area, we obtain the
estimated depth of approximately 9 m. The effluent from this reservoir is mixed with
treated leachate and discharged into the nearby Mie River. At Sankyo, water quality is
regularly measured at the surface layer and the middle layer of the RRR near the reservoir
outlet and at the final effluent immediately before the confluence of the Mie River. The
sampling points for regular measurements are shown in Figure 1 as SP. Surface water and
final effluent are sampled within 50 cm from the water surface with bucket, and middle
layer water is sampled with Heyroth water sampler at a depth of several meters from the
water surface near the reservoir outlet. The depth of the middle layer cannot be clarified
because the position of the outlet is fixed while the water level changes with the season.

In Japan, national effluent standards apply to discharge into public waters such as
rivers. The permissible limit for pH is 5.8–8.6, and this is applied to the final effluent in
Figure 1. Local residents often oppose the construction of landfill sites. In order to build
a consensus between the local residents and the builder, sometimes, standards that are
stricter than the national effluent standards are set. For this reason, the effluent standards
for pH of 6.0–7.5 were set (agreed value with local residents). However, it should be noted
that there is no scientific basis for these standards, i.e., these are only nice round numbers.
As the pH of RRR water is high in summer, there is concern that the pH of the final effluent
may exceed the agreed value. To this end, measures are being taken to lower the pH by
treating the leachate with sulfuric acid, thereby lowering the pH of the final effluent after
mixing with the effluent from the RRR. On average, the pH of the treated leachate was
lowered to 6.8 from 2014 to 2018 and the pH of the final effluent was below the upper limit
of 7.5. However, the use of sulfuric acid has increased the cost of leachate treatment, and
an enormous cost will be incurred if the treatment is continued for more than 80 years until
the site is decommissioned. Therefore, an inexpensive and effective method to reduce the
pH of the RRR is needed.
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average pH in June is slightly above the upper limit of 7.5. 

Figure 1. Direction of water flow and water sampling points for regular measurements in
Sankyo RRR.

The seasonal trend of pH (TOADKK, MM-41DP) of the surface and middle layers of
the RRR from 2012 to 2020 is shown in Figure 2a. For the surface layer, the pH is high
during the summer months of June to September, particularly in June, when the average
pH exceeds 8. The pH of the middle layer is lower than that of the surface layer, and the
average pH in June is slightly above the upper limit of 7.5.
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Figure 2. Average pH of Sankyo RRR: (a) seasonal trend (2012–2020); (b) secular trend; error bar: SD.

The secular trend of pH in the surface and middle layers from 2012 to 2020 is shown
in Figure 2b. The pH of the surface layer is higher than that of the middle layer. The pH of
the middle layer is almost near the upper limit of the agreed value. No significant secular
trend is observed.

As the effluent from the RRR is from the middle layer, it is necessary to lower the pH
of the middle layer in order to lower the pH of the effluent. Photosynthesis is likely to be
more active in the surface layer where light reaches, and it is easier to collect water from the
surface layer for the experiment. We assume that there is a relationship between the surface
layer pH and the middle layer pH. In that case, the surface layer pH could be examined
instead of the middle layer pH, and this would simplify the experiment. Figure 3 shows
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the correlation between the surface layer pH and the middle layer pH of the RRR from
2012 to 2020. As there is moderate correlation between the two, it is possible that the trend
of the middle layer pH can be determined by examining the surface layer pH.
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Figure 3. Correlation between surface and middle layer pHs of Sankyo RRR (2012–2020).

3. Materials and Methods
3.1. Outline

In the Sankyo RRR, a part of the surface layer near the reservoir outlet was divided
into several sections, and shading material was applied at various shading ratios. The trend
of water quality change was monitored to evaluate the effect of shading on pH reduction.
The study period was from 19 June 2020 to 5 February 2021.

3.2. Methods

Shading material was prepared by processing a weed prevention sheet (Tanaka Co.,
Ltd., Otsu, Osaka, Japan; JY-200) that inhibits weed growth by shading. The material is
black nonwoven polyester fabric having a unit size of 2 m (width) × 100 m (length) ×
0.5 mm (thickness), a unit weight of 200 g/m2 and a shading rate of 99.9%. The edges of
the sheet were folded and sewn into a cylinder, and waste 2 L plastic bottles were placed
inside the cylinder to provide buoyancy by acting as a float. As an alternative, many
bottles were tied to the underside of the sheet. On a clear day, when light quantum was
1807 µmol/(m2s), that under the sheet within 5 cm was 0 µmol/(m2s). The photosynthesis
activity increased linearly up to approximately 200 µmol/(m2s) [22,23]. It was reported
that the specific growth rate of algae increased up to a quantum density of approximately
5 mol/(m2d) (=580 µmol/(m2s)) [24]. In our previous report [14], we proposed that
keeping the light quantum below approximately 20 µmol/(m2s) would effectively control
alkalization. Therefore, the shading material used in this study has sufficient shading effect.

The RRR and the shaded sections are shown in Figure 1. The pH reduction effect
with and without the shading material and with different shading areas was evaluated.
The shaded sections were classified into three categories: large section, small section and
entire shaded section. The shading effect was more practically understood in the large
section. However, because the disturbance factor was too large for a large-scale experiment
and might result in experimental failure, we also used the small sections to determine the
shading effect precisely. We assumed that the pH differed between the inside and outside
of the entire shaded section.

First, there are two large sections: the unshaded section (LN: large not covered) and
the shaded section (LC: large covered), each measuring approximately 10 m on one side.
The pH of LC would be lower than that of LN. The small sections consist of squares of
approximately 2.4 m on one side, with stepwise varying percentages of the shaded area:
0% (S00), 40% (S40), 60% (S60), 80% (S80) and 100% (S100). The pH decreases as the
percentage of shaded area increases, and is lowest most likely at 100% (S100). Finally, to
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compare the cases with and without shading, there is outside the shaded section (OUT)
and runoff after passing through the entire shaded section (effluent from entire shaded
section, EFL). EFL will have a lower pH than OUT. The large and small sections have a
2 m deep curtain underneath the enclosure, and the lower part is open, i.e., water flux
would be low. A schematic diagram of the shaded sections and a photograph are shown
in Figure 4a,b, respectively. The shading conditions are shown in Table 1. The cost of
installing the shading material is 0.7 million yen for materials and 4.3 million yen for
construction, totaling approximately 5 million yen (0.0077 euro/yen, August 2021). The
shaded area measures approximately 700 m2, and the percentage of shaded area in the RRR
is approximately 3% (=700 m2/22,430 m2). The percentage of shaded area was determined
by the budget ceiling and the restrictions brought about by using an actual facility for the
experiment, and values in the literature were not quoted.

Water samples were collected approximately once a week. First, we measured the
open-air light quantum at the site. A fishing rod, a reel, a fishing line and a stainless-steel
water bottle were used as water sampling equipment (Figure 4c). Guide lines were laid out
from the fence on the dam to each shaded section, and the water bottle to which the fishing
line was connected was dipped into the guide line. The reel was loosened to send the water
bottle to the water surface to fill it with water. Then the reel was reeled, and the water
bottle was pulled up to collect water. Sheets of LC and S100 were temporarily flipped up.
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Table 1. Shading conditions.

Category Abbreviation Description

Large section LN non-shaded
LC shaded

Small section S00 0% shaded
S40 40% shaded
S60 60% shaded
S80 80% shaded

S100 100% shaded

Entire section OUT Outside shaded section
EFL Effluent from entire shaded section

Water temperature, pH, electrical conductivity (EC), oxidation-reduction potential
(ORP), dissolved oxygen (DO) and chlorophyll were measured immediately at the site.
After the measurements, 100 mL polyethylene bottles were filled with water and stored at
ambient temperature for maximum 2 h. Open-air light quantum was measured after all
the water samples were collected. The sampled water in the bottles was brought back to
the laboratory and filtered through a 0.45 µm pore size filter. Then, IC, total nitrogen and
total phosphorus were measured. The obtained pH was statistically processed using the
Wilcoxon signed-rank test and the Friedman test.

3.3. Measurement Equipment

Light quantum (Apogee, SE-MQ-200), water temperature (Tanita, TT-508N), pH
(HORIBA, B-212), EC (HORIBA, B-173), ORP (CUSTOM, PH-6600), DO (SATO, DO-5509)
and chlorophyll (Kasahara Chemical Industry, Kuki, Saitama, Japan; Chlorophyll Sen-
sor CHL-30, uranine-equivalent fluorescence intensity) were measured. IC (Shimadzu,
TOC-VWS) and total nitrogen and total phosphorus (HACH, DR2700) were measured in
the filtrate.

4. Results
4.1. Average Values of Water Quality Parameters

The average values of water quality parameters for the whole experiment are shown
in Table 2.

Table 2. Average values of water quality parameters (n = 27).

Large section Small section Entire section
LN LC S00 S40 S60 S80 S100 OUT EFL

Temp. ◦C 20.1 20.7 20.3 20.2 20.1 20.1 20.1 20.4 20.4
pH − 7.16 7.13 7.19 7.13 7.09 6.96 6.87 7.28 7.15
EC µS/cm 585 584 577 564 575 571 567 583 574

ORP mV 210 227 262 260 257 254 245 266 267
DO mg-O2/L 9.0 8.5 8.5 8.5 8.4 8.1 7.5 8.6 8.3

Chlorophyll µg/L 4.9 8.6 4.9 7.4 7.6 15.5 13.0 4.4 5.8
TOC mg-C/L 5.5 4.9 5.1 5.0 4.8 4.7 4.7 5.2 5.1

IC mg-C/L 6.0 5.8 5.5 5.0 5.2 5.0 4.8 5.9 6.0
T-N mg-N/L 2.9 3.5 3.7 4.1 3.9 3.9 3.8 4.3 3.7
T-P mg-P/L 0.17 0.14 0.16 0.13 0.13 0.12 0.17 0.13 0.12

4.2. Weather

Temperature and precipitation (Japan Meteorological Agency) are shown in Figure 5a.
Daily average temperature exceeded 25 ◦C from early June to early September. Heavy
rainfall was noted from early June to early July, and daily precipitation exceeding 100 mm
was observed four times.
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Figure 5. (a) Average temperature and precipitation; (b) changes in light quanta.

Figure 5b shows changes in open-air light quanta at the site. Light quanta before
and after sampling are shown separately. All measurements were taken in the morning
between 9:00 a.m. and 12:00 p.m. Light quanta on clear days and in September were high.

4.3. Changes in Water Quality Parameters

Changes in water temperature are shown in Figure 6. The average water temperatures
in all sections were above 25 ◦C from 3 July to 18 September and below 25 ◦C from
25 September to 5 February (the last day of measurement). There were no clear outliers
in the water temperatures of the sections, and the overall changes in water temperatures
were similar, with less than 0.3 ◦C difference in mean values.
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Figure 6. Changes in water temperature.

The changes in pH are shown by category in Figure 7a–c. OUT had high pH values
in summer. Even though the upper limit of 7.5 was exceeded only on two occasions (31
July and 11 September) in OUT, it was possible to reproduce the situation of pH exceeding
the upper limit in summer without shading. The highest pH was below 7.5 in the open air
for both LN and S00. The seasonal trend of pH was not clear except for OUT. However,
from the beginning of July to the end of September, there was a large difference in pH
between the unshaded sections (S00 and OUT) and the corresponding shaded sections
(S100 and EFL) in the small and entire shaded sections, indicating the effect of shading on
pH reduction. This difference was not observed in the large sections.
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Figure 7. Changes in pH: (a) large section; (b) small section; (c) entire section.

The ECs were approximately 150µS/cm until the beginning of July, exceeded 1100µS/cm
in the end of August and then decreased to and stabilized at approximately 500 µS/cm after
the middle of September. No difference was noted between sections. The ORPs showed
no clear trends, their values ranging from 100 to 400 mV (indicated values). The figures
are omitted.

The trends of DOs are shown in Figure 8a. DO was low in summer and high in
winter. This is due to the increase in the amount of DO caused by the decrease in water
temperature. Table 2 shows that DOs in the shaded areas are generally lower than those in
the unshaded areas. In other words, photosynthesis was inhibited by shading. In particular,
DO in S100 was low from early to late November.

The trends of chlorophyll are shown in Figure 8b. Chlorophyll concentration was
approximately 10 µg/L until the end of October, but spiked to levels exceeding 10 µg/L
(up to 100 µg/L) thereafter. Whereas pH was high in summer, chlorophyll was high
after autumn.

The trends of IC are shown in Figure 8c. Due to equipment malfunction, only data up
to November 27 are shown. Despite two outliers, the values were generally in the range of
2 to 8 mg-C/L, and there was no significant difference among the sections.

Total nitrogen was generally in the range of 2 to 6 mg-N/L, and there was no clear
trend. Total phosphorus was approximately 0.1 to 0.2 mg-P/L, and there was no clear
trend as well (figures not shown). According to the national effluent standards for the
protection of the living environment (lakes and marshes) in Japan, the permissible limit
for total nitrogen and total phosphorus is 1 mg-N/L and 0.1 mg-P/L, respectively, which
means that there is sufficient total nitrogen and total phosphorus to cause eutrophication.
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Figure 8. Changes in (a) DO; (b) chlorophyll; (c) IC.

5. Discussion
5.1. Relationship between Shading Effect and Alkalization Suppression Effect

We formulated the following hypothesis: if the shading effect were high, algal growth
(chlorophyll production) would be reduced, the decrease in IC due to photosynthesis
would be inhibited, and alkalization would be suppressed.

The average chlorophyll and IC levels for each section are shown in Figure 9a,b. As
a general trend, the average chlorophyll levels were higher (IC levels were lower) in the
shaded sections than the unshaded sections. This result runs counter to our hypothesis. In
our previous water tank experiments, the average chlorophyll level was lower (IC level
was higher) in the shaded area than the unshaded area [14]. Considering the nature of
blue-green algae, which surface under dark conditions and settle when exposed to strong
light [25,26], it is possible that algae in the unshaded section proliferated under direct
sunlight, but settled thereafter. Therefore, when the surface water of each section was
sampled, chlorophyll in the unshaded section may have been missed, resulting in the
relatively low value. In the water tank described in our previous paper [14], even if algae
settled in the unshaded section, it would be easy to obtain representative water quality
parameters because of the limited depth of the tank.
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Figure 9. (a) Average chlorophyll level for each section; (b) average IC level for each section.

The average pH for each section is shown in Figure 10. The sections were clustered in
a relatively small area, and the water samples were collected on the same day, differing
only in the presence or absence of shading. Therefore, the water quality data of each section
sampled on the same day could be paired. As pH is the logarithm of the reciprocal of
hydrogen ion activity, it is an ordinal scale. Therefore, the Wilcoxon signed-rank test, a non-
parametric statistical hypothesis test used to compare two related samples, was performed.
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Figure 10. Average pH for each section.

In the large section, the mean pH value of LC was lower than that of LN, but the
difference was not significant (degrees of freedom = 52, p = 0.12). In the entire section,
the mean pH value of EFL (pH = 7.15) was lower than that of OUT (pH = 7.28), and the
difference was significant (degrees of freedom = 52, p < 0.0001, effect size d = combination
with low EFL/all combinations = 22/27 = 0.81). The Friedman test was performed for the
five groups of small sections, and a significant difference was found between some groups
(p < 0.0001). Next, the matrix of p-values was obtained by the Wilcoxon signed-rank test,
comparing five groups (n = 27, 10 combinations). The p*-values after Bonferroni correction
were calculated by multiplying the p-values by the number of combinations (Table 3). There
was no significant difference between S00 and S40 (p* = 0.238), but there was a significant
difference between S00 and S60 (p* = 0.012), S80 and S100 (p* < 0.001). A clear decrease in
pH was observed with more than 60% shading.
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Table 3. p*-values after Bonferroni correction and effect sizes d for pH comparison of small sections.

S00 S40 S60 S80 S100

S00 − − 0.70 0.96 0.96
S40 0.238 − − 0.93 0.96
S60 0.012 0.256 − 0.89 0.96
S80 <0.001 <0.001 <0.001 − 0.74
S100 <0.001 <0.001 <0.001 0.029 −

These results indicate that there is no relationship between the shading effect and
the decrease in algal growth (increase in IC), but there is a clear relationship between the
shading effect and the suppression of alkalization.

5.2. Problems, Prospects, Relevance of This Study

The trends of chlorophyll and IC were found to run counter to the hypothesis. Since
the lower part of the sections is open, even if algae proliferate, the algae cannot be collected
when they settle, so chlorophyll and IC cannot be assessed accurately. It is necessary to
measure algal growth at every depth, not only at the surface layer.

No significant difference in pH was observed in the large sections. Surface water
sampling points were located at the edges of each section. Therefore, the collected samples
would not be representative when the experimental scale was increased. Water in the
sections should be mixed before collection.

The following are the prospects of this study. As the shading material was installed
in 2020, we will continue observations and accumulate effluent pH data for an extended
period. By doing so, we will be able to confirm whether the shading material significantly
decreases pH. If the lifetime of the shading material is known, the cost savings for chemical
treatment can be evaluated. If the pH of the effluent can be evaluated by changing the
shading area of the entire RRR, the required shading area for the target pH can be estimated.

The results of this study can be used as primary data to estimate the use of shading
materials as a countermeasure against the alkalization of water in ponds and regulat-
ing reservoirs.

6. Conclusions

We conducted a pilot-scale shading experiment in a rainwater regulating reservoir,
and evaluated the effect of shading on pH. pH decreased from 7.28 to 7.15 when 3% of the
total area of the rainwater regulating reservoir was shaded. In addition, a clear decrease in
pH was observed with more than 60% shading.
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