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Abstract: Using the potentiostatic electrodeposition technique, zinc telluride nanocrystalline thin
films and an array of nanowires were synthesized in a citric acid bath. Electrodeposited zinc telluride
thin films with stoichiometric compositions were obtained at a cathode potential of approximately
−0.8 V versus Ag/AgCl, which was in a more noble region compared with the equilibrium potential
of zinc. The average thickness of the zinc telluride thin films was approximately 3 µm, and the
average growth rate was approximately 3 nm s−1. The as-deposited zinc telluride thin films had
an amorphous phase with a black tint. By contrast, the zinc telluride thin films annealed at 683 K
had a crystalline phase with a reddish-brown tint. The electrodeposited single-phase zinc telluride
exhibited an optical absorption performance in a wavelength region that was shorter than 559 nm.
At the annealing temperature of 683 K, the zinc telluride films exhibited an energy band gap of 2.3 eV,
which was almost identical to that of single-crystal zinc telluride. The resistivity of the as-deposited
amorphous-like zinc telluride thin films was approximately 2× 105 Ω·m, whereas that of the samples
annealed at 683 K was around 2 × 103 Ω·m, which was smaller than that of single-crystal zinc
telluride. A three-dimensional nanostructure constructed with the zinc telluride nanowire array was
also demonstrated using a template synthesis technique.

Keywords: electrodeposition; zinc; tellurium; thin film; nanowire; semiconductor; amorphous;
annealing; band gap; resistivity

1. Introduction

Zinc-based semiconductor crystals (zinc oxide, zinc sulfide, zinc selenide, etc.) have
received considerable attention because the energy band gap level is suitable for developing
a novel optical material. The energy band gap of zinc telluride is ca. 2.26 eV that equals
to the spectrum range of around 550 nm in wavelength. Hence, zinc telluride crystals
have a potential application in light emitting diodes and photovoltaic cells. It has been
reported that the crystalline zinc telluride thin films were able to be synthesized using
some crystal growing processes, such as vacuum evaporation [1,2], sputter deposition [3],
CVD [4], and electrochemical growth from a non-aqueous solvent [5–9] and from an
aqueous solution [10–23]. The electrochemical growing technique from an aqueous solvent
has an excellent cost-performance in comparison to the other processes and it enables us
to coat a conventional wide panel with a practically applicable surface appearance. Zinc
and tellurium are known to be not so harmful in comparison to some elements, such as
arsenic, cadmium, lead, and selenium. Kashyout et al. reported the electrodeposition of
zinc telluride (ZnTe) thin films on FTO substrates from an acid chloride bath [12]. They
revealed that the band gap and sheet resistance of the post-annealed samples increased
by up to 2.31 eV and 815 kΩ/sq., respectively, by increasing the annealing temperature
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from 623 K to 672 K. Mahalingam et al. reported that ZnTe thin films can be prepared by
using a potentiostatic electrodeposition technique from a simple sulfuric acid bath [15].
They found that the band gap of as-deposited ZnTe thin films was approximately 1.9 eV,
while samples annealed at 623 K for 1 h exhibited 2.25 eV, which was in good agreement
with the optical bandgap values of single-crystal ZnTe. Rakhshani et al. also reported
the electrodeposition of ZnTe thin films on stainless steel sheets from a simple sulfuric
acid bath [16]. They discovered that the band gap of as-deposited ZnTe thin films was
2.1–2.3 eV, and the resistivity was greater than 107 Ω·m, while samples annealed at 623 K
for 15 min showed p-type conductivity. Skhouni et al. reported that ZnTe thin films could
be electrodeposited on FTO substrates from an acid chloride bath [20]. They revealed that
the band gap of as-deposited ZnTe thin films was approximately 2.19 eV, whereas samples
annealed at 623 K for 20 min exhibited a smaller band gap value.

Thus, the post-annealing process improves the semiconductor performance of elec-
trodeposited ZnTe films. However, the morphology of ZnTe films that are electrodeposited
from simple acidic aqueous solutions, such as sulfuric acid or hydrochloric acid, exhibits
a coarse nodule-like structure that is undesirable for opto-electronic devices. The coarse
nodule-like structure seems to be induced by the preferential electrodeposition of tellurium,
which is electrochemically more noble (positive direction) than zinc. To inhibit the prefer-
ential electrodeposition of tellurium, the addition of complexing agents, such as organic
acids, may be effective. Bouroushian et al. reported that the morphology of ZnTe films
electrodeposited from an aqueous solution containing citric acid exhibited a smooth and
uniform surface appearance with fine crystals [23]. Hence, in this work, we studied the
effect of the post-annealing process on the crystallization of ZnTe films and elucidated the
semiconductive properties of films electrodeposited from a citric acid bath. Furthermore,
a zinc telluride nanowire structure was also demonstrated using a template synthesis
technique to confirm the uniform electrodeposition from the citric acid bath.

2. Materials and Methods

The electrolytic baths were prepared with ZnSO4·7H2O (0.1 M), TeO2 (0.002 M),
Na2SO4 (0.5 M), citric acid (H3C6H5O7: 0.05 M), and sodium citrate (Na3C6H5O7·2H2O:
0.05 M). The pH of the baths was set to approximately 4.0 using H2SO4 and NaOH. The
temperature of the baths was kept to 313 K, and a pure Au wire was applied as an anode
electrode. A commercially available Ag/AgCl electrode was used as a reference electrode.
Cathodic polarization curves were investigated using an automatic polarization system
(HZ-5000, Hokuto Denko Corp., Tokyo, Japan) over a wide range (−0.4–−2.5 V) to deter-
mine the optimum cathode potential for electrodepositing zinc telluride thin films and
nanowires. A glass plate coated with an ITO layer was utilized as a cathode electrode
to grow the zinc telluride thin films (20 × 20 mm square, 3 µm in thickness). Ion-track
etched polycarbonate nanochannel films (6 µm in pore-length, 100 nm in pore diameter,
and 4 × 108 pores/cm2 in pore density) and anodized aluminum oxide nanochannel films
(60 µm in pore length, 200 nm in pore diameter, and 1010 pores/cm2 in pore density)
with a sputter-deposited gold film were also used as cathodes for growing zinc telluride
nanowires. To cover the nanochannels, a thick gold layer (250 nm) was formed on the
surface of a nanochannel film using a DC magnetron sputter-deposition system (Auto Fine
Coater, JFC-1600, JEOL Ltd., Tokyo, Japan). The atomic composition of the electrodeposited
alloys was examined using an energy dispersive X-ray spectrometer (EDX, EDX-800HS,
Shimadzu Corp., Kyoto, Japan). Under an argon gas atmosphere, the electrodeposited zinc
telluride samples were annealed at 653–683 K. The constituent phase of the electrodeposited
zinc telluride samples (20 × 20 mm square, 3 µm in thickness) on ITO was investigated by
using an X-ray diffractometer (XRD, Rint-2200, Rigaku Corp., Tokyo, Japan). The surface
morphology of the electrodeposited zinc telluride samples on ITO was examined using
field-emission scanning electron microscopy (FE-SEM-EDS, JSM-7500FA, JEOL Ltd., Tokyo,
Japan). The energy band gap of the electrodeposited zinc telluride samples (20 × 20 mm
square, 3 µm in thickness) on ITO was determined using an ultraviolet and visible spec-
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trophotometer (UV-VIS, V-630iRM, JASCO Corp., Tokyo, Japan). The resistivity of the
zinc telluride samples (20 × 20 mm square, 3 µm in thickness) on ITO was investigated
using a source meter (DC voltage current source monitor, ADCMT6240A, ADC Corp.,
Saitama, Japan).

3. Results and Discussion
3.1. Electrochemical Reduction Behavior of ZnTe from an Aqueous Solution

Figure 1a shows a cathodic polarization curve during the electrochemical growth of
zinc telluride from an aqueous solvent containing Zn2+ and HTeO2

+ ions. The polarization
curve was obtained by plotting the cathode potentials, which were determined during
the galvanostatic electrodeposition of 30 s each (total of 19 points). Based on the Nernst
equation, the equilibrium potential of ETe

eq (HTeO2
+ + 3H+ + 4e− → Te + 2H2O) and

EH
eq (2H+ + 2e− → H2) was calculated to be approximately +0.33 V and −0.44 V versus

Ag/AgCl, respectively, while that of EZn
eq (Zn2+ + 2e−→ Zn) was estimated to be approxi-

mately –0.99 V. As shown in Figure 1a, the cathodic current began to rise at the potential of
approximately −0.4 V. Neumann-Spallart et al. revealed that the electrochemical reduction
current of Te from an aqueous solvent containing HTeO2

+ ions emerged at approximately
−0.2 V vs. Ag/AgCl [24]. In the present study, H2Cit− (or HCit2−) ions were included
in the bath to act as a ligand for HTeO2

+ ions. Hence, HTeO2
+ ions existed as complex

ions with H2Cit− (or HCit2−) ions. In our previous report, we revealed that Cit3− ions
worked as a complexing agent for MoO4

2− ions and WO4
2− ions in the synthesis of Ni-Mo

alloys [25] and Ni-W alloys [26], using an induced co-deposition technique. Recently, we
also found that H2Cit− (or HCit2−) ions can act as a polarizer for the electrodeposition of
metals [27]. Therefore, the electrochemical deposition potential of Te from the Te complex
ions seemed to appear in a less noble (electrochemically negative direction) region than
that of Te from HTeO2

+. Hence, the cathodic current, which emerged at around −0.40 V,
seemed to be induced by the deposition current of Te from the Te complex ions.
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Figure 1. Cathodic polarization curve for the electrodeposition of ZnTe from an aqueous solution containing ZnSO4·7H2O
(0.1 M), TeO2 (0.002 M), sodium sulfate (0.5 M), citric acid (0.05 M), and sodium citrate (0.05 M) (a). The solution pH
and temperature were set to ca. 4.0 and 313 K, respectively. The effect of the cathode potential on Zn content in the
electrodeposits was also shown in Figure 1 (b).

As shown in Figure 1a, with an increase in the cathodic current density up to approxi-
mately 20 A/m2, the cathode potential shifted down to approximately −0.8 V because the
Te complex ions and H+ ions can reach the diffusion limitation. In the cathode potential
region, the pH near the cathode surface will increase up to approximately 6 and Zn2+ ions
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will form Zn(Cit)2
4− ions on the cathode surface, as shown in Equation (1) [28]. Conse-

quently, the electrochemical growth of zinc telluride starts via the formation of Zn(Cit)2
4−

ions, according to Equation (2):

Zn2+ + 2Cit3−
 Zn(Cit)2
4− (1)

Zn(Cit)2
4− + Te + 2e− → ZnTe + 2Cit3− (2)

With the shifting of the cathode potential down to less than −0.9 V, the cathodic
current density increased, again, more than 20 A/m2 because the metallic zinc deposition
proceeded, according to Equation (3):

Zn(Cit)2
4− + 2e− → Zn + 2Cit3− (3)

Moreover, with an increase in the cathodic current density of more than 100 A/m2,
the cathode potential shifted down to less than −1.5 V because Zn(OH)2 formed on the
electrode. Zn(OH)2 are formed by OH− ions generated as a result of water decomposition
on the electrode [29]. In the cathode potential region, zinc will be electrodeposited via
Zn(OH)2, according to Equations (4) and (5):

Zn2+ + 2OH− → Zn(OH)2 (4)

Zn(OH)2 + 2e− → Zn + 2OH− (5)

Figure 1b shows the cathode potential dependence on the zinc content in the elec-
trodeposited alloys. In the potential region, which is less noble (electrochemically negative
direction) than −0.9 V, the zinc content in the electrodeposits reached up to 60%, and a
saturation effect can be observed at the potentials less noble than approximately −1.0 V.
This phenomenon seemed to be caused by the diffusion limitation of Zn(Cit)2

4− ions as
well as the Te complex ions. On the contrary, the zinc content was close to 50% (stoi-
chiometric composition for zinc telluride) in the potential region that was more noble
(electrochemically positive direction) than −0.8 V. Hence, the most promising potential to
make a stoichiometric zinc telluride phase can be estimated at −0.8 V. Neumann-Spallart
et al. revealed that the cathode potential has an influence on the crystallinity of the elec-
trodeposited zinc telluride phase [24]. They revealed an improvement in the crystallinity of
electrodeposited zinc telluride at the cathode potential of around −0.8 V versus Ag/AgCl
in a pH range of 4.0 to 4.5.

3.2. Structure of ZnTe Electrodeposited on ITO

Figure 2 shows the effect of the post-annealing process on the surface appearance
of electrodeposited zinc telluride thin films. The as-electrodeposited samples (a) were
post-annealed at 653 K (b), 663 K (c), 673 K (d), and 683 K (e) for 5 h. As shown in Figure 2a,
the as-deposited zinc telluride thin film exhibited a black tint, whereas the samples with
the annealing treatment (Figure 2b–e) exhibited a reddish-brown tint, a typical surface
appearance of a single-phase zinc telluride.
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Figure 3 shows the SEM images of the as-deposited zinc telluride thin films (a) as well
as samples annealed at 683 K for 5 h (b). The samples were electrochemically synthesized
at a potential of −0.8 V. Based on the SEM images, the samples consisted of small nodules
with a diameter of approximately 1 µm. We could not improve the micro-scale morphology
of the electrodeposits, even though the citric acid bath was employed. The effect of
annealing on the morphology of the electrodeposited zinc telluride thin films was not so
obvious according to the SEM images. Ishizaki et al. also revealed that electrochemically
synthesized zinc telluride thin films consisted of small nodules with a diameter ranging
from 300 nm to 600 nm [30]. Their results gave good agreement with the present study.
Considering Equation (2), the surface morphological appearance of electrochemically
synthesized zinc telluride thin films will be affected by the morphology of electrodeposited
Te. The solubility of Te complex ions is quite small in comparison with that of Zn(Cit)2

4−

ions because the saturated concentration of Te complex ions is approximately 10−3 mol L−1.
Hence, the electrochemical deposition current of the Te complex ions at −0.8 V seemed
to reach the diffusion limitation, as described in Figure 1a. The crystal nucleation density
of electrodeposited metals increases with an increase in the overpotential. Therefore, the
surface morphology of crystals that are electrochemically synthesized at a high current
density over the diffusion limit should be transformed to that of fine particles with powder-
like nodules. Consequently, the small nodules of deposited zinc telluride obtained in our
study seemed to be formed by the characteristic electrodeposition behavior of Te complex
ions with a significant overpotential.
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Figure 3. SEM images of ZnTe thin films with as-deposition (a) and annealing at 683 K for 5 h (b). The sample was
electrodeposited at the cathode potential of −0.8 V.

Figure 4 shows the effect of the post-annealing temperature on the XRD profiles
of the zinc telluride thin films. The as-deposited sample (a) was annealed at 653 K (b),
663 K (c), 673 K (d), and 683 K (e) for 5 h. As shown in Figure 4a, the as-deposited sample
was composed of an amorphous-like phase, whereas the samples annealed at 653–673 K
consisted of crystalline binary phases with ZnTe and Te, as shown in Figure 4b–d. By
contrast, the sample annealed at 683 K was composed of crystalline single-phase ZnTe
(Figure 4e). The melting points of pure Zn and pure Te are 693 K and 723 K, respectively,
while that of the ZnTe compound is 1563 K. Usually, the recrystallization temperature
TR of metallic materials with the melting point TM ranges from TM/3 to TM/2. Hence,
the TR of pure Zn, pure Te, and ZnTe compounds are assumed to be approximately
231–347 K, 241–362 K, and 521–782 K. Considering the annealing temperature range
(653–683 K) in the present work, the pure Zn phase and pure Te phase would have been
recrystallized preferentially rather than forming the compound phase ZnTe. Therefore,
the pure Te phase seemed to be observed in the samples annealed at 653–673 K. Lin et al.
reported that the as-deposited thin film, which was electrodeposited from a non-aqueous
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solvent (EMIC: 1-ethyl-3-methylimidazolium chloride), was composed of the crystalline
Te phase and the other non-crystalline phase [31]. Based on their research, the sample
annealed at 623 K exhibited a crystalline ZnTe phase without the pure Te phase. They
found that a long post-annealing time of more than 2 h was necessary to synthesize a
crystalline cubic zinc telluride at a low annealing temperature of less than 623 K. They also
suggested that the elementary tellurium phase could volatilize rapidly from the samples
during post-annealing temperatures greater than 673 K, considering the vapor pressure of
tellurium. Hence, in the present study, tellurium seemed to be more volatile at an annealing
temperature greater than 683 K.
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Figure 4. Effect of the annealing temperature on the X-ray diffraction profiles of electrodeposited ZnTe thin films onto ITO
glass substrates. The as-deposited sample (a) was annealed for 5 h at 653 K (b), 663 K (c), 673 K (d), and 683 K (e). Cu-Kα

radiation was used as the X-ray source (40 kV; 30 mA) and the scan rate of the goniometer was set to 5 degrees per minute.

3.3. Band Gap Energy and Resistance of Electrodeposited Zinc Telluride

Figure 5a shows the post-annealing effect on the UV-VIS absorption spectra of zinc
telluride thin films. In the zinc telluride thin film annealed at 653 K, light absorption was
confirmed in the spectrum region less than 735 nm. By contrast, the zinc telluride thin
film with annealing at 683 K exhibited light absorption in the spectrum region less than
535 nm. Gandhi et al. investigated the UV-VIS absorption performance of zinc telluride
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nanowire samples that were electrochemically synthesized into TiO2 nanochannels [32].
They reported observing light absorption in the spectrum region less than 688 nm using
as-electrodeposited zinc telluride nanowires, whereas zinc telluride nanowires annealed at
623 K exhibited a light absorption performance in the spectrum region less than 559 nm. The
authors concluded that the post-annealing treatment resulted in the elimination of crystal
defects, such as zinc vacancies, which existed in the as-electrodeposited zinc telluride
nanowires. Hence, in the present study, the wavelength shift in the optical absorption
seemed to have been induced by the crystallization of the as-deposited zinc telluride
amorphous-like phase during the thermal annealing process.
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Figure 5b shows the post-annealing effect on the (αhν)2 versus the hν plot that deter-
mines the band gap energy Eg of zinc telluride films. The electrodeposited zinc telluride
samples were annealed at 653 K and 683 K. The Eg of zinc telluride films with annealing
at 653 K and 683 K were determined to be approximately 1.7 eV and 2.3 eV, respectively.
Lin et al. also reported that the Eg of single-phase zinc telluride, which was electrode-
posited from an EMIC (1-ethyl-3-methylimidazolium chloride) solvent, was approximately
2.3 eV [30]. Hence, the Eg observed in our study agrees well with their results.

Figure 6a shows the post-annealing effect on the Eg of zinc telluride films. The Eg of
zinc telluride films annealed at 653–673 K was estimated to be approximately 1.7 eV, while
that of the zinc telluride film annealed at 683 K was determined to be approximately 2.3 eV,
which was almost identical to that of the single-crystal zinc telluride. The electrodeposited
thin films annealed at 653–673 K were composed of binary phases (ZnTe and Te), whereas
the thin film with annealing at 683 K consisted of single-phase zinc telluride, as shown
in Figure 4. Therefore, the band gap energy of electrodeposited zinc telluride thin films
seemed to depend on the constituent phase. The tellurium phase in the electrodeposited
thin films should decrease the energy band gap.

Figure 6b shows the post-annealing effect on the resistivity of zinc telluride thin films.
The resistivity of the as-prepared zinc telluride thin film was approximately 2 × 105 Ω·m,
whereas that of the zinc telluride thin films annealed at 653–683 K was approximately
2 × 103 Ω·m, which was smaller than that of single-crystal zinc telluride. Kashyout et al.
revealed that the resistivity of electrochemically synthesized zinc telluride thin films was
strongly affected by the post-annealing process [23]. Based on their report, the sheet resis-
tance of the zinc telluride thin film annealed at 623 K was approximately 0.3 × 105 Ω/sq.,
while that of the films annealed at 648 K and 673 K were approximately 1.1 × 105 Ω/sq.
and 8.2 × 105 Ω/sq., respectively. They also revealed that the Eg and the resistance of the
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zinc telluride films were enhanced with an increase in the post-annealing temperature.
On the contrary, the resistivity of the zinc telluride thin film, which was obtained in the
present study, was almost stable even when the post-annealing temperature was raised to
683 K. This result supports the notion that the synergistic effect of crystal defect elimination
and crystal growth in the deposited zinc telluride seemed to emerge at the post-annealing
process of 683 K or higher.
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3.4. Electrodeposition of ZnTe Nanowires Array into Nanochannel Templates

Figure 7 shows the fabrication process of a zinc telluride nanowire array using a
template electrodeposition technique [33–36]. Ion-track etched polycarbonate nanochannel
films (pore length of 6 µm and pore diameter of 100 nm) and anodized aluminum oxide
nanochannel films (pore length of 60 µm and pore diameter of 200 nm) were used as
nanochannel templates. One side of the filter was coated with sputter-deposited gold
film to cover the nanochannels. This conductive gold layer acted as a cathode for the
electrochemical growth of the zinc telluride nanowires. The zinc telluride nanowires were
electrodeposited at the cathode potential range from −0.8 V to −1.4 V versus Ag/AgCl.
After electrodepositing the zinc telluride nanowire array, the polycarbonate nanochannel
films were dissolved in an organic solvent containing chloroform and dichloromethane,
whereas the anodized aluminum oxide nanochannel films were dissolved in an aqueous
solution containing 5N NaOH [37]. The remnant (zinc telluride nanowires) served as a
sample to observe the nanostructure using SEM.

Figure 8a shows the time dependence of the cathode current during the electrodeposi-
tion of the ZnTe nanowires in the anodized aluminum oxide (AAO) membranes. The effect
of the cathode potential on the growth rate of ZnTe nanowires in AAO membranes was also
shown in Figure 8b. As shown in Figure 8a, at the beginning of the electrodeposition within
approximately 50 s, the cathode current decreased gradually with increasing the time. This
phenomenon seems to be caused by the nucleation of ZnTe nanocrystals on the Au cathode
and decreasing the concentration of the metal ions inside the AAO nanochannels. Follow-
ing the initial nucleation stage, an almost constant cathode current was observed for a long
time. For instance, the stable duration was approximately 1000 s at the cathode potential
of −0.8 V while that was approximately 300 s at −1.4 V. During this second stage, ZnTe
nanowires seemed to grow inside the AAO nanochannels at a constant growth rate. Finally,
the cathode current increased rapidly due to the two-dimensional growth outside the AAO
nanochannels on the template surface. The growth rate of ZnTe nanowires, Rg (nm/s),
can be estimated from dividing the AAO nanochannel length, L (nm), by the nanochannel
filling time, t (s). For example, Rg can be calculated to 5.54 nm/s (L = 60,000 nm and
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t = 10,830 s) at the cathode potential of −0.8 V. As shown in Figure 8b, Rg increased with
shifting the cathode potential to a less noble direction. This tendency corresponds well
to the cathodic polarization curve (Tafel plot) as shown in Figure 1a. The stoichiometric
composition was obtained at −0.8 V while the zinc content in the deposit increased with
an increase in the cathodic overpotential, as shown in Figure 1b.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 14 
 

 

 

Figure 7. Fabrication process of ZnTe nanowires array using a template electrodeposition technique. 
Commercially available ion-track etched polycarbonate membrane filters were used as a nanochan-
nel template. The aqueous electrolytic solution was synthesized from ZnSO4·7H2O (0.1 M), TeO2 
(0.002 M), sodium sulfate (0.5 M), citric acid (0.05 M), and sodium citrate (0.05 M). The solution pH 
and temperature were set to ca. 4.0 and 313 K, respectively. 

Figure 8a shows the time dependence of the cathode current during the electrodepo-
sition of the ZnTe nanowires in the anodized aluminum oxide (AAO) membranes. The 
effect of the cathode potential on the growth rate of ZnTe nanowires in AAO membranes 
was also shown in Figure 8b. As shown in Figure 8a, at the beginning of the electrodepo-
sition within approximately 50 s, the cathode current decreased gradually with increasing 

Figure 7. Fabrication process of ZnTe nanowires array using a template electrodeposition technique.
Commercially available ion-track etched polycarbonate membrane filters were used as a nanochannel
template. The aqueous electrolytic solution was synthesized from ZnSO4·7H2O (0.1 M), TeO2

(0.002 M), sodium sulfate (0.5 M), citric acid (0.05 M), and sodium citrate (0.05 M). The solution pH
and temperature were set to ca. 4.0 and 313 K, respectively.



Appl. Sci. 2021, 11, 10632 10 of 12

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 14 
 

the time. This phenomenon seems to be caused by the nucleation of ZnTe nanocrystals on 
the Au cathode and decreasing the concentration of the metal ions inside the AAO na-
nochannels. Following the initial nucleation stage, an almost constant cathode current was 
observed for a long time. For instance, the stable duration was approximately 1000 s at the 
cathode potential of −0.8 V while that was approximately 300 s at −1.4 V. During this sec-
ond stage, ZnTe nanowires seemed to grow inside the AAO nanochannels at a constant 
growth rate. Finally, the cathode current increased rapidly due to the two-dimensional 
growth outside the AAO nanochannels on the template surface. The growth rate of ZnTe 
nanowires, Rg (nm/s), can be estimated from dividing the AAO nanochannel length, L 
(nm), by the nanochannel filling time, t (s). For example, Rg can be calculated to 5.54 nm/s 
(L = 60,000 nm and t = 10,830 s) at the cathode potential of −0.8 V. As shown in Figure 8b, 
Rg increased with shifting the cathode potential to a less noble direction. This tendency 
corresponds well to the cathodic polarization curve (Tafel plot) as shown in Figure 1a. The 
stoichiometric composition was obtained at −0.8 V while the zinc content in the deposit 
increased with an increase in the cathodic overpotential, as shown in Figure 1b. 

 
Figure 8. Time dependence of the cathode current during the electrodeposition of ZnTe nanowires in anodized aluminum 
oxide membranes (a). The effect of the cathode potential on the growth rate of ZnTe nanowires in anodized aluminum 
oxide membranes (b). 

Figure 9 shows the SEM images of the electrodeposited zinc telluride nanowire array. 
The nanochannel structures of the ion-track etched polycarbonate films (a) and anodized 
aluminum oxide films (b) were transferred precisely to the three-dimensional nanostruc-
ture of the zinc telluride nanowire array. The aspect ratio of the nanowires achieved up to 
approximately 300 which was obtained from the anodized aluminum oxide templates. 
These characteristic nanostructures of compound semiconductors can be applied in a 
novel opto-electronic device due to their enhanced specific surface area and unique quan-
tum effects. 
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membranes (b).

Figure 9 shows the SEM images of the electrodeposited zinc telluride nanowire array.
The nanochannel structures of the ion-track etched polycarbonate films (a) and anodized
aluminum oxide films (b) were transferred precisely to the three-dimensional nanostruc-
ture of the zinc telluride nanowire array. The aspect ratio of the nanowires achieved
up to approximately 300 which was obtained from the anodized aluminum oxide tem-
plates. These characteristic nanostructures of compound semiconductors can be applied
in a novel opto-electronic device due to their enhanced specific surface area and unique
quantum effects.
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Figure 9. SEM images of the ZnTe nanowires array that were electrodeposited into the nanochannels
of the ion-track etched polycarbonate membrane (a) and anodized aluminum oxide membrane (b).

4. Conclusions

Electrochemically synthesized zinc telluride thin films with a stoichiometric com-
position were achieved by tuning the cathode potential to −0.8 V. Due to the diffusion
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limitation of Te complex ions, the micro-scale morphology of the electrodeposits was not
improved even though the citric acid bath was employed. The as-deposited zinc telluride
thin films consisted of an amorphous-like phase, whereas the electrodeposited zinc tel-
luride thin films were crystallized at an annealing temperature greater than 653 K. The
electrodeposited zinc telluride thin films post-annealed at 653–673 K were composed of
binary phases (ZnTe and Te). On the contrary, the electrodeposited thin film post-annealed
at 683 K was composed of single-phase zinc telluride. The Eg of the electrodeposited
films annealed at 653–673 K was estimated to be approximately 1.7 eV, while that of the
electrodeposited films annealed at 683 K was determined to be approximately 2.3 eV, which
is almost identical to that of single-crystal zinc telluride. We also revealed that the Eg of
the zinc telluride films depended on the constituent phases. In particular, the tellurium
phase in the electrodeposits induced a reduction in the band gap energy. The resistivity of
the as-electrodeposited zinc telluride thin films was approximately 2 × 105 Ω·m, whereas
that of the thin films annealed at 653–683 K was approximately 2 × 103 Ω·m, which was
smaller than that of single-crystal zinc telluride. Therefore, the synergistic effect of the
crystal defect elimination and the crystal nucleation of the as-deposited amorphous-like
nanocrystalline zinc telluride emerged at the post-annealing temperature of 683 K. The
zinc telluride nanowire array with a three-dimensional structure was also achieved using a
template-assisted electrodeposition technique.
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