1	Functionally-Validated SCN5A Variants Allow Interpretation of
2	Pathogenicity and Prediction of Lethal Events in Brugada Syndrome
3	
4	EURHEARTJ-D-20-04773R3
5	
6	Authors
7	Taisuke Ishikawa,* ¹ Hiroki Kimoto,* ² Hiroyuki Mishima, ³ Kenichiro Yamagata, ⁴ Soshiro
8	Ogata, ⁵ Yoshiyasu Aizawa, ⁶ Kenshi Hayashi, ⁷ Hiroshi Morita, ⁸ Tadashi Nakajima, ⁹ Yukiko
9	Nakano, ¹⁰ Satoshi Nagase, ¹¹ Nobuyuki Murakoshi, ¹² Shinya Kowase, ¹³ Kimie Ohkubo, ¹⁴
10	Takeshi Aiba, ¹⁵ Shimpei Morimoto, ¹⁶ Seiko Ohno, ¹⁷ Shiro Kamakura, ⁴ Akihiko Nogami, ¹²
11	Masahiko Takagi, ¹⁸ Matilde Karakachoff, ¹⁹ Christian Dina, ²⁰ Jean-Jacques Schott, ²⁰ Koh-
12	Ichiro Yoshiura, ³ Minoru Horie, ²¹ Wataru Shimizu, ²² Kunihiro Nishimura, ⁵ Kengo Kusano, ⁴
13	Naomasa Makita ¹
14	
15	*: These authors are equally contributed to this work.
16	
17	Affiliations
18	1. Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan

1	2.	Department of Molecular Physiology, Nagasaki University Graduate School of
2		Biomedical Sciences, Nagasaki, Japan
3	3.	Department of Human Genetics, Nagasaki University Graduate School of Biomedical
4		Sciences, Nagasaki, Japan
5	4.	Department of Cardiovascular Medicine, National Cerebral and Cardiovascular
6		Center, Suita, Japan
7	5.	Department of Preventive Medicine and Epidemiology, National Cerebral and
8		Cardiovascular Center, Suita, Japan
9	6.	Department of Cardiovascular Medicine, International University of Health and
10		Welfare, Narita, Japan
11	7.	Department of Cardiovascular Medicine, Kanazawa University Graduate School of
12		Medical Sciences, Kanazawa, Japan
13	8.	Department of Cardiovascular therapeutics, Okayama University Graduate School of
14		Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
15	9.	Department of Cardiovascular Medicine, Gunma University Graduate School of
16		Medicine, Maebashi, Japan
17	10.	Department of Cardiovascular Medicine, Hiroshima University, Hiroshima, Japan
18	11.	Department of Advanced Arrhythmia and Translational Medical Science, National
19		Cerebral and Cardiovascular Center, Suita, Japan

1	12.	Department of Cardiology, University of Tsukuba, Tsukuba, Japan.
2	13.	Department of Heart Rhythm Management, Yokohama Rosai Hospital, Yokohama,
3		Japan
4	14.	Division of Cardiology, Department of Medicine, Nihon University School of
5		Medicine, Tokyo, Japan
6	15.	Department of Clinical Laboratory, National Cerebral and Cardiovascular Center,
7		Suita, Japan
8	16.	Innovation Platform & Office for Precision Medicine, Nagasaki University Graduate
9		School of Biomedical Sciences, Nagasaki, Japan
10	17.	Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center,
11		Suita, Japan
12	18.	Division of Cardiac Arrhythmia, Kansai Medical University, Moriguchi, Japan
13	19.	L'institut du thorax, CHU Nantes, Nantes, France
14	20.	L'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
15	21.	Center for Epidemiologic Research in Asia, Shiga University of Medical Science,
16		Ohtsu, Japan
17	22.	Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
18		

19 Corresponding author contact information:

1	Naomasa Makita, MD, PhD
2	Deputy Director of Research Institute and Director of Omics Research Center
3	National Cerebral and Cardiovascular Center
4	6-1 Kishibe-Shimmachi, Suita 564-8565, Japan.
5	Tel: +81-6-6170-1070, Fax: +81-6-6170-1602
6	E-mail: makitanaomasa@gmail.com
7	
8	Funding
9	This work was supported by the Japan Agency for Medical Research and Development
10	(AMED; JP21kk0305011 to NM) and Japan Society for the Promotion of Science KAKENHI
11	Grants (JP18KK0245 and JP18H02808 to NM and JP20K08416 to TI).
12	
13	Acknowledgments
14	We would like to thank the attending physicians for data collections and referring patients
15	with BrS, and Chisa Hayashida, Saori Nakano and Hiromi Noda for technical assistance.
16	
17	Disclosure
18	All authors have submitted the ICMJE form for disclosure of potential conflicts of interest.
19	HM reports an endowed chair from Japan Medtronic during the conduct of the study. AN
20	reports grants from Medtronic and DVx, personal fees from Abbott, Johnson and Johnson,

1	Daiichi-Sankyo, Bayer, and Boehringer Ingelheim, outside the submitted work. MT
2	reports personal fees from Daiichi-Sankyo, Bayer Japan, Bristol-Myers Squibb,
3	Boehringer Ingelheim, Japan Lifeline, Biotronik Japan, Abbott Medical Japan, and
4	Medtronic Japan outside the submitted work. The other authors have no conflict of interest
5	to declare.

7 Data availability

8	The data underlying this article will be shared on reasonable request to the corresponding
9	author.
10	
11	
12	
13	
14	
15	
16	
17	

1 ABSTRACT

2 Aims

3	The prognostic value of genetic variants for predicting lethal arrhythmic events (LAEs) in
4	Brugada syndrome (BrS) remains controversial. We investigated whether the functional
5	curation of SCN5A variations improves the prognostic predictability.
6	Methods and results
7	Using a heterologous expression system and whole-cell patch clamp, we functionally
8	characterised 22 variants of unknown significance (VUS) among 55 SCN5A mutations
9	previously curated using <i>in silico</i> prediction algorithms in Japanese BrS registry (n=415).
10	According to the loss-of-function (LOF) properties, SCN5A mutation carriers (n=60) were
11	divided into two groups: LOF-SCN5A mutations and non-LOF SCN5A variations.
12	Functionally proven LOF-SCN5A mutation carriers (n=45) showed significantly severer
13	ECG conduction abnormalities and worse prognosis associated with earlier manifestations
14	of LAEs (7.9%/year) than in silico algorithm-predicted SCN5A carriers (5.1%/year) or all
15	BrS probands (2.5%/year). Notably, non-LOF SCN5A variation carriers (n=15) exhibited
16	no LAEs during the follow-up period. Multivariate analysis demonstrated that only LOF-
17	SCN5A mutations and a history of aborted cardiac arrest were significant predictors of
18	LAE. Gene-based association studies using whole-exome sequencing data on another
19	independent SCN5A mutation-negative BrS cohort (n=288) showed no significant

1	enrichment of rare variants in 16,985 genes including 22 non-SCN5A BrS-associated genes
2	as compared with control (n=372). Furthermore, rare variations of non-SCN5A BrS-
3	associated genes did not affect the LAE-free survival curves.
4	Conclusion
5	In vitro functional validation is key to classifying the pathogenicity of SCN5A VUSs and
6	for risk stratification of genetic predictors of LAE. Functionally proven LOF-SCN5A
7	mutations are genetic burdens of the sudden death in BrS, but the evidence for other BrS-
8	associated genes is elusive.
9	
10	Keywords: Brugada syndrome; SCN5A mutations; lethal arrhythmia; variants of unknown
11	significance; whole-exome sequencing; patch-clamp
12	
13	Translational Perspectives
14	
	SCN5A mutations are associated with the risk of lethal arrhythmia in Brugada syndrome
15	<i>SCN5A</i> mutations are associated with the risk of lethal arrhythmia in Brugada syndrome (BrS), however, nearly 70% of BrS-associated <i>SCN5A</i> rare variations registered in ClinVar
15 16	<i>SCN5A</i> mutations are associated with the risk of lethal arrhythmia in Brugada syndrome (BrS), however, nearly 70% of BrS-associated <i>SCN5A</i> rare variations registered in ClinVar are classified as variants of unknown significance, requiring curation strategies to
15 16 17	SCN5A mutations are associated with the risk of lethal arrhythmia in Brugada syndrome (BrS), however, nearly 70% of BrS-associated SCN5A rare variations registered in ClinVar are classified as variants of unknown significance, requiring curation strategies to accurately differentiate pathogenic and benign variations to predict patient prognosis. As a
15 16 17 18	SCN5A mutations are associated with the risk of lethal arrhythmia in Brugada syndrome (BrS), however, nearly 70% of BrS-associated SCN5A rare variations registered in ClinVar are classified as variants of unknown significance, requiring curation strategies to accurately differentiate pathogenic and benign variations to predict patient prognosis. As a monogenic trait, functionally validated loss-of-function SCN5A mutations, but not rare
15 16 17 18 19	SCN5A mutations are associated with the risk of lethal arrhythmia in Brugada syndrome (BrS), however, nearly 70% of BrS-associated SCN5A rare variations registered in ClinVar are classified as variants of unknown significance, requiring curation strategies to accurately differentiate pathogenic and benign variations to predict patient prognosis. As a monogenic trait, functionally validated loss-of-function SCN5A mutations, but not rare coding variants of other BrS-associated genes, are genetic risks of lethal arrhythmias in

1	BrS. Although the contribution of polygenetic factors in BrS warrants further
2	investigations, these results may help to develop a new personalised risk stratification
3	paradigm for sudden cardiac death.
4	
5	
6	
7	
8	

1 **INTRODUCTION**

Brugada syndrome (BrS) is a rare heritable arrhythmia characterised by the coved-type ST 2 3 segment elevation in the right precordial leads and an increased risk of sudden cardiac death due to lethal ventricular arrhythmia.¹ Mutations in SCN5A, encoding cardiac sodium 4 channel (Nav1.5), are identified in approximately 20% of cases; however, the predictive 5 6 value of SCN5A mutations for subsequent lethal arrhythmic events (LAEs) remains controversial. Specifically, SCN5A mutations were not associated with LAE in European 7 BrS cohorts,^{2, 3} whereas our Japanese multicentre BrS cohort study has previously 8 demonstrated that 60 probands carrying 55 different SCN5A mutations exhibited their first 9 LAE at younger ages (34 versus 42 years) than probands without SCN5A mutations 10 (n=355).⁴ Observations consistent with those of the latter study were reported in an Italian 11 BrS cohort.⁵ The selection bias of patients⁴ or demonstrated transethnic differences in the 12 phenotypic severity of BrS, and the frequency of SCN5A variations⁶ may underlie the 13 discrepancy of the aforementioned studies. Nevertheless, and more importantly, SCN5A 14 mutations often exhibit incomplete penetrance in BrS, and this gene is associated with a 15 relatively high background rate of rare missense variants in the general population (2%-16 5%). Moreover, efforts to enhance the classification of SCN5A missense variants using 17 protein topology-driven estimated predictive assessments or *in silico* prediction algorithms 18 are limited compared with those for other major cardiac channelopathy genes, such as 19

1	KCNQ1/KCNH2. ⁷ Therefore, risk assessment of SCN5A variants using phenotypic data of
2	a single variant carrier remains challenging, and an inaccurate classification of rare
3	variants might have obscured the prognostic value of SCN5A.
4	The American Collage of Medical Genetics and Genomics and Association for
5	Molecular Pathology (ACMG-AMP) guidelines provide approaches for a more appropriate
6	classification of pathogenic variants, and "functional studies supporting a deleterious
7	effect (PS3)" are assigned one of four criteria with "strong evidence" of pathogenicity. ⁸
8	Loss-of-function (LOF) of cardiac Na current (I_{Na}) due to SCN5A mutations is the primary
9	pathophysiology underpinning BrS. A previous functional study has shown that patients
10	carrying null SCN5A mutations are associated with more frequent episodes of syncope and
11	more severe conduction abnormalities than those with other types of SCN5A mutations. ⁹
12	More recently, Glazer et al. have shown that patch clamp enables reclassification of
13	variants of unknown significance (VUSs) of SCN5A. ¹⁰ These studies suggest that the in
14	vitro functional re-evaluation of SCN5A variations may improve LAE predictability in
15	BrS. In the present study, we have conducted a PubMed search and re-evaluated the
16	function of 55 SCN5A rare variants previously curated via multiple in silico prediction
17	algorithms in a Japanese BrS cohort ⁴ and determined whether the functionally proven
18	SCN5A mutations may improve the predictive value for LAE in patients with BrS.

1	Increasing evidence suggests that BrS is unlikely to be a Mendelian monogenic
2	disease but rather an oligogenic disorder involving multiple rare and nonrare variants, as
3	well as structural abnormalities and inflammation, contributing to the underlying basis of
4	disease. ¹¹ A previous international genome-wide association study had identified three
5	common independent susceptibility variants close to SCN5A, SCN10A, and HEY2, ¹² and to
6	date, more than 20 genes have been reported to be associated with BrS. ¹³ Although no
7	significant enrichment of these rare coding variants, except for SCN5A, were observed in
8	BrS cases ¹⁴ and the ClinGen consortium recently reported <i>SCN5A</i> as the only causative
9	gene with definitive evidence for the diagnosis of BrS, ¹³ the predictive value of non-
10	SCN5A coding variants for the long-term prognosis of BrS-i.e. LAE and sudden cardiac
11	death-has never been evaluated. In this study, we performed whole-exome sequencing on
12	a distinct SCN5A-negative BrS cohort to identify novel pathological rare variants and
13	assessed if non-SCN5A rare coding variants contribute to the genetic burden of sudden
14	death in BrS.
15	
16	METHODS
17	Patients and study cohorts
18	The diagnosis of BrS was made according to the criteria of a consensus report, ¹⁵ and LAE

19 was defined as sudden cardiac death, cardiac arrest, ventricular tachycardia (VT)/ventricular

1	fibrillation (VF), or appropriate discharge of implantable cardioverter defibrillator (ICD).
2	Clinical characteristics including time to first LAE and electrocardiographic (ECG)
3	parameters were obtained as previously described. ⁴ This study was approved by the
4	institutional review board (National Cerebral and Cardiovascular Center, R19048) and local
5	ethics committee of each institution. All participants in the cohorts provided written informed
6	consent before clinical and genetic investigations in accordance with the Declaration of
7	Helsinki.
8	This study consisted of two independent Japanese multicentre BrS cohorts, specifically BrS
9	cohort-I (415 probands) ⁴ and BrS cohort-II (288 unrelated probands), and 372 ethnic-
10	matched controls (Figure 1, Table 1). In BrS cohort-I, 415 BrS probands were assigned as
11	SCN5A-mutation carriers (SCN5A(+); n=60) and SCN5A-mutation negative probands
12	(SCN5A(-); n=355) based on Sanger sequencing as previously described. ⁴ We enrolled
13	independent Japanese BrS probands (cohort-II), whose negative SCN5A genotype statuses
14	were determined in advance by Sanger sequencing. BrS cohort-II and the control Japanese
15	subjects were subjected to whole-exome sequencing and gene-wise association test. In silico
16	prediction of SCN5A variants was performed using seven algorithms as previously
17	described. ^{4,7} Further information is provided in the Supplemental Methods.
18	

19 [Figure 1, Table 1]

2	Assignment and functional evaluation of 22 variants of unknown significance
3	We performed public database screening and PubMed literature search for 55 variations
4	reported in BrS cohort-I and identified 22 VUSs. To functionally evaluate the Na channel
5	properties of 22 VUSs, we constructed human SCN5A expression plasmids of VUSs using
6	site-directed mutagenesis, and I_{Na} of HEK293T cells were recorded using the whole-cell
7	patch-clamp technique using a heterologous expression system. After analysing the
8	biophysical properties of 22 VUS channels, the 55 variants were categorised into two
9	groups, LOF and non-LOF, according to the presence or absence of significantly reduced
10	peak I_{Na} density than wild-type (WT) SCN5A, respectively. Detailed information is
11	provided in the Supplemental Methods.
11 12	provided in the Supplemental Methods.
11 12 13	provided in the Supplemental Methods. Statistical analyses
11 12 13 14	provided in the Supplemental Methods. Statistical analyses Quantitative variables are shown as the mean±standard deviation (SD) unless otherwise
 11 12 13 14 15 	provided in the Supplemental Methods. Statistical analyses Quantitative variables are shown as the mean±standard deviation (SD) unless otherwise stated. Statistical significance was set at P<0.05. For the statistical analysis of continuous
 11 12 13 14 15 16 	provided in the Supplemental Methods. Statistical analyses Quantitative variables are shown as the mean±standard deviation (SD) unless otherwise stated. Statistical significance was set at P<0.05. For the statistical analysis of continuous
 11 12 13 14 15 16 17 	provided in the Supplemental Methods. Statistical analyses Quantitative variables are shown as the mean±standard deviation (SD) unless otherwise stated. Statistical significance was set at P<0.05. For the statistical analysis of continuous
 11 12 13 14 15 16 17 18 	provided in the Supplemental Methods. Statistical analyses Quantitative variables are shown as the mean±standard deviation (SD) unless otherwise stated. Statistical significance was set at P<0.05. For the statistical analysis of continuous variables with a normal distribution, one-way analysis of variance followed by Bonferroni's post-hoc comparison tests were used. The cumulative probability of an index LAE over the course of patient follow-up or their entire lifetime was determined using Kaplan–Meier

1	rank test. Univariate analysis using a Cox proportional-hazards model was performed to
2	determine variables that improve the prediction of LAE. Independent variables with P<0.05
3	in the univariate analyses were included in the multivariate analysis. Statistical analyses were
4	performed using the R programme (ver 4.0.2) and SPSS statistical package (ver 26).
5	
6	RESULTS
7	Functional classification of BrS-associated 55 SCN5A variations
8	A PubMed search had identified 21 publications that described the biophysical properties of
9	22 SCN5A variations (17 missense, one in-frame deletion, and four nonsense variations)
10	(Figure 1, Supplemental Table S1). Moreover, among 55 variations, 11 were novel null
11	variants (two nonsense, six frame-shift, three canonical splice site) classified as PVS1 (very
12	strong evidence of pathogenicity) according to the ACMG-AMP guidelines. ⁸ Accordingly, the
13	remaining 22 missense variations were assigned as VUS (Table 1). The functional properties
14	of each VUS were analysed using whole-cell patch-clamp assays (Supplemental Figure S1)
15	and categorised into two groups according to the degree of peak I_{Na} reduction: LOF
16	(significantly reduced I_{Na} density compared with WT; n=13), and Non-LOF (no significant
17	difference compared with WT; n=9), and the border zone of LOF and Non-LOF was
18	53.2%–65.6% (Supplemental Table S2). Since the experimental conditions of current study
19	and previous patch-clamp studies were largely similar (Supplemental Table S3), both data

1	were combined with null PVS1 mutations (n=11) to classify a total of 55 variants according
2	to their biophysical properties as follows: LOF (n=40) and Non-LOF (n=15) (Figure 2,
3	Supplemental Table S4). The locations of the 55 variants, illustrated based on Nav1.5 protein
4	topology, exhibited diffuse distribution within the entire protein.
5	
6	[Figure 2]
7	
8	Correlation between functional severity of SCN5A variations and ECG parameters
9	Among different ECG parameters, cardiac conduction properties (P, QRS, S durations and
10	PQ interval) were significantly prolonged in the LOF compared to the Non-LOF or
11	SCN5A(-) (Supplemental Figure S2). However, no significant differences were observed in
12	these parameters between Non-LOF and SCN5A(-), suggesting that the conduction
13	parameters reflect the severity of sodium channel dysfunction associated with SCN5A
14	variations (Supplemental Table S5). Alternatively, other electrophysiological and clinical
15	findings were largely comparable among the three groups (Supplemental Figure S3).
16	
17	Lethal arrhythmic events associated with the severity of sodium channel dysfunction
18	A total of 62 probands (15%) developed LAEs during the mean follow-up period of 72
19	months. Notably, none of the Non-LOF probands developed LAEs during follow-up. (Figure

1	3) Furthermore, LOF exhibited significantly more frequent total lifetime events and ICD
2	implantation than Non-LOF. Most LAEs (n=56, 90%) were terminated by appropriate ICD
3	discharges, and LAE-free rates by Kaplan-Meier analysis was comparable regardless of the
4	ICD discharge. These data suggest that an appropriate ICD discharge serves as a surrogate for
5	sudden cardiac death in BrS (Supplemental Figure S4); therefore, it was hypothesized that the
6	prognosis of BrS patients can be discriminated based on LOF properties of the SCN5A
7	variants
8	
9	[Figure 3]
10	
11	Based on this assumption, we calculated the cumulative rate of an index LAE during
12	the mean follow-up period of 72 months (range, 1–249 months) using the Kaplan–Meier
13	method for several subgroups with different statuses with respect to Na channel properties
14	(Figure 4). Patients carrying SCN5A rare variants (SCN5A(+); n=60) had a significantly
15	higher annual LAE rate than SCN5A(-) (n=355; 5.1%/year versus 2.2%/year; P=0.017, Figure
16	4A, Table 2), as previously reported. ⁴ The estimated mean LAE-free periods (mean±standard
17	error (SE)) for patients of SCN5A(+) and SCN5A(-) were 136.6±12.9 months and 210.8±6.0
18	months, respectively. As shown in Figure 4B, none of Non-LOF subgroup developed LAEs
19	during the follow-up period, whereas the LOF subgroup had a significantly higher LAE rate

1	(7.9%/year, P=0.019; Figure 4B, Table 2, Supplemental Table S6) and a shorter LAE-free
2	period (94.5±10.7 months). By combining Non-LOF and SCN5A(-) results, we re-evaluated
3	the survival curves of patients with or without LOF-SCN5A mutations (Figure 4C) and found
4	that the LOF subgroup exhibited a significantly higher annual LAE rate, and shorter
5	estimated mean LAE-free period than the Non-LOF plus SCN5A(-) (2.1%/year, 208.8±5.9
6	months, n=370; P=0.0001, Figure 4C, Table 2). Qualitatively similar results were obtained
7	from Kaplan-Meier analysis with shorter follow-up period (<107 months) (Supplemental
8	Figure S5)
9	
10	[Figure 4; Table 2]
11	
12	Reclassification of SCN5A variations and the predictability of LAEs
13	Univariate analysis using a Cox proportional hazard model showed that the positive status of
14	both functionally-validated LOF-SCN5A mutations and in silico algorithm-predicted rare
15	SCN5A variations are significant predictors of LAE, but the former exhibited a higher hazard
16	ratio than the latter (Table 3, Supplemental Table S6). ⁴ Multivariate analyses were then
17	performed using independent variables with P< 0.05 in Table 3A (with two different SCN5A)
18	statuses) . A history of aborted cardiac arrest was the strongest predictor of LAE regardless of

19 the SCN5A status. Moreover, SCN5A variant status was a significant predictor of LAE, and

1	the predictive values of functionally-validated LOF-SCN5A mutations was higher than that of
2	in silico-predicted rare SCN5A variations demonstrated previously. ⁴ In contrast, prolonged
3	QRS, or documented atrial fibrillation were not predictors of LAE in BrS.
4	
5	[Table 3]
6	
7	Genome-wide screening and risk stratification of BrS-associated genes other than
8	SCN5A
9	To determine which genes besides SCN5A carry burden of rare genetic variations in BrS
10	cases versus controls, we performed whole-exome sequencing on a distinct Japanese cohort of
11	SCN5A(-) BrS (BrS cohort-II, n=288) and controls (n=372). Then we performed genome-wide
12	gene-wise association tests using rare variations using two different cut-off values of minor-
13	allele frequency (<1% and <0.3%), however, we failed to identify novel genes significantly
14	enriched with rare coding variations among the entire set of genes in BrS cohort-II
15	(Supplemental Figure S6) or previously recognised 22 non-SCN5A BrS-associated genes. ¹³
16	(Supplement Tables S7, S8) We assessed whether rare coding variants of 22 BrS-associated
17	genes with limited evidence modify the prognosis of BrS; lifetime cumulative LAE-free rates
18	were calculated by the Kaplan-Meier method. However, Log-rank tests showed that these rare
19	variants did not affect the age of initial LAE in the BrS cohort-II (Figure 5). Even when

1	focusing on genes that are known to modulate cardiac Na channel function, rare variants of
2	these genes were not enriched in cases nor affected the prognosis of BrS cohort-II
3	(Supplemental Figure S7, Supplemental Table S8). Thus, we find no evidence supporting an
4	association between the BrS-associated non-SCN5A genes and sudden arrhythmic death.
5	
6	[Figure 5]
7	
8	DISCUSSION
9	In this study, we aimed to dissect the genetic basis of BrS by conducting
10	electrophysiological evaluations of SCN5A variations and have demonstrated that
11	functionally-validated LOF-SCN5A mutations, not rare coding variations of other BrS-
12	related genes, are associated with genetic risks of lethal arrhythmia in BrS. In addition to a
13	history of aborted cardiac arrest being the strongest, and most well-established predictor of
14	future LAEs in patients with BrS, we have demonstrated, to the best of our knowledge, for
15	the first time that LOF-SCN5A mutations are an independent and significant predictor of
16	sudden death.
17	Advances in genetic sequencing have increased the potential yield of genetic testing,
18	while raising the clinical dilemma of the discovery of many VUSs compromising the
19	accuracy of variant interpretation. The pathogenicity of SCN5A variants in BrS has often

1	been unknown or disputed; 67.5% of the total 1,140 BrS-associated SCN5A variations
2	submitted to ClinVar are classified as either of uncertain significance, no assertion
3	provided, or conflicting interpretations. ¹⁶ These VUSs are often specific to a particular
4	family, and their penetrance and expressivity are highly variable in BrS, ¹ hampering the
5	annotation of their pathogenicity through segregation analysis. In the ACMG-AMP
6	guidelines, the evidence level of pathogenicity for "absent in population databases" is
7	assigned as moderate (PM2), while that of "in silico prediction algorithms" is assigned as
8	supporting (PP3). Specificity of <i>in silico</i> algorithms to predict the pathogenicity of
9	missense variants is generally low despite their high sensitivity, ⁸ resulting in the
10	overprediction of missense variations as deleterious. Recent studies, using purely in silico
11	analyses, including systematic evaluation using the ACMG-AMP guidelines, failed to
12	predict the disease risk of SCN5A variants in BrS. ^{17, 18} These results support the
13	observation of our study that 27% of the SCN5A missense VUSs (15/55) were
14	overpredicted in silico, therefore implicating the need for additional reliable tools to
15	improve the annotation of pathogenicity for large numbers of SCN5A VUSs. In this study,
16	we propose that the functional evaluation of SCN5A VUSs using a patch-clamp study
17	might be an efficient strategy to aid the differentiation of malignant variants associated
18	with predisposition to sudden death from those that are innocuous (Graphic abstract).

1	Among the 55 functionally reclassified SCN5A variants, including 22 VUSs, most
2	(40 variants, 73%, LOF) showed a significant reduction in the peak I_{Na} than WT-SCN5A,
3	which was associated with more severe abnormalities in ECG conduction parameters
4	(Supplemental Figure S2), and an earlier manifestation of LAEs (Figure 4). Note that our
5	in vitro functional classification of SCN5A variants according to the significant I_{Na} density
6	reduction (LOF vs Non-LOF) successfully dissected the cumulative risk of LAEs in the 60
7	carriers during the follow-up period (Figure 4B). The close relationship between the
8	degree of SCN5A Na channel dysfunction and the phenotypic severity has been previously
9	reported; SCN5A truncation mutation carriers were found to have more syncopal episodes
10	and prolonged cardiac conduction abnormalities than missense mutation carriers. ⁹ Another
11	Italian study of 92 BrS patients identified four SCN5A mutations (R104Q, L276Q,
12	E1225K, and A1428S) in 12 patients with LAE during follow-up, ⁵ and our dataset
13	included BrS probands carrying the identical LOF mutations (Supplemental Table S4).
14	These observations further support the notion that LOF-SCN5A mutations are
15	phenotypically malignant and associated with LAE, while the reduction in peak I_{Na} density
16	serves as the principal predictor of BrS disease risk. Further functional evaluations and
17	larger scale clinical studies involving more SCN5A-positive cases are warranted to prove
18	this hypothesis.

1	Although more than 20 non-SCN5A associated genes have been recognised in BrS,
2	precise interpretation of the pathogenicity of rare variations of these genes is often
3	challenging. Using rare variant burden analysis of BrS-associated genes, Le Scouarnec et
4	al. identified a significant enrichment of SCN5A coding variants only in BrS cases than
5	controls, but not those of other BrS-associated genes. ¹⁴ Using an evidence-based ClinGen
6	approach, Hosseini et al. concluded that SCN5A is the only gene classified with definitive
7	evidence of disease causality in BrS. ¹³ Herein, we used whole-exome sequencing in a
8	larger cohort of BrS patients lacking SCN5A mutations and demonstrated that the rare
9	coding variations of non-SCN5A BrS-associated genes were neither enriched in BrS
10	(Supplemental Figure S6), nor modified the long-term prognosis of BrS patients (Figure
11	5). Our data further support the notion that LOF-SCN5A mutations, but not rare coding
12	variants of other BrS-susceptible genes, are the genetic burden of LAE in BrS.
13	The absence of LOF-SCN5A mutations in a given patient with BrS does not
14	necessarily suggest a benign prognosis since the disease presentation is affected by several
15	factors, including age, sex, common single nucleotide polymorphisms (SNPs) near
16	SCN5A/SCN10A/HEY2 genes, ¹² and structural abnormalities including fibrosis and
17	inflammation. ¹¹ Considering that most (~80%) patients with BrS are mutation-negative, it
18	is speculated that the genetic risk of sudden death is also determined by both monogenic
19	factors (rare LOF-SCN5A mutations) and polygenic factors (unidentified common

1	variants) (Graphic abstract). Although SNPs associated with sudden death or lethal
2	arrhythmia have not been elucidated in BrS, it is possible that the polygenetic contribution
3	of BrS-associated common SNPs in SCN5A-negative BrS may be equivalent to or even
4	greater than in SCN5A-positive BrS. ¹⁹
5	
6	Study limitations
7	Patients in this study were exclusively of Japanese descent, and limited in number;
8	therefore, our study should be replicated using larger cohorts of different ethnicities.
9	Electrophysiological properties of the variants were analysed based on heterologous
10	expression; however, some SCN5A variants might exhibit different properties in HEK293T
11	cells as compared with those in cardiomyocytes or <i>in vivo</i> . ²⁰
12	
13	CONCLUSIONS
14	In vitro functional validation is a key method to classify the pathogenicity of SCN5A
15	VUSs. Functionally-validated LOF-SCN5A mutations contribute to the genetic burden of
16	sudden death in BrS. Integrating the genetic information of LOF-SCN5A mutations with
17	other rare or polygenic common risk variations, which are currently unknown, may help to
18	develop a new personalised risk stratification paradigm for the complex oligogenic
19	disease, BrS.

REFERENCES

2	1.	Brugada J, Campuzano O, Arbelo E, Sarquella-Brugada G, Brugada R. Present Status
3		of Brugada Syndrome: JACC State-of-the-Art Review. J Am Coll Cardiol
4		2018;72:1046-1059.
5	2.	Probst V, Veltmann C, Eckardt L, Meregalli PG, Gaita F, Tan HL, Babuty D, Sacher F,
6		Giustetto C, Schulze-Bahr E, Borggrefe M, Haissaguerre M, Mabo P, Le Marec H,
7		Wolpert C, Wilde AA. Long-term prognosis of patients diagnosed with Brugada
8		syndrome: Results from the FINGER Brugada Syndrome Registry. Circulation
9		2010;121:635-43.
10	3.	Calo L, Giustetto C, Martino A, Sciarra L, Cerrato N, Marziali M, Rauzino J, Carlino
11		G, de Ruvo E, Guerra F, Rebecchi M, Lanzillo C, Anselmino M, Castro A, Turreni F,
12		Penco M, Volpe M, Capucci A, Gaita F. A New Electrocardiographic Marker of Sudden
13		Death in Brugada Syndrome: The S-Wave in Lead I. J Am Coll Cardiol 2016;67:1427-
14		1440.
15	4.	Yamagata K, Horie M, Aiba T, Ogawa S, Aizawa Y, Ohe T, Yamagishi M, Makita N,
16		Sakurada H, Tanaka T, Shimizu A, Hagiwara N, Kishi R, Nakano Y, Takagi M,
17		Makiyama T, Ohno S, Fukuda K, Watanabe H, Morita H, Hayashi K, Kusano K,
18		Kamakura S, Yasuda S, Ogawa H, Miyamoto Y, Kapplinger JD, Ackerman MJ, Shimizu
19		W. Genotype-Phenotype Correlation of SCN5A Mutation for the Clinical and

1		Electrocardiographic Characteristics of Probands With Brugada Syndrome: A Japanese
2		Multicenter Registry. Circulation 2017;135:2255-2270.
3	5.	Sommariva E, Pappone C, Martinelli Boneschi F, Di Resta C, Rosaria Carbone M, Salvi
4		E, Vergara P, Sala S, Cusi D, Ferrari M, Benedetti S. Genetics can contribute to the
5		prognosis of Brugada syndrome: a pilot model for risk stratification. Eur J Hum Genet
6		2013;21:911-7.
7	6.	Milman A, Andorin A, Postema PG, Gourraud JB, Sacher F, Mabo P, Kim SH, Maeda
8		S, Takahashi Y, Kamakura T, Aiba T, Conte G, Juang JJM, Leshem E, Michowitz Y,
9		Fogelman R, Hochstadt A, Mizusawa Y, Giustetto C, Arbelo E, Huang Z, Corrado D,
10		Delise P, Allocca G, Takagi M, Wijeyeratne YD, Mazzanti A, Brugada R, Casado-
11		Arroyo R, Champagne J, Calo L, Sarquella-Brugada G, Jespersen CH, Tfelt-Hansen J,
12		Veltmann C, Priori SG, Behr ER, Yan GX, Brugada J, Gaita F, Wilde AAM, Brugada P,
13		Kusano KF, Hirao K, Nam GB, Probst V, Belhassen B. Ethnic differences in patients
14		with Brugada syndrome and arrhythmic events: New insights from Survey on
15		Arrhythmic Events in Brugada Syndrome. Heart Rhythm 2019;16:1468-1474.
16	7.	Kapplinger JD, Giudicessi JR, Ye D, Tester DJ, Callis TE, Valdivia CR, Makielski JC,
17		Wilde AA, Ackerman MJ. Enhanced Classification of Brugada Syndrome-Associated
18		and Long-QT Syndrome-Associated Genetic Variants in the SCN5A-Encoded Na(v)1.5
19		Cardiac Sodium Channel. Circ Cardiovasc Genet 2015;8:582-95.

1	8.	Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M,
2		Lyon E, Spector E, Voelkerding K, Rehm HL, Committee ALQA. Standards and
3		guidelines for the interpretation of sequence variants: a joint consensus
4		recommendation of the American College of Medical Genetics and Genomics and the
5		Association for Molecular Pathology. Genet Med 2015;17:405-24.
6	9.	Meregalli PG, Tan HL, Probst V, Koopmann TT, Tanck MW, Bhuiyan ZA, Sacher F,
7		Kyndt F, Schott JJ, Albuisson J, Mabo P, Bezzina CR, Le Marec H, Wilde AA. Type of
8		SCN5A mutation determines clinical severity and degree of conduction slowing in loss-
9		of-function sodium channelopathies. Heart Rhythm 2009;6:341-8.
10	10.	Glazer AM, Wada Y, Li B, Muhammad A, Kalash OR, O'Neill MJ, Shields T, Hall L,
11		Short L, Blair MA, Kroncke BM, Capra JA, Roden DM. High-Throughput
12		Reclassification of SCN5A Variants. Am J Hum Genet 2020;107:111-123.
13	11.	Nademanee K, Raju H, de Noronha SV, Papadakis M, Robinson L, Rothery S, Makita
14		N, Kowase S, Boonmee N, Vitayakritsirikul V, Ratanarapee S, Sharma S, van der Wal
15		AC, Christiansen M, Tan HL, Wilde AA, Nogami A, Sheppard MN, Veerakul G, Behr
16		ER. Fibrosis, Connexin-43, and Conduction Abnormalities in the Brugada Syndrome.
17		J Am Coll Cardiol 2015;66:1976-1986.
18	12.	Bezzina CR, Barc J, Mizusawa Y, Remme CA, Gourraud JB, Simonet F, Verkerk AO,
19		Schwartz PJ, Crotti L, Dagradi F, Guicheney P, Fressart V, Leenhardt A, Antzelevitch

1		C, Bartkowiak S, Borggrefe M, Schimpf R, Schulze-Bahr E, Zumhagen S, Behr ER,
2		Bastiaenen R, Tfelt-Hansen J, Olesen MS, Kaab S, Beckmann BM, Weeke P, Watanabe
3		H, Endo N, Minamino T, Horie M, Ohno S, Hasegawa K, Makita N, Nogami A,
4		Shimizu W, Aiba T, Froguel P, Balkau B, Lantieri O, Torchio M, Wiese C, Weber D,
5		Wolswinkel R, Coronel R, Boukens BJ, Bezieau S, Charpentier E, Chatel S, Despres A,
6		Gros F, Kyndt F, Lecointe S, Lindenbaum P, Portero V, Violleau J, Gessler M, Tan HL,
7		Roden DM, Christoffels VM, Le Marec H, Wilde AA, Probst V, Schott JJ, Dina C,
8		Redon R. Common variants at SCN5A-SCN10A and HEY2 are associated with
9		Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat Genet
10		2013;45:1044-9.
11	13.	Hosseini SM, Kim R, Udupa S, Costain G, Jobling R, Liston E, Jamal SM, Szybowska
12		M, Morel CF, Bowdin S, Garcia J, Care M, Sturm AC, Novelli V, Ackerman MJ, Ware
13		JS, Hershberger RE, Wilde AAM, Gollob MH, National Institutes of Health Clinical
14		Genome Resource C. Reappraisal of Reported Genes for Sudden Arrhythmic Death:
15		Evidence-Based Evaluation of Gene Validity for Brugada Syndrome. Circulation
16		2018;138:1195-1205.
17	14.	Le Scouarnec S, Karakachoff M, Gourraud JB, Lindenbaum P, Bonnaud S, Portero V,
18		Duboscq-Bidot L, Daumy X, Simonet F, Teusan R, Baron E, Violleau J, Persyn E,
19		Bellanger L, Barc J, Chatel S, Martins R, Mabo P, Sacher F, Haissaguerre M, Kyndt F,

1		Schmitt S, Bezieau S, Le Marec H, Dina C, Schott JJ, Probst V, Redon R. Testing the
2		burden of rare variation in arrhythmia-susceptibility genes provides new insights into
3		molecular diagnosis for Brugada syndrome. Hum Mol Genet 2015;24:2757-63.
4	15.	Priori SG, Wilde AA, Horie M, Cho Y, Behr ER, Berul C, Blom N, Brugada J, Chiang
5		CE, Huikuri H, Kannankeril P, Krahn A, Leenhardt A, Moss A, Schwartz PJ, Shimizu
6		W, Tomaselli G, Tracy C. HRS/EHRA/APHRS expert consensus statement on the
7		diagnosis and management of patients with inherited primary arrhythmia syndromes:
8		document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA,
9		PACES, and AEPC in June 2013. Heart Rhythm 2013;10:1932-63.
10	16.	ClinVar. https://www.ncbi.nlm.nih.gov/clinvar/ (16 May 2020)
11	17.	Kroncke BM, Glazer AM, Smith DK, Blume JD, Roden DM. SCN5A (NaV1.5) Variant
12		Functional Perturbation and Clinical Presentation: Variants of a Certain Significance.
13		Circ Genom Precis Med 2018;11:e002095.
14	18.	Pearman CM, Denham NC, Mills RW, Ding WY, Modi SS, Hall MCS, Todd DM,
15		Mahida S. Relationship between sodium channel function and clinical phenotype in
16		SCN5A variants associated with Brugada syndrome. Hum Mutat 2020;41:2195-2204.
17	19.	Wijeyeratne YD, Tanck MW, Mizusawa Y, Batchvarov V, Barc J, Crotti L, Bos JM,
18		Tester DJ, Muir A, Veltmann C, Ohno S, Page SP, Galvin J, Tadros R, Muggenthaler M,
19		Raju H, Denjoy I, Schott JJ, Gourraud JB, Skoric-Milosavljevic D, Nannenberg EA,

1		Redon R, Papadakis M, Kyndt F, Dagradi F, Castelletti S, Torchio M, Meitinger T,
2		Lichtner P, Ishikawa T, Wilde AAM, Takahashi K, Sharma S, Roden DM, Borggrefe
3		MM, McKeown PP, Shimizu W, Horie M, Makita N, Aiba T, Ackerman MJ, Schwartz
4		PJ, Probst V, Bezzina CR, Behr ER. SCN5A Mutation Type and a Genetic Risk Score
5		Associate Variably With Brugada Syndrome Phenotype in SCN5A Families. Circ
6		Genom Precis Med 2020;13:e002911.
7	20.	Watanabe H, Yang T, Stroud DM, Lowe JS, Harris L, Atack TC, Wang DW, Hipkens
8		SB, Leake B, Hall L, Kupershmidt S, Chopra N, Magnuson MA, Tanabe N, Knollmann
9		BC, George AL, Jr., Roden DM. Striking In vivo phenotype of a disease-associated
10		human SCN5A mutation producing minimal changes in vitro. Circulation
11		2011;124:1001-11.
12		
13		

1 FIGURE LEGENDS

2 Figure 1. Flowchart of this study

3	Patients of BrS cohort-I were assigned to groups of loss-of-function (LOF) SCN5A
4	mutation carriers (N=45), non-LOF SCN5A variation carriers (N=15), and SCN5A-
5	mutation negative patients (SCN5A(-), N=355) by in silico curation, PubMed search and
6	functional evaluation using patch clamp. Numbers of unique variations (n) and patients
7	(Pt) are shown where a duplication was identified. BrS cohort-II consists of independent
8	BrS probands carrying no SCN5A rare variations.
9	
10	Figure 2. Functional classification of 55 SCN5A rare variations of Japanese BrS
11	cohort-I
12	A. Whole-cell currents of rare SCN5A variants and wild-type (WT) Nav1.5 channel were
13	recorded (inset and Supplemental figure S1) from HEK293T cells, and the percentage peak
14	current densities versus WT were plotted. Variants were classified into loss-of-function
15	(LOF; significantly reduced peak current density than WT; n=40) or Non-LOF (not
16	significantly different from WT; n=15). Check marks indicate variants of unknown
17	significance (VUSs) for which patch-clamp was performed in this study (n=22), and
18	asterisks represent variations of previous literatures whose precise current density data are
19	unavailable (n=10).

2	representation of Nav1.5.
3	
4	Figure 3. Association of clinical events in BrS patients with distinct Na channel
5	function properties
6	A. All events and B. lethal arrhythmic events (LAE) in lifetime; C. LAE and D. syncope
7	during follow-up; E. ICD discharge and F. ICD implantation were compared among BrS
8	patients with LOF (n=45), Non-LOF (n=15), and SCN5A(-) (n=355). Statistical analysis
9	was performed using Fisher's exact test with Bonferroni adjustment.
10	
11	Figure 4. Kaplan–Meier analysis of LAE-free survival during follow-up in BrS
12	
	cohort-I
13	cohort-I A. LAE-free survival during the follow-up period in BrS probands carrying <i>SCN5A</i> rare
13 14	cohort-I A. LAE-free survival during the follow-up period in BrS probands carrying <i>SCN5A</i> rare variations (All <i>SCN5A</i> ; n=60) and <i>SCN5A</i> (-) (n=355). Confidence bands indicate 95%
13 14 15	cohort-I A. LAE-free survival during the follow-up period in BrS probands carrying <i>SCN5A</i> rare variations (All <i>SCN5A</i> ; n=60) and <i>SCN5A</i> (-) (n=355). Confidence bands indicate 95% pointwise CI. B. Time course of BrS patients with LOF- <i>SCN5A</i> mutations (LOF, n=45),
13 14 15 16	 cohort-I A. LAE-free survival during the follow-up period in BrS probands carrying <i>SCN5A</i> rare variations (All <i>SCN5A</i>; n=60) and <i>SCN5A</i>(-) (n=355). Confidence bands indicate 95% pointwise CI. B. Time course of BrS patients with LOF-<i>SCN5A</i> mutations (LOF, n=45), and Non-LOF (n=15). Non-LOF probands have no LAEs during the follow-up period. C.
13 14 15 16 17	 cohort-I A. LAE-free survival during the follow-up period in BrS probands carrying <i>SCN5A</i> rare variations (All <i>SCN5A</i>; n=60) and <i>SCN5A</i>(-) (n=355). Confidence bands indicate 95% pointwise CI. B. Time course of BrS patients with LOF-<i>SCN5A</i> mutations (LOF, n=45), and Non-LOF (n=15). Non-LOF probands have no LAEs during the follow-up period. C. LAE-free survival of LOF (n=45) vs Non-LOF plus <i>SCN5A</i>(-) (n=370). The dissociation
13 14 15 16 17 18	 cohort-I A. LAE-free survival during the follow-up period in BrS probands carrying <i>SCN5A</i> rare variations (All <i>SCN5A</i>; n=60) and <i>SCN5A</i>(-) (n=355). Confidence bands indicate 95% pointwise CI. B. Time course of BrS patients with LOF-<i>SCN5A</i> mutations (LOF, n=45), and Non-LOF (n=15). Non-LOF probands have no LAEs during the follow-up period. C. LAE-free survival of LOF (n=45) vs Non-LOF plus <i>SCN5A</i>(-) (n=370). The dissociation between two survival curves is more pronounced than that in panel A.

B. Location of 55 SCN5A variants of LOF and Non-LOF are shown with topological

1 Figure 5. Kaplan-Meier analysis of lifetime LAE-free survival in BrS cohort-II with

2 or without rare variants of BrS-associated genes

- 3 LAE-free survival of BrS cohort-II probands were comparable regardless of the presence
- 4 of rare coding variants of 22 non-*SCN5A* BrS-associated genes with two different minor
- 5 allele frequencies (MAF) (A:<1%, B:<0.3%).
- 6