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Abstract: Laos Pavement Management System (PMS) manages 7700 km of National Roads (NRs) and
estimates their Maintenance and Rehabilitation (MR) needs based on assessing pavement roughness
conditions. This research aims to develop two International Roughness Index (IRI) models for
Double Bituminous Surface Treatment (DBST) and Asphalt Concrete (AC) pavement sections using
Adaptive Neuro-Fuzzy Inference System (ANFIS). A historical database of 14 years was employed
for predicting the IRI as a function of pavement age and Cumulative Equivalent Single-Axle Load
(CESAL). The optimum ANFIS structure comprises a hybrid learning algorithm with six fuzzy rules
of generalized bell curve membership functions (Gbellmf) for the DBST model and nine fuzzy rules
of two-sided Gaussian membership functions (Gauss2mf) for the AC model. Both models used
the constant membership function for the output variable (IRI). The statistical evaluation results
revealed that both ANFIS models (DBST and AC) have a good prediction capacity with high values
of coefficient of determination (R2 0.93 and 0.88) and low values of Mean Absolute Error (MAE
0.28 and 0.27) and Root Mean Squared Percentage Error (RMSPE 7.03 and 9.98). In addition, results
revealed that ANFIS models yielded higher prediction accuracy than Multiple Linear Regression
(MLR) models previously developed under the same conditions.

Keywords: IRI; PMS; ANFIS

1. Introduction

The American Association of State Highway and Transportation Officials (AASHTO)
defines a PMS as “a set of tools or methods that assist decision-makers in finding optimum
strategies for providing, evaluating, and maintaining pavements in a serviceable condition
over a period of time” [1]. PMS helps road authorities to optimize available funds since
the total cost of pavement MR activities is usually higher than the designated budget [2].
Pavement performance prediction models are an essential component in any PMS. Suc-
cessful implementation of a PMS requires accurate models for optimizing MR strategies
throughout the pavement service time. Laos’s road maintenance strategy is mainly based
on assessing pavement roughness in terms of the IRI [3].

The IRI is defined as “the accumulated suspension vertical motion divided by the dis-
tance traveled as obtained from a mathematical model of a simulated quarter-car traversing
a measured profile at 80 km/h” [4]. IRI is a widely employed index for assessing road
users’ comfort and safety [5,6]. IRI is generally expressed in meters per kilometer or inches
per mile [7]. At present, due to its stability over time and transferability over the world,
IRI is utilized by many highway agencies worldwide as a sound and practical index for
measuring ride quality and enables the identification of MR activities [8,9].

Default Highway Development and Management (HDM-4) pavement deterioration
models are currently used in Laos PMS to predict the IRI. HDM-4 models have been
developed from the results of a large number of field experiments conducted in several
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developed and developing countries. However, some factors could not be presented, either
because they were not measured, would have made the model’s input too complex, or their
effects could not be determined within the ranges observed [10–12].

Consequently, if the HDM-4 models’ equations were used without calibration, they
would predict pavement conditions that may not accurately match those observed on
specific road sections [13,14]. For these reasons, calibration of the HDM-4 models to
local conditions is both desirable and rational [12,15]. The calibration of the HDM-4 IRI
models requires detailed and precise distress data, for instance: initial IRI (IRI0) value,
environmental coefficient, adjusted structural number (ASN), cracking area (CR), rutting
depth (RUT), and the number of potholes per km [15–17]. Such data records are not fully
available for Laos yet, making it difficult to calibrate the HDM-4 IRI prediction models for
local conditions.

2. Literature Review

Modeling via traditional regression techniques is somewhat complex and requires
predefinition of the form of the regression equation. So recently, various researchers have
successfully employed machine learning (ML) techniques in modeling pavement rough-
ness and have shown satisfactory results [18–30]. ML tools are appropriate for predicting,
filling, and classifying nonlinear data series. Choi et al. [23] developed an Artificial Neural
Network (ANN) model to predict the IRI for asphalt concrete (AC) pavement sections
as a function of asphalt concrete thickness (ACTH), percent passing No. 200 sieve (P200),
asphalt content (ASC), structural number (SN), and CESAL. Terzi [31] suggested the ANFIS
approach for predicting the IRI of flexible pavement using the Long-Term Pavement Perfor-
mance (LTPP) database. Lin et al. [19] analyzed pavement distress and IRI’s relationship
using a back-propagation neural network.

Chou and Pellinen [25] employed the Indian PMS database to develop IRI models
using ANN for different pavement types such as Portland cement concrete (PCC), asphalt
overlay on concrete pavement, and Hot-Mix Asphalt (HMA). Nguyen et al. [22] proposed a
new hybrid approach between ANFIS and various metaheuristic optimizations such as the
genetic algorithm (GA), particle swarm optimization (PSO), and the firefly algorithm (FA).
The proposed approach was used to develop several IRI hybrid models, namely GA-based
ANGIS (GANFIS), PSO-based ANFIS (PSOANFIS), and FA-based ANFIS (FAANFIS). In
the north of Vietnam, 2811 samples as a case study were used to validate these models.
Mazari and Rodriguez [28] used a hybrid technique between ANN and Gene Expression
Programming (GEP) to predict the IRI as a function of pavement age, CESAL, and SN.
Table 1 sums up some previous studies’ results that applied different ML techniques in
modeling IRI.

The literature review of the existing IRI prediction models revealed that ANFIS models
had a good performance in determining and predicting pavement roughness conditions
over the years [22,31]. Thus, the focus of this study is to develop domestic IRI deterioration
models using the ANFIS approach for various pavement categories to cover the influence of
Laos’s local conditions, which would have direct implementation without any calibration
factors. Eventually, the goodness of fit of the developed ANFIS models will be compared
with the MLR models previously developed under the same conditions.
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Table 1. Summary of some literature IRI prediction models.

Authors, Year Pavement Type Source of Data * Modeling * Independent
Variables * Model Performance

Terzi, 2013 [31] Flexible
Pavement

LTPP-IMS
Database ANFIS AGE, SN, CESAL R2 = 0.97

Nguyen, 2019
[22]

AC
pavement

2811 Samples as a
case study in the
North of Vietnam

PSOANFIS Road Length,
Analysis Area,

Summed Cracks,
Maximum Depth of

Rut,
Average Depth of Rut

R = 0.888, RMSE = 0.145

GANFIS R = 0.872, RMSE = 0.155

FAANFIS R = 0.849, RMSE = 0.170

ANN R = 0.804, RMSE = 0.186

Chou, 2005
[25]

PCC

Indian PMS
database

ANN
IRI0, AGE, FI, AP,

F/T, ESAL

R2 = 0.98, RMSE = 0.074,
N = 90

Asphalt overlay on
concrete pavement

R2 = 0.88, RMSE = 0.124,
N = 1080

HMA R2 = 0.90, RMSE = 0.121,
N = 640

Ziari, 2015
[27]

AC over
granular base LTPP

database

ANN AGE, AAP, AAT,
AAFI, AADT,

AADTT, ESAL, STH,
PTH

R2 = 0.90, RMSE = 0.09,
MAPE = 5.54, N = 205

GMDH R2 = 0.63, RMSE = 0.405,
MAPE = 28.62, N = 205

Mazari, 2016
[28]

AC over unbound
granular layers

LTPP
database

Hybrid
GEP-ANN SN, AGE, CESAL R = 0.99, RMSE = 0.049,

N = 95

Georgiou, 2018
[30]

AC
pavement

Direct field
measurement, Greece

ANN
CR, RUT, PH

R2 = 0.96, MAE = 6.9%,
RMSPE = 8.3%

SVM R2 = 0.93, MAE = 7.7%,
RMSPE = 8.9%

Kaloop, 2020
[21]

JPCP LTPP GPS-3
database

ANN
IRI0, FI, TFAULT

r = 0.80, MAE = 0.37,
RMSE = 0.49, N = 184

WOPELM r = 0.92, MAE = 0.23,
RMSE = 0.24, N = 184

* Abbreviation definitions: AGE: Pavement age since the last overlay; PH—Potholes; TFAULT—Total Joint Fault-
ing; ESAL—Equivalent Single-Axle Load; AADT—Average Annual Daily Traffic; AADTT—Average Annual
Daily Truck Traffic; AP—Annual Precipitation; AAP—Annual Average Precipitation; FI—Freezing Index; AAFI—
Annual Average Freezing Index; F/T—Number of Freeze/Thaw Cycles; AAT—Annual Average Temperature;
STH—Surface Thickness; PTH—Pavement Thickness; WOPELM—Wavelet Optimally Pruned Extreme Learn-
ing Machine; SVM—Support Vector Machine; GMDH—Group Method of Data Handling; IMS—Information
Management System.

3. Database and Method
3.1. Area of Study

Road pavement structure is comprised of different layers with various materials. As
the material used in the surface layer could influence the progression of the IRI, Laos paved
roads are assorted based on their structural properties into three families: DBST, AC, and
Cement Concrete (CC) [32]. Laos NRs represent 13.22% of the total road network in Laos,
with a total length of 7700 km. The bulk of the NRs sections is paved (85.84%), while gravel
and earth sections represent only 10.70% and 3.46%, respectively [33]. Figure 1 illustrates
Laos NRs classification based on construction materials.
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Figure 1. Laos NRs classification based on construction materials [33].

3.2. Model Variables’ Description

The current study utilized the same database of the MLR models developed previ-
ously by Gharieb and Nishikawa [32]. MLR models were developed based on the Laos
PMS database for the National Road Network (NRN). The original database included
measurements on 214, 36, and 4 pavement sections covered DBST, AC, and CC paved
NRN, respectively, over 14 years, starting from 2001 until 2015. After data screening, the
valid number of sections and observations decreased. As illustrated in Figure 2, the valid
observations for DBST pavement sections are only 27%. This percentage increased to be
66% for AC pavement sections and decreased to be 18% for CC pavement sections.
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Figure 2. Percentage of valid and invalid observations for (a) DBST, (b) AC, and (c) CC pavement
sections.

The valid number of observations for the CC surface type is only six, which is inade-
quate for developing a reliable model. Therefore, the analysis was limited to DBST and AC
surface types. The valid observations include 269 observations from 83 sections covering
1849.26 km of DBST NRs and 122 observations from 29 sections covering 718.55 km of AC
NRs [32]. Gharieb and Nishikawa [32] reported data gathering, processing, and variables’
calculation efforts. MLR models were defined as shown in Equations (1) and (2).

IRIDBST = 3.006 + 0.259 age + 0.038 CESAL (1)

IRIAC = 1.782 + 0.203 age + 0.123 YESAL (2)

where:

• IRIDBST is the predicted value of the IRI for DBST pavement sections (m/km);
• IRIAC is the predicted value of the IRI for AC pavement sections (m/km);
• Age is the pavement age since the last overlay to the day of the IRI reading (years);
• CESAL is the cumulative number of equivalent single axle loads that pavement

experienced from the last overlay to the day of the IRI reading (104 axles/lane);
• YESAL is the average CESAL (CESAL/Age) that pavement experienced from the last

overlay to the day of the IRI reading (104 axles/lane).

Pavement Age and traffic loads (CESAL or YESAL) are used as input variables for
predicting the IRI value. It was noticed, contrary to what is expected, that the YESAL was
used in the IRIAC model (Equation (2)) instead of CESAL, as was performed in the IRIDBST
model (Equation (1)) to avoid multicollinearity among independent variables [32].

3.3. ANFIS Approach

ANFIS is a hybrid information processing model which combines Neural Networks
(NNs) and fuzzy logic [34,35]. Using learning procedures, Jang [36] suggested that ANFIS
construct an input–output mapping based on the initial given fuzzy system and available
input–output data pairs. Fuzzy systems and NNs are amongst the most critical soft com-
puting methods. Fuzzy inference systems (FIS) provide a robust mechanism for knowledge
representation when expert knowledge is available but does not have automated learning
capabilities. NNs, on the other hand, have a robust mechanism of learning from sample data
when expert knowledge is restricted but do not have knowledge representation capability.

Neuro–fuzzy hybrid systems merge the benefits of fuzzy systems for dealing with
the explicit knowledge that can be defined and understood and NNs for dealing with
implicit knowledge acquired by learning. Therefore, the combination of fuzzy systems
and NNs addresses the constraints of both techniques and presents an outstanding data
mining opportunity to solve critical and complex problems. ANFIS can accomplish a highly
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nonlinear mapping and is superior to common linear methods in creating nonlinear time
series [37].

NNs are used to tune fuzzy systems’ membership functions (MFs), even for com-
plicated systems. Communicating the weight of the NNs using fuzzy rules provides
deep insight into the NNs, thus it is easier to design better NNs. The nonlinear MF of
the neuro–fuzzy approach reduces the rule-based and saved memories, hence reducing
implementation cost.

3.3.1. Fuzzy Inference Systems

Zadeh [38] suggested a fuzzy set theory in which the set boundaries were not precisely
defined, but in fact, boundaries were gradational. Such a set is distinguished by a continu-
ance of MF grades, which assigns to each object a grade of membership ranging between
zero and one [37]. In classical logic, the membership value of any member is equal to 1 if it
is included in the set; if not, that value is equal to 0. These kinds of sets are called “crisp
sets”. Conversely, the members of a fuzzy set can take the membership values ranging
between 0 and 1 in fuzzy logic [39].

In the hybrid approach, the NNs are trained by data while fuzzy logic is based
on linguistic rules called IF–THEN rule-based system, given by IF antecedent, THEN
consequent [40]. IF–THEN rules are incorporated along with trained data to form the
so-called FIS. The implementation of a FIS considers the following steps [41]:

• Fuzzification requires converting crisp or classical data into fuzzy data or MFs;
• The fuzzy inference process connects MFs with fuzzy rules to derive the fuzzy output;
• Defuzzification which calculates each associated output.

The simple FIS flowchart is illustrated in Figure 3.
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Three types of FIS have been widely employed in different applications: Sugeno,
Tsukamoto, and Mamdani fuzzy models. The differences between the three FIS types result
from the fuzzy rules that have been applied, and thus their aggregation and defuzzification
procedures vary accordingly. The Sugeno system is considered more compact and com-
putationally effective than others [43]. The consequence parameter in Sugeno FIS is either
a linear equation, called first-order Sugeno FIS, or constant-coefficient, called zero-order
Sugeno FIS [37].

The Sugeno model is simpler to identify because it requires fewer rules, and its
parameters can be computed from numerical data using optimization methods such as
least-square algorithms [44]. The advantages of the Sugeno method are that it works
well with linear techniques and with optimization and adaptive techniques; it ensures
continuity of the output surface, and it is computationally effective and quite convenient
for mathematical analysis [45].
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3.3.2. Architecture of ANFIS Model

ANFIS model structure is composed of both nodes and rules [46]. Nodes function as
MFs, while rules model the relationships between inputs and outputs. In developing an
ANFIS model, eight different types of MFs could be considered. These types are: triangular
MF (Trimf), trapezoidal MF (Trapmf), Gbellmf, Gaussian curve MF (Gaussmf), Gauss2mf,
pi-shaped curve MF (Pimf), the composed difference between two sigmoidal MFs (Dsigmf),
and the product of two sigmoid MFs (Psigmf) [47].

ANFIS requires feature extraction rules applied to the input-target data stocked in a
fuzzy-based rule system (i.e., ‘the IF-THEN’ rule). The rules are defined based on their
antecedents (If part) and consequents (Then part). As shown in Figure 4a, two fuzzy
IF-THEN rules are considered to present the ANFIS architecture based on a first-order
Sugeno model. Two fuzzy IF-THEN rules are defined as follows:

Rule (1): If “x” is A1 and “y” is B1, Then: f 1 = p1 × x + q1 × y + r1;

Rule (2): If “x” is A2 and “y” is B2, Then: f 2 = p2 × x + q2 × y + r2.

where:

• x and y are the inputs;
• Ai and Bi are fuzzy sets;
• fi is the output within the fuzzy region specified by the fuzzy rule;
• pi, qi, and ri are the design parameters that are determined during the training process.
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ANFIS model consists of five layers or phases comprised of (1) fuzzification, (2) the
rules phase, (3) the normalization phase, (4) the defuzzification phase, and (5) the overall
output phase (Figure 4b). A brief description of the role of these layers is described in detail
following [37].

Layer 1 is the fuzzification layer in which all nodes are adaptive. The outputs of layer
1 are inputs MFs, which are given by the following equations:

O1,i = µAi (x), i = 1, 2,
O1,i = µBi−2 (y), i = 3, 4,

(3)

where x and y are the crisp inputs to node i, Ai and Bi are the linguistic labels characterized
by the proper MFs µA and µB, respectively.

In layer 2, nodes are fixed nodes labeled by π, indicating that they perform as a simple
multiplier. The firing strength of the rules (ωi) is determined as given in Equation (4), for
which the resulting values of the previous layer are multiplied, giving adjusted nodes. Each
node represents the firing strength of each rule.

O2,i = ωi = µAi (x) × µBi (y), i = 1, 2. (4)

In layer 3, nodes are also fixed nodes labeled by N to indicate that they play a nor-
malization role in the firing strength from the previous layer. This layer output can be
computed as follows:

O3,i = vi =
ωi

ω1 + ω2
, i = 1, 2. (5)

In layer 4, nodes are adaptive. The result of the previous layer is multiplied by multiple
linear equations, which represent the rule systems of the Sugeno fuzzy model. This layer
output is given by:

O4,i = vi fi = vi (pi x + qi y + ri), i = 1, 2. (6)

where vi is the output of layer three and {pi, qi, ri} are the parameter set. Parameters in this
layer are referred to as consequent parameters.

Layer 5 is the output layer in which the single node computes the overall output by
summing all the rules from the previous layer. Accordingly, the defuzzification process
transforms each rule’s fuzzy results into a crisp output in this layer. The overall output is
calculated as in Equation (7).

O5,i = ∑
i

vi fi =
∑i ωi fi

∑i ωi
(7)

3.3.3. Hybrid Learning Algorithm

MFs parameters are adjusted in learning cycles that can employ either a hybrid
or a back-propagation learning algorithm. The hybrid algorithm incorporates the back-
propagation and Least Square Error (LSE) [48]. It uses a two-pass learning cycle, a forward
and a backward pass. The LSE algorithm adjusts the consequent parameters in fuzzy rules
in the forward pass.

In the backward pass, the premise parameters of the rules are adjusted using a back-
propagation algorithm (usually Gradient Descent) [49]. Rule complexity depends on the
number of input variables and the number of values in term sets. It has been proven that
this hybrid algorithm is powerfully effective in training ANFIS [37].
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3.4. Model Assessment Criteria

Model results will be evaluated using many statistical checks. R2 will assess the rela-
tionship between the predicted and observed values. R2 is computed using the following
equation [50]:

R2 = 1 −
∑n

i=1

(
IRIi,act − IRIi,pred

)2

∑n
i=1(IRIi,act − IRIact)2

(8)

In Equation (8), n is the number of samples, IRIact and IRIpred are the actual and the
predicted IRI value, respectively, IRIact is the average value of the actual IRI. The range of
R2 values 0–1, with 1 being the highest precise relationship possible.

Other assured statistical checks, such as MAE and the RMSPE, were also utilized to
assess the accuracy of the proposed model. MAE and RMSPE mathematical expressions
are denoted by Equations (9) and (10) as follows [50]:

MAE =
1
n

n

∑
i=1

∣∣∣IRIi,act − IRIi,pred

∣∣∣ (9)

RMSPE =

√√√√ 1
n

n

∑
i=1

( IRIi,act − IRIi,pred

IRIi,act

)2

(10)

A good prediction model should have a high R2 and low MAE and RMSPE. The
percentage relative error (RE%) was also utilized to evaluate the accuracy of the developed
model. Equation (11) shows the mathematical expression for the calculation of RE% [47].

RE% =

( IRIi,act − IRIi,pred

IRIi,act

)
× 100% (11)

4. ANFIS Model Development

ANFIS approach utilized the Laos PMS database to develop an ANFIS model for each
type of pavement. Data points were randomly divided into training (70%), checking (15%),
and testing (15%) datasets. The collected data were statistically analyzed to check the
consistency and reliability. The descriptive statistics of variables used for training, checking,
testing, and all datasets in both DBST and AC models are summarized in Table 2.

Table 2. Descriptive statistics of the variables used for IRI modeling.

Variable
Training (70%) Checking (15%) Test (15%) All Data

Min Max Mean Std Min Max Mean Std Min Max Mean Std Min Max Mean Std

DBST Model

Age 0.10 13.39 5.50 3.76 0.11 12.53 7.25 3.60 1.58 14.10 7.27 3.22 0.10 14.10 6.03 3.73
CESAL 0.02 99.26 12.44 15.71 0.07 56.25 12.79 13.52 0.25 87.07 17.75 22.03 0.02 99.26 13.28 16.55

IRI 2.28 8.83 4.92 1.42 2.20 8.12 5.43 1.46 3.49 8.91 5.53 1.39 2.20 8.91 5.09 1.44

AC Model

Age 0.09 13.08 5.81 3.37 0.09 11.76 6.09 3.69 0.18 11.53 6.44 3.66 0.09 13.08 5.95 3.44
YESAL 0.03 13.15 4.24 3.00 0.15 15.13 4.87 3.65 0.61 20.53 4.85 4.55 0.03 20.53 4.42 3.34

IRI 1.47 5.46 3.47 0.99 1.90 5.17 3.71 1.06 1.87 5.31 3.67 1.12 1.47 5.46 3.54 1.02

The database covers a wide range of pavement conditions under different traffic
loading characteristics, which raises confidence in the developed models. The training data
are used to fit the model, while the checking data are used to avoid overfitting. The test
data are used to compute the quality of the prediction estimates.

ANFIS models were developed using the MATLAB Fuzzy Logic Toolbox (FLT, R2020b)
from MathWorks. This tool helps construct and evaluate fuzzy systems using a graphical
user interface. It consists of an MF editor, a FIS editor, the rule editor, the fuzzy inference
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viewer, and the output surface viewer. The MF editor displays and edits the MFs associated
with all input and output variables. The FIS editor displays general information about a FIS.
The rule editor allows the user to construct the rule statements. The rule viewer enables
users to interpret the entire fuzzy inference process at once [51].

There is no standard method for selecting the appropriate ANFIS structure, so training
the ANFIS model with various types and numbers of MFs, different rules, and epoch
numbers, and then selecting the structure that achieves minimum RMSE was employed [22].
As an initial guess, two MFs were used for each input (2–2). Then, a trial network with
varying types of MFs (8 types) was tested to compare their abilities in modeling the IRI.
Table 3 presents the resulting error (RMSE) of different network architectures using various
numbers and types of MFs for training, checking, testing, and overall datasets of DBST and
AC models, respectively.

Table 3. Performance of different models under various MF numbers and types for DBST and AC
pavement sections.

DBST Model AC Model

MF No.
MF

Type
Root Mean Squared Error (RMSE)

MF No.
MF

Type
Root Mean Squared Error (RMSE)

Training Checking Testing Overall Training Checking Testing Overall

2–2

Trimf 0.440 0.541 0.448 0.456

2–2

Trimf 0.382 0.237 0.405 0.364
Trapmf 0.518 0.671 0.557 0.546 Trapmf 0.404 0.228 0.468 0.387
Gbellmf 0.480 0.607 0.478 0.498 Gbellmf 0.399 0.230 0.466 0.384
Gaussmf 0.442 0.539 0.432 0.455 Gaussmf 0.396 0.227 0.433 0.377
Gauss2mf 0.436 0.577 0.445 0.458 Gauss2mf 0.388 0.235 0.467 0.377

Pimf 0.664 0.804 0.673 0.686 Pimf 0.447 0.279 0.498 0.430
Dsigmf 0.627 0.757 0.575 0.638 Dsigmf 0.418 0.246 0.480 0.402
Psigmf 0.627 0.757 5.696 1.400 Psigmf 0.425 0.246 0.485 0.407

3–3

Trimf 0.405 0.502 0.408 0.420

3–3 *

Trimf 0.375 0.224 0.578 0.383
Trapmf 0.400 0.498 1.365 0.558 Trapmf 0.439 0.442 0.678 0.474
Gbellmf 0.458 0.590 0.524 0.487 Gbellmf 0.399 0.320 0.471 0.397
Gaussmf 0.367 0.477 0.355 0.382 Gaussmf 0.382 0.265 0.432 0.372
Gauss2mf 0.408 0.551 0.410 0.430 Gauss2mf ** 0.355 0.264 0.439 0.354

Pimf 0.463 0.601 0.483 0.486 Pimf 0.472 0.472 0.705 0.507
Dsigmf 0.428 0.556 0.641 0.479 Dsigmf 0.446 0.430 0.550 0.459
Psigmf 0.429 0.558 0.709 0.490 Psigmf 0.446 0.430 0.550 0.459

2–3

Trimf 0.438 0.530 0.434 0.451

2–3

Trimf 0.378 0.232 0.584 0.387
Trapmf 0.497 0.606 0.517 0.516 Trapmf 0.447 0.243 0.570 0.435
Gbellmf 0.495 0.607 0.521 0.516 Gbellmf 0.410 0.230 0.422 0.385
Gaussmf 0.501 0.599 0.502 0.516 Gaussmf 0.396 0.225 0.419 0.374
Gauss2mf 0.631 0.736 0.646 0.649 Gauss2mf 0.400 0.238 0.414 0.378

Pimf 0.620 0.756 0.658 0.646 Pimf 0.441 0.247 0.572 0.432
Dsigmf 0.594 0.711 0.539 0.603 Dsigmf 0.428 0.244 0.418 0.399
Psigmf 0.589 0.709 0.542 0.600 Psigmf 0.426 0.244 0.418 0.398

3–2 *

Trimf 0.380 0.488 0.391 0.397

3–2

Trimf 0.384 0.226 0.383 0.361
Trapmf 0.469 0.575 0.523 0.492 Trapmf 0.370 0.271 0.474 0.371

Gbellmf ** 0.357 0.449 0.363 0.372 Gbellmf 0.405 0.245 0.459 0.389
Gaussmf 0.382 0.493 0.359 0.395 Gaussmf 0.398 0.232 0.417 0.376
Gauss2mf 0.412 0.488 0.422 0.425 Gauss2mf 0.389 0.245 0.456 0.378

Pimf 0.526 0.685 0.558 0.554 Pimf 0.441 0.308 0.545 0.437
Dsigmf 0.458 0.611 0.490 0.485 Dsigmf 0.371 0.257 0.444 0.365
Psigmf 0.465 0.625 0.499 0.494 Psigmf 0.367 0.258 0.440 0.362

4–4

Trimf 0.384 0.446 0.385 0.394

4–4

Trimf 0.362 0.263 0.582 0.379
Trapmf 0.463 0.500 0.912 0.535 Trapmf 0.363 0.248 0.627 0.385
Gbellmf 0.415 0.466 0.532 0.440 Gbellmf 0.350 0.310 0.457 0.360
Gaussmf 0.397 0.543 0.451 0.427 Gaussmf 0.348 0.386 0.439 0.367
Gauss2mf 0.459 0.513 7.188 1.468 Gauss2mf 0.357 0.246 0.658 0.385

Pimf 0.495 0.555 1.219 0.611 Pimf 0.362 0.254 0.629 0.385
Dsigmf 0.456 0.509 4.497 1.065 Dsigmf 0.357 0.245 0.763 0.400
Psigmf 0.456 0.509 4.497 1.065 Psigmf 0.357 0.245 0.863 0.415

5–5

Trimf 0.359 0.419 0.632 0.408

5–5

Trimf 0.328 0.278 0.887 0.403
Trapmf 0.384 0.464 0.754 0.451 Trapmf 0.321 0.344 0.908 0.411
Gbellmf 0.366 0.425 12.739 2.215 Gbellmf 0.302 0.300 0.924 0.393
Gaussmf 0.360 0.421 4.438 0.976 Gaussmf 0.305 0.278 1.000 0.403
Gauss2mf 0.385 0.449 0.738 0.447 Gauss2mf 0.320 0.412 1.433 0.498

Pimf 0.400 0.466 0.789 0.467 Pimf 0.335 0.548 0.630 0.410
Dsigmf 0.382 0.445 0.514 0.411 Dsigmf 0.318 0.379 1.043 0.433
Psigmf 0.382 0.445 0.514 0.411 Psigmf 0.318 0.379 1.043 0.433

* The optimum number of MFs, ** The optimum MF type.
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The optimum MF numbers were (3–2) for the DBST model and (3–3) for the AC model,
which gave the lowest modeling errors in all the datasets. In modeling the IRI for DBST,
the Gbellmf gave the lowest errors in all the datasets other than MF types. Meanwhile, for
AC, the Gauss2mf showed the lowest modeling errors for training, checking, testing, and
overall datasets. After determining the optimum number and type of MF, Figure 5 displays
the architecture of the proposed ANFIS models for the DBST and the AC pavement sections.
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(a) 

Figure 5. ANFIS model structure for the (a) DBST and (b) AC pavement sections.

The selection of the optimum epoch number is a very significant factor in ANFIS
modeling. Increasing the epoch number does not always mean enhancing the performance
of ANFIS modeling. Usually, the modeling errors decrease by increasing the epoch number
to a point, and then the errors increase afterward. Identifying this point is a necessity in
ANFIS modeling.

Figure 6 illustrates the error performance versus epochs to check the progress while
training and checking the proposed model. Epochs are the number of learning cycles where
rules were adjusted to minimize the difference between the measured and the predicted IRI.



Coatings 2022, 12, 380 12 of 25

Coatings 2022, 12, x FOR PEER REVIEW 12 of 27 
 

 

 

(b) 

Figure 5. ANFIS model structure for the (a) DBST and (b) AC pavement sections. 

The selection of the optimum epoch number is a very significant factor in ANFIS 

modeling. Increasing the epoch number does not always mean enhancing the perfor-

mance of ANFIS modeling. Usually, the modeling errors decrease by increasing the epoch 

number to a point, and then the errors increase afterward. Identifying this point is a ne-

cessity in ANFIS modeling. 

Figure 6 illustrates the error performance versus epochs to check the progress while 

training and checking the proposed model. Epochs are the number of learning cycles 

where rules were adjusted to minimize the difference between the measured and the pre-

dicted IRI. 

 

(a) 

Coatings 2022, 12, x FOR PEER REVIEW 13 of 27 
 

 

 

(b) 

Figure 6. ANFIS error performance while training and checking for the (a) DBST model and (b) AC 

model. 

The error function in terms of RMSE between the measured and predicted IRI values 

were monitored during the training process. When the network began to overfit the data, 

the error on the checking set began to increase, so the training was stopped at the optimum 

number of epochs at the minimum of the checking set error. The results revealed that the 

RMSE decreases with the training epochs. For DBST pavement sections, the best training 

performance of the model is gained at epoch 335, where the checking error is equal to 

0.493. At the same time, the best training performance of the AC model is achieved at 

epoch 250, where the checking error is equal to 0.264. These epoch numbers give the low-

est modeling errors and avoid the model’s overfitting problem. 

The initial and final Gbellmf plots for input variables (AGE and CESAL) for the DBST 

model are illustrated in Figures 7 and 8. As shown in Figure 7, there are three MFs for the 

AGE input and two MFs for the CESAL input. After both input models have been trained 

using the ANFIS approach, the final MFs, as shown in Figure 8, provide better interpret-

ability than the initial one. 
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Figure 6. ANFIS error performance while training and checking for the (a) DBST model and
(b) AC model.

The error function in terms of RMSE between the measured and predicted IRI values
were monitored during the training process. When the network began to overfit the data,
the error on the checking set began to increase, so the training was stopped at the optimum
number of epochs at the minimum of the checking set error. The results revealed that the
RMSE decreases with the training epochs. For DBST pavement sections, the best training
performance of the model is gained at epoch 335, where the checking error is equal to 0.493.
At the same time, the best training performance of the AC model is achieved at epoch 250,
where the checking error is equal to 0.264. These epoch numbers give the lowest modeling
errors and avoid the model’s overfitting problem.

The initial and final Gbellmf plots for input variables (AGE and CESAL) for the DBST
model are illustrated in Figures 7 and 8. As shown in Figure 7, there are three MFs for
the AGE input and two MFs for the CESAL input. After both input models have been
trained using the ANFIS approach, the final MFs, as shown in Figure 8, provide better
interpretability than the initial one.

The initial and final Gauss2mf plots for input variables (AGE and YESAL) for the AC
model are also shown in Figures 9 and 10. There are three MFs for both inputs (AGE and
YESAL). As shown in Figure 10, the final MFs provide better interpretation than the initial
one (Figure 9) after both input models have been trained using the ANFIS methodology.
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The comparison between the measured and the predicted IRI values for training,
checking, and testing data sets in both DBST and AC models developed are illustrated in
Figures 11 and 12. The modeling outputs show an excellent performance where the two
lines (ANFIS IRI and Measured IRI) are almost parallel with some minor differences in
both models.
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Figure 11. Comparison between the measured and the modeled IRI values of the DBST model for the
(a) training, (b) checking, and (c) testing data sets.
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Figure 12. Distribution of the measured and the predicted IRI values of the AC model for the
(a) training, (b) checking, and (c) testing data sets.

Figure 13 demonstrates the assigned rules in the optimum ANFIS model structure for
modeling DBST and AC, respectively. In Figure 13a, the results of the optimum ANFIS
structure for the DBST model are illustrated in the rule viewer. The first column of the rule
viewer represents the change rate of pavement age, and the second column represents the
change rate of CESAL. The third column is for output, which represents the changes of IRI.
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The input values in the rule viewer can be set manually in the fuzzy logic toolbox to check
rule set is working according to requirements and system accuracy. The input values (6.75,
49.6) are entered related to fuzzy sets, and decision rules are applied. The fuzzy result of the
output variable (IRI) is 7.00, which is the highest chance of pavement roughness condition.
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In Figure 13b, the results of the optimum ANFIS structure for the AC model are shown
in the rule viewer. The first column represents pavement age, which means how much
pavement age is changed, and its value is set by 6.59. The second column represents YESAL,
which indicates how much traffic loads are changed within defined pavement age, and its
value is set by 7.58. The third column represents the output value of IRI (4.07), which is
evaluated by input values and according to rule sets.

The full descriptions of the final ANFIS models in modeling the IRI for DBST and AC
pavement sections are listed in Table 4. In DBST modeling, the optimum ANFIS structure
consists of three Gbellmf for AGE input and two Gbellmf for CESAL input, and six rules,
and being trained for 335 epochs. While, for AC modeling, the optimum ANFIS structure
consists of three Gauss2mf for both AGE and YESAL, and nine rules, and being trained
for 250 epochs to prevent overfitting. The constant MF type has been used for the output
variable (IRI) for both DBST and AC models.
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Table 4. The full description of the optimum ANFIS models for DBST and AC pavement sections.

Description DBST AC

No. of Inputs 2 2
No. of Outputs 1 1
No. of Training dataset 189 86
No. of Checking dataset 40 18
No. of Testing dataset 40 18
Input MF No. 3 (AGE) 2 (CESAL) 3 (AGE) 3 (YESAL)
MF Type—Inputs Gbellmf Gauss2mf
MF Type—Outputs Constant Constant
Rules No. 6 9
Optimum Epoch No. 335 250
Learning Algorism Hybrid Hybrid
RMSE—Training Data 0.357 0.355
RMSE—Checking Data 0.449 0.206
RMSE—Testing Data 0.363 0.320
RMSE—Overall Data 0.373 0.357

5. Result Analysis

Once each network was developed using a training dataset and checked, it was tested
using the test dataset to ensure the good generalization ability of the trained network.
Similar to the checking dataset, a test dataset is never used for training the network.
Figures 14 and 15 show scatter plots of the measured and the predicted IRI values of DBST
and AC pavement sections, respectively, using the ANFIS model for training, checking,
testing, and all datasets.
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(a) training, (b) checking, (c) testing, and (d) all data.

The figures showed a good distribution of data points around the equality line, indi-
cating a highly accurate prediction of the developed models. The equality line is the target
of the training activity. Moreover, the R2, MAE, and RMSPE were calculated for training,
checking, testing, and all datasets in DBST and AC models, as shown in Table 5.

Table 5. Performance of the DBST and the AC models of training, checking, testing, and all data.

Parameter
DBST Model AC Model

Training Checking Testing All Training Checking Testing All

n 189 40 40 269 86 18 18 122
R2 0.937 0.908 0.937 0.932 0.871 0.936 0.841 0.876

MAE 0.269 0.335 0.298 0.283 0.267 0.264 0.439 0.266
RMSPE 8.163 10.722 6.861 8.421 12.730 9.039 13.485 12.374

The modeling results show that the developed models are very efficient in modeling
the IRI. The values of R2, MSA, and RMSPE for the DBST model were equal to 0.932, 0.283,
and 8.421, respectively, meanwhile they were equal to 0.876, 0.266, and 12.374 for the AC
model, considering all datasets. Larger values of R2 and lower values of MAE/RMSPE
suggest that a strong correlation exists between the predicted and the measured IRI values.

Besides statistical evaluation, the RE% test was also conducted to check and demon-
strate the accuracy of the proposed models. RE% plots are shown in Figure 16 for the
optimum ANFIS model developed for DBST and AC.
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Figure 16. The RE% for the training, checking, testing, and overall datasets of DBST and AC models.
(a) Training dataset for DBST Model, (b) Checking dataset for DBST Model, (c) Testing dataset for
DBST Model, (d) Overall dataset for DBST Model, (e) Training dataset for AC Model, (f) Checking
dataset for AC Model, (g) Checking dataset for AC Model, (h) Checking dataset for AC Model.
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The results for both DBST and AC models show that most residual errors of the training,
checking, testing, and overall datasets are mainly concentrated between +20% and −20%,
describing the capacity of the developed ANFIS models for predicting the target output.

Moreover, the max RE% results are under 30% and −50%, which indicates that, up
to a limited extent, the ANFIS models underestimated or overestimated the observed IRI
values. The positive RE% results mean that the models underestimated the targeted IRI
value (IRIpred < IRIact) by a maximum of 30%. In contrast, the negative RE% results indicate
that the models overestimated the targeted IRI value (IRIpred > IRIact) by a maximum of
50%. Overall, the statistical results reveal that both ANFIS models have a good prediction
ability, and their high R2 values show their success in predicting the IRI.

The influence of input parameters on the output in the training phase of the ANFIS
model is indicated by the 3D surface plots for DBST and AC models, as illustrated in
Figure 17. The variation of IRI is plotted against AGE and CESAL in the DBST model and
AGE and YESAL in the AC model.
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and (b) AC model.

The linearly increasing trend in Figure 17a can be observed for the IRI values with the
increase in input variables (AGE and CESAL). Furthermore, a similar result can be seen
in Figure 17b with a noticeable increase in the IRI values, especially with the increase in
pavement AGE of more than eight years and more than 10 × 104 axle/lane in YESAL. The
figure shows that the relationship between input variables (Age and CESAL or YESAL) and
IRI is nonlinear. The increasing tendency of the IRI with the inputs variables agrees with
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previous literature that IRI is directly related to pavement age and traffic loads. Therefore,
this indicates the excellent identification capability of the ANFIS models.

6. Comparative Study

The proposed ANFIS models were compared statistically with the previously devel-
oped MLR models [32] for both DBST and AC pavement sections. R2, MAE, and RMSPE
were calculated for the ANFIS and MLR models using training datasets. From the results
reported in Table 6, it can be observed that the ANFIS models for both BDST and AC pave-
ment sections present high R2 and low MAE and RMSPE values, although the goodness of
fit statistics of the MLR models for both DBST and AC pavement sections are less efficient
compared with those corresponding to ANFIS models.

Table 6. Comparison of the goodness of fit statistics for the ANFIS and the MLR models.

Parameter
DBST Model AC Model

ANFIS MLR ANFIS MLR

n 189 215 86 98
R2 0.937 0.892 0.871 0.847

MAE 0.269 0.336 0.267 0.314
RMSPE 8.163 9.626 12.730 12.186

7. Study Limitations and Recommendations for Future Work

Despite the significant influence of the environmental factors, subgrade soil properties,
pavement structural capacity, and IRI0 value on the progression of the unevenness [28,52–54],
an assessment of the effect of those factors on IRI progression was not possible since the
Laos PMS database does not have any information regarding those variables. So, the effect
of those variables on IRI progression will be further studied.

8. Conclusions

This study utilized the ANFIS approach to develop IRI prediction models for DBST
and AC pavement sections for Laos NRN. ANFIS approach is chosen mainly because of
its good capability of learning, constructing, and classifying the input-target data [22,31].
The findings presented in this paper are obtained from 269 and 122 observations covering
1850 km of DBST NRN and 718 km of AC NRN.

In DBST modeling, the optimum ANFIS structure consists of three Gbellmf for AGE
input and two Gbellmf for CESAL input, six fuzzy rules, and being trained for 335 epochs
where the checking error is equal to 0.493. While, for AC modeling, the optimum ANFIS
structure consists of three Gauss2mf for both AGE and YESAL, nine fuzzy rules, and being
trained for 250 epochs to prevent overfitting where the checking error is equal to 0.264. The
constant MF type has been used for the output variable (IRI) for both DBST and AC models.

Predicted IRI values affirmed the effectiveness of the proposed ANFIS models for
predicting the IRI as a function of pavement age and traffic loads (CESAL or YESAL). The
values of R2, MSA, and RMSPE for the DBST model were equal to 0.932, 0.283, and 8.421,
respectively, meanwhile they were equal to 0.876, 0.266, and 12.374 for the AC model,
considering all datasets. Furthermore, results revealed that ANFIS models yielded higher
prediction accuracy than MLR models previously developed under the same conditions.
Eventually, proposed ANFIS models can assist authorities in predicting pavement con-
ditions in the future and, as a result, estimating MR needs and setting priorities among
projects under restricted funds.
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