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Abstract

Mycetoma is a tropical disease caused by several fungi and bacteria present in the soil. Fun-

gal mycetoma and eumycetoma are especially challenging to treat; therefore, prevention,

early diagnosis, and early treatment are important, but it is also necessary to understand the

geographic distribution of these pathogenic fungi. In this study, we used DNA metabarcod-

ing methodology to identify fungal species from soil samples. Soil sampling was imple-

mented at seven villages in an endemic area of Sennar State in Sudan in 2019, and ten

sampling sites were selected in each village according to land-use conditions. In total, 70

soil samples were collected from ground surfaces, and DNA in the soil was extracted with a

combined method of alkaline DNA extraction and a commercial soil DNA extraction kit. The

region for universal primers was selected to be the ribosomal internal transcribed spacer

one region for metabarcoding. After the second PCR for DNA library preparation, the ampli-

con-based DNA analysis was performed using next-generation sequencing with two sets of

universal primers. A total of twelve mycetoma-causative fungal species were identified,

including the prime agent, Madurella mycetomatis, and additional pathogens, Falciformis-

pora senegalensis and Falciformispora tompkinsii, in 53 soil samples. This study demon-

strated that soil DNA metabarcoding can elucidate the presence of multiple mycetoma-

causative fungi, which may contribute to accurate diagnosis for patient treatment and geo-

graphical mapping.

Author summary

Mycetoma, a chronic subcutaneous and cutaneous disease, designated as a "neglected

tropical disease," is prevalent in dry and hot climates. Fungal mycetoma is caused by more
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than 50 species of soil-dwelling pathogenic fungi, and its diagnosis and treatment can be

challenging. The prevention of infection and early diagnosis and treatment are essential,

and for this purpose, environmental assessment to understand the fungal habitat is neces-

sary. In this study, we performed DNA metabarcoding analysis using next-generation

sequencing (NGS) for mycetoma pathogens from environmental soil samples in Sudan.

The results suggest that multiple causative agents of fungal mycetoma are widespread

regardless of the environment and can be a source of infection anywhere in an endemic

area. Based on the results of this study, we expect that the investigation of fungi in soil

using NGS technology may help identify infection routes and create risk maps for the pre-

vention of mycetoma.

Introduction

Mycetoma is a chronic granulomatous and disabling inflammatory disease caused by specific

groups of bacteria (actinomycetoma) or fungi (eumycetoma). It typically affects people living

in poor, remote communities in tropical and subtropical regions within the so-called myce-

toma belt, located between latitude 15˚S and 30˚N [1]. Most of the causative microorganisms

inhabit the soil and invade the human body through minor unnoticed wounds on the skin,

mainly in the foot and hand, and multiply to form multiple painless subcutaneous mass lesions

that discharge seropurulent grains [1–4]. As the lesions progress, the microorganisms invade

more deeply into tissues and bones, which can lead to amputation of the affected limb and is

sometimes fatal [5]. The detailed epidemiological characteristics, such as the route of transmis-

sion, incubation period, prevalence, and incidence, have not been elucidated due to its chronic

slow progression, with patients only visiting the hospital after being infected for years [6,7].

Between actinomycetoma and eumycetoma, the latter causes serious public health prob-

lems, because there is no effective short-term medicine compared to the former, which is

treated by existing antibiotics. Therefore, prevention and screening programs are needed for

early detection and treatment before the lesions reach vital parts of the body. It is thus neces-

sary to understand the geographical risk distribution of the infective fungi. Because the causa-

tive fungal pathogens exist in the soil in endemic areas, it is possible to determine the

distribution of infection by analyzing collected soil samples from areas in or near-endemic

areas to confirm their presence. Before now, only soil sampling surveys have been conducted

explicitly targeting only Madurella mycetomatis, the leading causative agent in Sudan [4].

However, to date, over 50 species of mycetoma-causative fungi have been reported around the

world [8], and some patients are simultaneously infected with multiple fungi [9–13]. To

understand the distributions of the causative fungi, it is necessary to comprehensively capture

all fungi in an endemic area’s soil.

To comprehensively capture and analyze large quantities of DNA information simulta-

neously, metabarcoding using next-generation sequencing (NGS) is used as a high throughput

approach in several scientific fields. This technique has been applied for soil microbiome

research to detect environmental DNA (eDNA) from soil samples in the fields of soil microbial

ecology, environmental science, and botany [14–16]. By applying this metabarcoding technol-

ogy, it is possible to capture all the causative fungi in the soil for environmental surveillance of

mycetoma, which will be critical for eumycetoma prevention measurements and control

programs.

In this study, we performed a metabarcoding technology-based soil sampling survey in an

endemic area to establish the geographical risk distribution of eumycetoma.
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Methods

Study area and soil sampling

We chose ten villages in the state of Sennar, Sudan, located about 250 km south-east of Khar-

toum, where a mycetoma clinic is operated by the Mycetoma Research Centre (MRC), Univer-

sity of Khartoum, to manage mycetoma patients (Fig 1). Ten sampling sites where people

gather or were near water sources were selected per village; we planned 100 soil sample collec-

tions from 10 villages. Each sampling site was categorized according to the land usage at the

site as follows: 1) inside a cow fence, 2) dryland, 3) farmland, 4) riverside farm, and 5) road.

The sampling survey was conducted for two days using a mobile data collection system, Open

Data Kit (available online: https://opendatakit.org/) [17]. The soil sampling survey was con-

ducted from October 16 to 17, 2019. The average temperature of Senner in October of 1991–

2020 was 29.64˚C (range: 22.28˚C–37.05˚C), and the average precipitation was 24.11 mm

(sourced from the World Bank Climate Change Knowledge Portal) [18]. Soil samples were

Fig 1. The geographical location of areas where soil samples were collected in this study. Each point on the map presents a sample collection site. Country

and state maps were obtained from the GADM database under a CC BY license (https://geodata.ucdavis.edu/gadm/gadm4.0/shp/gadm40_SDN_shp.zip).

Waterways (blue line) data were downloaded from the OpenStreetMap project (OpenStreetMap contributors) under a CC BY-SA 2.0 license (www.

openstreetmap.org) through the platform Geofabrik (https://download.geofabrik.de/africa/sudan-latest-free.shp.zip). The map was created using the QGIS

Geographic Information System, Open Source Geospatial Foundation Project, under a CC BY-SA 3.0 license (http://qgis.osgeo.org).

https://doi.org/10.1371/journal.pntd.0010274.g001

PLOS NEGLECTED TROPICAL DISEASES Multiple mycetoma pathogen detection using metabarcoding analysis of soil DNA in Sudan

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010274 March 11, 2022 3 / 14

https://opendatakit.org/
https://geodata.ucdavis.edu/gadm/gadm4.0/shp/gadm40_SDN_shp.zip
http://www.openstreetmap.org/
http://www.openstreetmap.org/
https://download.geofabrik.de/africa/sudan-latest-free.shp.zip
http://http://qgis.osgeo.org
https://doi.org/10.1371/journal.pntd.0010274.g001
https://doi.org/10.1371/journal.pntd.0010274


collected with 50 ml Falcon tubes from surfaces that none of the team members had stepped

on using disposable plastic shovels [19]. The gloves and disposable shovels were changed at

every location, and shoe covers were worn at every village to avoid contamination. The Falcon

tubes were packed in a small plastic bag and stored in a styrofoam box with dry ice to minimize

DNA degradation. Samples from the first day were kept in an empty −30˚C freezer provided

by the village head. After completing sampling on the second day, soil samples in the tubes

were packed in styrofoam boxes with additional dry ice, transported to Khartoum by land,

then stored in a −30˚C freezer immediately upon arrival at MRC (see Supplemental method 1

in S1 Protocol for more details).

DNA extraction

The DNA extraction protocol was broadly followed as previously reported to increase the

amount of DNA extracted from the soil samples [19,20]. We used the integrated method of

alkaline DNA extraction with ethanol precipitation and a commercial DNA extraction kit for

soil samples (PowerSoil DNA Isolation Kit, Qiagen, Germany). For each sample, 9 g of soil

was used for DNA extraction. During this process for each village, one negative control was

obtained using 9 g of distilled water. The final DNA solutions were dissolved into the elusion

buffer of the kit (see Supplemental method 2 in S1 Protocol for more details).

Universal primers

To choose universal primers for metabarcoding on the MiSeq platform (Illumina, USA), we cata-

loged mycetoma-causing fungi species from previous studies, which resulted in 29 genera with 55

species (including three at genus-level classification) (S1 Table). The internal transcribed spacer

(ITS) regions and 18S ribosomal DNA are generally used for the identification of fungal species

[21]. The accession of each causative fungus in the GenBank database by the National Center for

Biotechnology Information (NCBI) was checked, and subsequently, the ITS1 and ITS2 regions

were chosen as universal primer targets (S1 Table). Then, the sequences of 52 species available in

GenBank were downloaded and subjected to multiple alignments using MUSCLE in the Unipro

UGENE program (version 40.0) [22,23]. The set of aligned sequences was inspected visually with

primers reported previously [24–26]. The universal primers that covered as many species as possi-

ble in the data set were adopted as our MiSeq primers. Primers sets named ITS1/ITS2 and ITS3_-

KYO1/ITS4_KYO1 shared sequences well with the target fungal genes [24,26]. Therefore, primers

were designed for MiSeq in combination with ITS1/ITS2 and ITS3_KYO1/ITS4_KYO1, and six

random hexamers (N) and adapter sequences (Fig 2 and Table 1).

PCR amplification

Targeting ribosomal ITS1 and ITS2, we employed two-step PCR library preparations. The first

was to amplify specific regions in eumycetoma-causing species, and the second was for the

attachment of distinguishable tags for metabarcoding, as reported previously [27,28]. PCR

reagents and PCR products were prepared in separate rooms to avoid unanticipated DNA con-

tamination. Three replicates were amplified for the first-round PCR (1st PCR) for each sample

using the forward and reverse primers targeting the fungal ITS1 and ITS2 regions (Table 1). A

total of 25 μl PCR reaction volume contained 0.5 U of KOD-Plus-Neo (Toyobo, Japan), 2.5 μl

of 10× buffer for KOD-Plus-Neo (Toyobo), 2.5 μl of 2 mM dNTPs solution, 1.5 μl of 25 mM

MgSO4 solution, 0.75 μl of 10 μM each primer, and 2 μl DNA extract. For the PCR targeting

ribosomal ITS2, ten-fold dilutions of 17 colored DNA extracts were also used to reduce the

influence of PCR inhibition (S2 Table). The PCR was carried out with 40 cycles at 94˚C for 20

s, 65˚C for 30 s (57˚C for PCR targeting ribosomal ITS2), and 68˚C for 30 s, then completed
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with a final 68˚C for 5 min. Then, DNA purification was performed for the 1st PCR products

with SPRIselect Reagent Kit (Beckman Coulter, USA) and quantified using a Qubit fluorome-

ter 3.0 (Thermo Fisher Scientific, USA). Preliminary checks using gel electrophoresis were per-

formed to confirm PCR products. The dilution factor was calculated for each sample to 0.1 ng/

μl, and the average dilution rate was applied to the negative controls. Subsequently, all DNA

samples from the soils were diluted for the second-round PCR (2nd PCR).

Next, the 2nd PCR, which added a unique 8-bp index and MiSeq adaptor sequences at each

end of the amplicons, was performed for Illumina MiSeq. The PCR was carried out in a 12 μl

reaction volume using 6 μl of 2× KAPA HiFi HotStart ReadyMix (KAPA Biosystems, USA),

2 μl of forward and reverse primers with index and adaptor sequences (1.8 μM), 1 μl of com-

bined 1st PCR DNA templates, and 1 μl of ultrapure water under the following thermal cycler

profile: 95˚C for 3 min, followed by 12 cycles of 98˚C for 20 s and 72˚C for 30 s, finally 72˚C

for 5 min. All the 1st PCR products were combined into one and then applied to the MiSeq

Reagent Kit v3 for 2 × 300 bp (600 cycles) (Illumina) with PhiX Control v3 (Illumina). Detailed

protocols are described in the supplement (see Supplemental method 3 in S1 Protocol).

Bioinformatics

According to previously reported methods, the raw MiSeq data were pretreated and analyzed

using USEARCH v10.0.240 [19,29]. Paired-end reads were combined; meanwhile, reads with

ITS1 regionrDNA 18S

Adaptor sequence for the 2nd PCR

ITS2 region rDNA 28SrDNA 5.8S

TCCGTAGGTGAACCTGCGG

CGTAGCTACTTCTTGCGTCG

AHCGATGAAGAACRYRG

CGTWTWGTTWTTCGCCTCCT

ITS1

ITS2

ITS3_KYO1

ITS4_KYO1

Fig 2. Map of ribosomal DNA genes with universal primers. The internal transcribed spacer 1 (ITS1) and 2 (ITS2) regions were targeted to identify causative species.

The primer sets ITS1/ITS2 and ITS3_KYO1/ITS4_KYO1 were used as universal primers for the MiSeq system.

https://doi.org/10.1371/journal.pntd.0010274.g002

Table 1. Primer sequences for the MiSeq analysis.

Primers Sequence Original primer names

ITS1_U 5’-ACACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNNN TCCGTAGGTGAACCTGCGG-3’ ITS1a

ITS2_U 5’-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT NNNNNN GCTGCGTTCTTCATCGATGC-3’ ITS2a

ITS3_KYO1_U 5’- ACACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNNN AHCGATGAAGAACRYRG- 3’ ITS3_KYO1b

ITS4_KYO1_U 5’- GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT NNNNNN TCCTCCGCTTWTTGWTWTGC- 3’ ITS4_KYO1b

Underlined sequences are traditionally used as universal fungal primers. The bolded base was slightly modified from the original.
a reference [24]
b reference [26]

https://doi.org/10.1371/journal.pntd.0010274.t001
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low quality, short length, and many differences (>5 positions) in the merged region were dis-

charged. Next, primer sequences, low-quality reads, and short reads were removed. Dereplica-

tion was performed to the set of reads; then denoising was conducted to generate amplicon

sequence variants (ASVs). Chimeric and minor (<10 reads) ASVs were removed.

Then the data were analyzed systematically and robustly, and species-level identification by

ASVs was conducted through BLAST+ [30] searches with a 97% identity threshold and 90%

query cover of the entire query sequence [27,31,32]. Since a small number of ASVs occurred in

negative control samples, these ASV sequences were first removed from the sequence data of

all samples. We downloaded and used the UNITE database v8.2 (2020-02-04) (https://unite.ut.

ee/) [33,34]. After a homology search with BLASTN, the species names of the eumycetoma-

causative fungi were extracted from the results. To ensure identification at the level of a single

species, we checked the species names manually, whether best (i.e., single and top) or not, with

reference to the value of identity and E-values (see Supplemental method 4 in S1 Protocol for

more details).

Statistical analysis

One-way analysis of variance (ANOVA) followed by the Turkey-Kramer test was conducted

to test whether there were differences in the number of causative species by land use of the

sampling sites, using R (version 4.1.2, 64-bit).

Results

Soil sampling and DNA extraction

Finally, 70 soil samples were retrieved from seven villages (Al Awia, Al Ragal Al Batahin,

Deshein, Sharfa Al Mihrab, Wad Ajeeb, Wad Al-Har, Wad Hassan) (Fig 3). We could not

approach three villages due to flooding. Although the weather was sunny during the sampling,

one village (Wad Al-Har) was muddy, except for the center of the village. Few riverside farm

samples were collected from the targeted location due to secured blockades and fences; there-

fore, samples were collected from the closest location.

A total of 64 DNA samples with six negative controls were extracted, and 17 of the samples

were colored with soil components. During the laboratory work process, seven samples, includ-

ing one negative control, were lost due to a malfunction of the centrifuge separator (Fig 3).

PCR amplification and MiSeq sequencing

After the 1st PCR targeting ribosomal ITS1 to amplify fungal DNA, preliminary checks found

target size bands from 37 samples, but no band was found in the negative controls. Hence, for

the MiSeq for ribosomal ITS2, we did only an initial check for some samples.

As an outcome of MiSeq for ribosomal ITS1, 3,158,851 pair-end sequences (reads) were

obtained in total from the soil and negative control samples. The averages (±SD) of soil sam-

ples and negative controls (blanks of DNA extraction and the 1st PCR) were 24,631 (± 22,865)

reads (lowest number 19 reads; highest number 161,247 reads) and 306 (± 346) reads, respec-

tively. After processing with USEARCH, 7,357 ASVs were found in all DNA samples. The

averages (±SD) of soil samples and negative controls/PCR blanks of the 1st PCR were 114 (±
86.0) reads and 6.1 (± 5.7) reads, respectively. For ribosomal ITS2, a total of 21,177,128 pair-

end reads, an average of 130,569 (± 126,731) reads (lowest number 14 reads; highest number

679,229 reads) for soil samples and 1,248 (± 2,208) for negative controls, and a total of 10,780

ASVs, an average of 133 (± 107) reads for soil samples, and 5.8 (± 9.8) reads for negative con-

trols, were obtained.

PLOS NEGLECTED TROPICAL DISEASES Multiple mycetoma pathogen detection using metabarcoding analysis of soil DNA in Sudan

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010274 March 11, 2022 6 / 14

https://unite.ut.ee/
https://unite.ut.ee/
https://doi.org/10.1371/journal.pntd.0010274


Eumycetoma-causative fungi detected in the samples

In the BLAST results based on the UNITE database, nine genera and twelve species of causa-

tive fungi, including the primary pathogen in Sudan, M. mycetomatis, and Falciformispora
senegalensis and Falciformispora tompkinsii, were retrieved (Table 2). The number of detected

species was counted based on land use; there was a significant difference only between road

(3.3 ± 1.5) and dryland (1.9 ± 1.0) (p = 0.045) (S1 Fig).

10 mycetoma 
endemic villages

7 villages 
successfully reached

3 villages unable to reach

70 soil samples

Soil sampling from 10 locations/village

64 DNA extracted
samples from soil

PCR + NGS 
analysis

Lost 6 soil samples  

Fig 3. Schematic diagram of soil sampling prior to NGS analysis.

https://doi.org/10.1371/journal.pntd.0010274.g003
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Discussion

In this study, we detected several eumycetoma-causing fungi simultaneously from soils of dif-

ferent land uses in an endemic area using a metabarcoding technology-based soil sampling

survey method. Our analysis identified twelve species of eumycetoma pathogens from soil

DNA samples, including the principal causative agent, M. mycetomatis. Only two previous

studies detected the DNA of M. mycetomatis and other causative species from the soil or Aca-
cia thorns and other environmental agents [4,16]. However, the simultaneous detection of

multiple pathogenic fungi is scientifically warranted because 1) over 50 species of mycetoma-

causative fungi are reported worldwide [8], 2) mycetoma is caused by various fungi classes

[5,35], 3) multiple fungi are found even in a single lesion of a patient [36], and 4) it has been

reported that fungi collected from patient lesions and cultured are present in the soil [6,7,35].

As previous reports have mentioned, mycetoma is distributed widely within arid areas,

called the mycetoma belt [1]. In this study, the field sites were selected from the state of Sennar,

which is in a dry climate. Soil samples from several different land-use conditions in the

endemic region of eumycetoma were also collected and analyzed. As a result, surprisingly, the

DNA of the twelve species known as causative agents, including the most important, M. myce-
tomatis, and some other rare pathogenic species (i.e., Aspergillus and Curvularia), were

detected from 83% (53/64) of the soil samples. In regard to specificity and sensitivity, this

study shows the advantage of multiple detections of mycetoma-causative pathogens. Our

results showed that regardless of the environmental conditions, various eumycetoma patho-

gens are ubiquitous in the soils of these areas. In addition, the analysis showed a statistical dif-

ference between roads and drylands, which indicates that some environmental agents may

affect the existence of pathogens in soil, though this requires further study. More extensive

field sampling, including soil composition or climate data, may uncover the environmental

preferences of mycetoma-causative fungi. Moreover, the outcome of soil fungal metabarcoding

can be used to visualize a risk map of the causative agents with remote sensing data, as with

previous studies using clinical data [37,38]. This can lead to robust estimates of the environ-

mental risk factors associated with mycetoma, which have not been elucidated over its long

history.

Furthermore, our findings can help with diagnosis or preventive measures for patients.

Clarifying the diversity of fungi, including eumycetoma agents, in patients’ villages might con-

tribute to the accurate diagnosis of the pathogens. Our data also suggest that protective mea-

sures such as wearing shoes should be strongly promoted for people in mycetoma-endemic

areas.

Based on the data obtained in this study, we constructed a system of amplicon sequencing

and metabarcoding techniques targeting a group of mycetoma-causative organisms. Consider-

ing the PCR conditions, we faced a major limitation: some extracted DNA solutions were

brown-colored (S2 Table), which means that the samples might have been contaminated with

PCR inhibitors such as humic acids in the soil. Here, we applied a DNA extraction method

developed for sedimentary soils of river bottoms [20]; however, the soil moisture contents

were different for each land use, which might have influenced the PCR amplification. For sub-

sequent MiSeq analysis targeting ribosomal ITS2, the colored DNA samples were diluted in

the 1st PCR to produce accurate results. Accordingly, most target DNA was successfully ampli-

fied (i.e., reads and ASVs) compared with the same samples that were not diluted.

In this study, we focused on species-level detection of causative agents of eumycetoma.

Therefore, the number of sequences that could not be identified as species might be underesti-

mated, which means there were possibly more pathogens in the sampling sites. Thus, further

identifying species from mycetoma specimens and registration in gene databases is still
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needed. In our results, Aspergillus terreus was only identified at the species level for the ribo-

somal DNA ITS1 region, although the Madurella genus was identified in the analysis for ITS2.

For pathogenic species identification, at this point, using both the ITS1 and ITS2 regions

would lead to more accurate results.

Conclusion

The metabarcoding technology-based soil sampling survey method can detect multiple causa-

tive fungi from soil samples in an endemic area, including the major pathogen, M. mycetoma.

Applying the technology to construct a geographic distribution of causative fungi provides

essential and fundamental information for preventive measures, diagnosis considering

regional characteristics and fungi distribution, and the development of therapeutic agents

against mycetoma.
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