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Abstract
Using a potentiostatic electrodeposition technique, nanocrystalline cobalt-molybdenum (Co-Mo)
superalloys containingmolybdenumoxide (MoOX)were synthesized from an aqueous solution
containing citric acid.Molybdenum content in the alloyswas controlled up to approximately 53%by
adjusting the cathode potential during the alloy electrodeposition. Based on the XRDprofiles and
electron diffraction patterns, an amorphous-like nanocrystalline structurewas observed in the alloys
with highmolybdenum content. XPS analysis revealed that the chemical state of electrodeposited
molybdenumwas almostmetallic and the oxide state was also detected partially. According to the
magnetization curves, the coercivity of electrodeposited Co-Mo alloys decreased down to
approximately 72Oewith increasing themolybdenumcontent up to around 53%. Themicrohardness
reached 845 kgfmm−2 in the electrodeposited Co-53%Mo alloy and greatly exceeded that of pure
cobalt (ca. 250–300 kgfmm−2). Heat resistance performance of the electrodeposited nanocrystalline
Co-53%Mo alloywas improved by theMo alloying effect because the recrystallization and oxidation
behavior were not observed even if the annealing temperature was increased up to 700 °C.

1. Introduction

Hard chromium electroplating is one of themost widely used process in industrialmetal surface finishing plants.
The chromiumelectroplating technique has been used for the conventionalmechanical parts that requires wear-
resistant performance because of the significantly large hardness, excellent wear-resistance, and low friction
coefficient [1, 2]. However, hexavalent chromium ions, which are contained in a hard chromium electroplating
bath, are known as an extremely strong oxidizer. Therefore, its toxicity, such as causing inflammation of the skin
andmucousmembranes, is focused recently. In 2019, RoHS restricts to contain hexavalent chromium ions in all
electronic devices in the EU.Hence, an alternative electroplating bath, which contains trivalent chromium ions,
has been propose so far [3–6]. On the other hand, the electroplating of iron-groupmetals (Fe, Co, andNi) and
the alloyswith an amorphous-like nanocrystalline structure is one of the alternative processes for the hard
chromium electroplating [7, 8]. Because the amorphous-like nanocrystalline structure has an excellent hardness
and corrosion resistance. It is well known that the corrosion resistance of bcc-Fe is not better than those of fcc-Ni
and hcp-Co according to their standard electrode potential. On the contrary, the saturationmagnetization of
fcc-Ni is smaller than those of bcc-Fe and hcp-Co due to the number of lone-pair electronswhich corresponds
to the catalytic ability. Unlike the performance of bcc-Fe and fcc-Ni, the corrosion resistance and catalytic ability
of hcp-Co are both excellent among the conventionalmetallicmaterials. Hence, the cobalt-based alloy coating
technique can be an alternative candidate for the hard chromium electroplating process which utilize the toxic
hexavalent chromium ions. As an additive element to the cobalt-based alloys, ametallic element with a high
melting point will be effective to enhance the hardness and corrosion resistance. Especially,molybdenumhas a
quite highmelting point (Mo: 2623 °C) rather than the iron-groupmetals (Fe: 1538 °C,Co: 1495 °C, andNi:
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1455 °C). It is well known thatmolybdenum is not able to be electrodeposited from an aqueous solution as a
puremetallic state. However, even in an aqueous solution,molybdenum can be electrodeposited as ametallic
alloy state with the iron-groupmetals. Brenner et al defined the alloys electrodeposition process as an ‘induced
co-deposition type’ [9]. TheCo-Mo alloys, which are obtained by the ‘induced co-deposition process’, exhibit the
characteristic performance such asmagnetism [10–14], corrosion-resistance [15–17], hydrogen evolution
catalyst [18–23], and so on. Pellicer et al reported that Co-Mo alloys were electrodeposited by utilizing the
reverse pulse platingmethod [24]. They revealed that theVickers hardness of electrodeposited Co-38wt.%Mo
alloys was 325 kgfmm−2 (HV0.05). Krawiec et al also reported that Co-Mo/TiO2 nano-composite filmswere
electrodeposited from an aqueous solution containing TiO2 nanoparticles [25]. They revealed that theVickers
hardness of electrodeposited Co-15at.%Mo/TiO2 nano-composite filmswas around 700 kgfmm−2 (HV).
Hardness of electrodeposited Co-Mo alloys should be enhancedwith an increase inMo content in the deposits.
Hence, in the present study, Co-Mo alloys withMo contentmore than 50at.%were synthesized by utilizing a
potentiostatic electrodeposition techniquewith significant large overpotential [26] to achieve theVickers
hardness beyond 800 kgfmm−2 (HV). The nanocrystalline structure and heat resistance performance of the
electrodeposited Co-Mo alloyswere also investigated.

2.Method

An aqueous solution containingCo2+ andMoO4
2− ions (Co-Momixture bath)was synthesized from0.4M

cobalt sulfate heptahydrate, 0.1M sodiummolybdate dihydrate, 0.5M sodium citrate dihydrate, 0.5Mboric
acid. For comparison, an aqueous solution containing only Co2+ ions (pureCo bath)was also prepared from
0.4M cobalt sulfate heptahydrate, 0.5M sodium citrate dihydrate, 0.5Mboric acid. The solution temperature
and pHwere adjusted to 40 °Cand 6.0, respectively, while the electrolytic bathwas stirred using amagnetic
stirrer (300 rpm) during the electrodeposition. A copper foil and a goldwirewere utilized as a cathode and an
anode, respectively, while a silver chloride electrode (Ag/AgCl/Sat. KCl)was used as a reference electrode.
Cathodic polarization curves were investigated using an automatic polarization system (Electrochemical
Measurement System,HZ-7000,HokutoDenkoCorp., Tokyo, Japan) to determine the optimumcathode
potential range. Co–Moalloys were synthesized by using a potentiostatic electrodeposition technique. Cathode
potentials during the electrodepositionwere fixed to the range from−1.2V to−1.7 V versus Ag/AgCl. The alloy
composition of electrodeposited Co–Moalloys was determined using energy dispersive X-ray spectroscopy
(EDX, EDX-800HS, ShimadzuCorp., Kyoto, Japan). Surface texture of the electrodeposited alloy samples was
investigated using Scanning ElectronMicroscopy (SEM, JCM-5700, JEOLLtd, Tokyo, Japan). Constituent
phaseswere identified using Transmission ElectronMicroscopy (TEM, JEM-2010-HT, JEOLLtd, Tokyo, Japan)
and anX-RayDiffractometer (XRD,Miniflex 600-DX, RigakuCorp., Tokyo, Japan). Chemical state of
molybdenum in the electrodeposited samples was analyzed using X-ray Photoelectron Spectroscopy (XPS,
AXIS-ULTRA, ShimadzuCorp., Kyoto, Japan). Saturationmagnetization of the electrodeposited filmswas
investigated using aVibrating SampleMagnetometer (VSM,TM-VSM1014-CRO, TamakawaCo., Sendai,
Japan) at room temperature.Microhardness of the electrodeposited filmswasmeasured using amicro-Vickers
hardness testingmachine (HM-211,Mitutoyo, Kanagawa, Japan). Themicrohardness test was performed on a
polished cross-section of the electrodeposited films by applying a load of 0.1 kgf.

3. Results and discussion

3.1. Electrodeposition process of Co–Moalloys
To compare the electrodeposition behavior of pureCo andCo–Moalloys, each cathodic polarization curvewas
plotted as shown infigure 1(a). During the polarizationmeasurement, the cathode potential was scanned at a
rate of 50mV s−1. By scanning the potential to a less-noble region, the cathode current density began to increase
sharply at approximately−0.8V versus Ag/AgCl in both pureCo bath andCo-Momixture bath. According to
Nernst’s equation, the equilibriumpotential of Co/Co2+ (ECo

eq) can be calculated to approximately−0.49V
versus Ag/AgCl based on the bath temperature andmetal ions concentration (40 °C, [Co2+]=0.4M) [27].
Hence, the increase in the cathode current density should be caused by the deposition current of Co-Citrate
complex ions as well as the reduction current of hydrogen ions [28, 29]. Subsequently, with an increase in
cathode current density up to approximately 400Am−2, the cathode potential polarized to around−1.1V
versus Ag/AgCl in pure Co bath.On the contrary, inCo-Momixture bath, with increasing the cathode current
density up to about 40Am−2, the cathode potential shifted to around−1.1 V and subsequently the cathode
current density increased again up to approximately 200Am−2. This cathode potential shift at about 40Am−2

seems to be caused by the adhesion ofMoO4
2− ions ormolybdenumhydroxide [30, 31]. Hence, it is considered

that the electrodeposition of Co-Mo alloy began to proceed at around−1.1V due to the induced co-deposition
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process [9]. Furthermore, with increasing the cathode current densitymore than about 1000Am−2, the slope of
the polarization curve decreased and the cathode potential polarized significantly to a less noble region than
−1.8 V versus Ag/AgCl in both pureCo bath andCo-Momixture bath. This significant polarization seems to be
caused due to a decrease in the concentration ofH+, Co2+ andMoO4

2− ions in the vicinity of cathode.
Consequently, for electrodepositing Co-Mo alloys, the optimumcathode potential conditionwas determined,
ranging from−1.2V to−1.7 V versus Ag/AgCl.

Figure 1(b) shows the effect of cathode potential on themolybdenum content (XMo) in Co–Moalloys.With
shifting the cathode potential to a less-noble region,XMo in the alloys increased fromapproximately 36% to
53%.As shown in red dashed line in figure 1(b), the composition reference line (C.R.L.) is 20%which is identical
to the ratio ofMoO4

2− ions concentration ([MoO4
2]) to the totalmetal ions concentration ([MoO4

2]+[Co2+]).
Hence, themolybdenum atoms in the alloy deposits seem to be condensed from the electrolytic bath due to the
induced co-deposition process [32].

3.2. Surface appearance, constituent phase and chemical state of electrodeposited Co–Moalloys
Figure 2 shows the SEM image (a) of Co-36%Moalloy electrodeposited at the cathode potential of−1.2 V versus
Ag/AgCl. The EDS elementalmapping images on cobalt (b) andmolybdenum (c) are also shown infigures 2(b)
and (c), respectively. The sample had somemicrocracks and small nodules as shown infigure 2(a). The elements
for cobalt andmolybdenumwere homogeneously dispersed in the electrodeposited alloy as shown in
figures 2(b) and (c). Hence, the electrodeposited Co-36%Mo alloy seems to be quite hard and brittle
performance due to the formation of supersaturated solid solution phase.

Figure 3 shows the effect of cathode potential on the SEM images of Co–Moalloys whichwere
electrodeposited at the cathode potential range from−1.2V to−1.7V versus Ag/AgCl. All samples had some
microcracks and nodules as shown infigure 3. Especially, numerous nodules were observed on the surface of the
samples whichwere electrodeposited at the cathode potential range from−1.5 V to−1.7 V as shown in
figures 3(d)–(f). Themicrocracks seem to be induced by the internal stress which is caused by the formation of
very hardCo-Mo alloy phase, while the nodules seem to be formed on themicrocracks. The cathode current will

Figure 1.Cathodic polarization curve (Tafel plot) for electrodeposition of Co-Mo alloy from an aqueous solution containing citric
acid (a). Effect of cathode potential on themolybdenumcontent (XMo) in electrodeposited Co-Mo alloys (b).

Figure 2. SEM image (a) of Co-36%Mo alloy electrodeposited at the cathode potential of−1.2V versus Ag/AgCl. EDS elemental
mapping images on cobalt (b) andmolybdenum (c) in the electrodeposited alloy.
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be focused on themicrocracks because the conductivity of copper substrate is greater than that of
electrodeposited Co-Mo alloys. Consequently, the high current density on themicrocracks will induce the
three-dimensional nodule-like surface appearance.

Figure 4 shows the effect of growth time on the SEM images of Co-53%Mo alloys electrodeposited at the
cathode potential of−1.7 versus The growth timewas ranging from5min to 90 min. As shown infigures 4(a)–
(d), in the growth time less than 30 min, small nodule nuclei with the diameter of approximately 3μmare
observed on themicrocracks and the density of nuclei seems to increase with an increase in the growth time.On
the contrary, as shown infigures 4(e) and (f), in the growth timemore than 60 min, all nodule nuclei on the
microcracks are grown up to the diameter of approximately 10μm.This nodule nuclei formation process on the
microcracks correspondwell to that shown infigure 3. Pellicer et al reported that the effect of growth time on the
surfacemorphology of Co-38%Mo alloys whichwere electrodeposited at the cathode potential of−1.3V versus
Ag/AgCl [24]. They revealed that the nodule nuclei sizewas enhancedwith increasing the growth time and the
film thickness. According to their report, the formation ofmicrocracks on the electrodeposited Co-Mo alloys
was inhibited by applying a reverse pulse platingmethod. In the present study, the samples were prepared by

Figure 3.Effectof cathodepotential on theSEMimages of electrodepositedCo-Moalloys ((a)E=−1.2V,XMo=36%, (b)E=−1.3V,
XMo=38%, (c)E=−1.4V,XMo=31%, (d)E=−1.5V,XMo=39%, (e)E=−1.6V,XMo=48%, (f)E=−1.7V,XMo=53%).

Figure 4.Effect of growth timeon the SEM images ofCo-53%Moalloys electrodeposited at the cathodepotential of−1.7V ((a) t=5 min,
(b) t=10 min, (c) t=15 min, (d) t=30 min, (e) t=60 min, (f) t=90 min).
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applying a potentiostatic electrodeposition technique.Hence, themicrocracks and remarkable nodule nuclei
seems to be observed in the samples whichwere electrodeposited in the growth timemore than 60 min.

Figures 5(b) and (c) shows the effect ofmolybdenum content on theXRDprofiles of Co–Moalloys which
were electrodeposited at the cathode potential of−1.4 V and−1.7 V versus Ag/AgCl. For comparison, the XRD
profile of pureCowhichwas electrodeposited froma pure Co bathwas also shown infigure 5(a). Here, the
diffraction peaks, which are observed in the 2θ of 43.3° and 50.5°, are derived fromCu substrate. As shown in
figure 5(a), broad peaks associatedwith hcp-Co (100), (002), and (101)were observed in the electrodeposited
pureCo sample. However, except for the peaks fromCu substrate, no diffraction peaks were confirmed in the
electrodeposited Co-Mo alloy samples as shown infigures 5(b) and (c). Hence, the electrodeposited Co-Mo
alloys seems to be composed of an amorphous-like nanocrystalline phase. Ohgai et al revealed that the
electrodepositedNi-Mo alloys withmore than 20% inXMowere composed of an amorphous-like
nanocrystalline phase, while thosewith less than 20% inXMo consisted of polycrystalline phase [31, 32]. In the
present study, themolybdenum content exceeded 30%as shown in figure 1(b). Hence, the nanocrystalline
structure of electrodeposited Co-Mo alloys exhibited a similar tendency to that of electrodepositedNi-Mo
alloys.

Figures 5(b′) and (c′) shows the effect ofmolybdenumcontent on the electron diffraction patterns of Co-Mo
alloys ((b′)XMo=31%and (c′)XMo=53%). Concentric and vague diffraction patterns (halo-patterns)were
observed as shown in the electron diffraction patterns. According to the radius of the broad ring pattern, the
lattice spacingwas estimated to be 0.228 nmwhich corresponds to that of hcp-Co (100). Hence, it was revealed
that the electrodeposited Co-Mo alloys were composed of an amorphous-like nanocrystalline phase according
to the electron diffraction patterns aswell as theXRDprofiles as shown infigures 5(b) and (c).

XPS spectra of the electrodeposited Co-Mo alloys ((a)E=−1.4 V,XMo=31%, (b)E=−1.7 V,
XMo=53%)were shown infigure 6. The surface of each samplewas etched by argon ions for a duration of
15 min. The binding energy that were derived from themetallic state ofmolybdenum corresponds to 231.0 eV
(Mo°—3d3/2) and 227.8 eV (Mo°—3d5/2), while that of tetravalentmolybdenum corresponds to 233.1 eV
(Mo4+—3d3/2) and 229.8 eV (Mo4+—3d5/2). Hence, according to the XPS spectra (figure 6), molybdenum
seems to exist as almostmetallic state and a part of that also exists as an oxide state. Based on the above
experimental results,molybdenum ions should formhydroxide in the vicinity of the cathode through a
hydrolysis reaction during the electrodeposition process with a large over potential. Furthermore, the hydroxide
could formmetallic oxide and be included into the electrodeposited alloys via dehydration reaction.

3.3.Magnetization,micro-hardness, andheat-resistance performance of electrodeposited Co–Moalloys
Figure 7 shows the effect ofmolybdenum content on themagnetic hysteresis loops of electrodeposited Co-Mo
alloys ((a)XMo=0%, (b)E=−1.4 V,XMo=31%, (c)E=−1.5 V,XMo=39%, (d)E=−1.6V,
XMo=48%, (e)E=−1.7V,XMo=53%). An externalmagnetic fieldwas applied to in-plane direction to the
electrodeposited alloy films. Figure 8(a) shows the effect ofmolybdenum content on the coercivity of
electrodeposited Co-Mo alloys. In the figure, the coercivity value (118Oe) of commercially available pure cobalt
foil (purity: 99.9%)was also plotted asXMo=0%.The coercivity of electrodeposited Co-Mo alloys decreased to

Figure 5.Effect ofmolybdenum content on theXRDprofiles and EDpatterns of electrodeposited Co-Mo alloys ((a)XMo=0%,
(b)E=−1.4V,XMo=31%, (c)E=−1.7V,XMo=53%).

5

Mater. Res. Express 9 (2022) 046502 TMatsuda et al



72Oewith an increase inXMo up to ca. 53%.Gómez et al also reported that the coercivity of electrodeposited
pureCowas around 140Oewhile that of Co-Mo alloys, whichwere electrodeposited from an aqueous solution
containing citric acid, decreased down to a quite small value [33]. Herzer et al reported that the coercivity,Hc of
ferromagneticmaterials strongly depended on the average crystal grain diameter,D [34]. According to their
report,Hc is in proportion toD−

1 in the ferromagneticmaterials with amulti-domain structure, while that is
proportional toD6 in thosewith a superparamagnetic structure. As shown infigure 5, the electrodeposited Co-
Mo alloys have an amorphous-like nanocrystalline structure. Hence, in the present study, the coercivity of
electrodeposited Co-Mo alloys decreased due to the reduction in the average crystal grain diameter,Dwith an
increase in themolybdenumcontent,XMo. Figure 8(b) shows the effect ofmolybdenum content on the
microhardness of electrodeposited Co-Mo alloys. It has been reported that the hardness of electrodeposited pure
cobalt was approximately 130 kgfmm−2 (HV) [35]. In this study, themicrohardness of commercially available
cobalt foil was determined to be 291.1 kgfmm−2 (HV0.05). As shown in figure 8(b), themicrohardness of
electrodeposited Co-Mo alloys increased up to 845 kgfmm−2 (HV0.1)with an increase inXMo up to 53%.
According to themechanismof solid solution strengthening ofmetallicmaterials, the density of lattice defects,
such as dislocations and grain boundaries, increases with an increase in the concentration of solute atoms.
Furthermore, the average crystal grain size will decrease with an increase in the density of lattice defects. Hence,
in this study, the synergistic effect of solid solution strengthening and crystal grain refinement seems to have
contributed to improving themicrohardness of electrodeposited Co-Mo alloys.

Figure 9 shows the effect of annealing temperature on theXRDprofiles of Co-53%Mo alloys whichwere
electrodeposited at the cathode potential of−1.7 versus As-deposited sample (a)was annealed at 100 °C (b),
300 °C (c), 500 °C (d), 700 °C (e), and 900 °C (f). The annealing was conducted for 1 h under argon gas
atmosphere.

According to the binary alloy phase diagramofCo-Mo system [36], intermetallic compounds such as
Co3Mo,Co7Mo6 andCo2Mo3will be appeared as the stable phases inCo-53%Mo alloy.However, in the present
study, in the temperature range less than 700 °C, the diffraction peakswhich are derived fromCo alloy phases
were not observed as shown infigures 9(b)–(d).While, in the temperature range from700 °C to 900 °C, the
diffraction peakwhich is derived fromCoMoO4 (330)was clearly observed at 2θ of around 43.2° as shown in

Figure 6.Effect ofmolybdenum content on theXPS spectra of electrodeposited Co-Mo alloys ((a)E=−1.4V,XMo=31%,
(b)E=−1.7V,XMo=53%). The black solid lines correspond to the original plots while the blue, green and red dashed lines
correspond to thefitted plots forMo0+,Mo2+ andMo4+ spectra, respectively.

Figure 7.Effect ofmolybdenum content on themagnetic hysteresis loops of Co-Mo alloys ((a)XMo=0%, (b)E=−1.4V,
XMo=31%, (c)E=−1.5V,XMo=39%, (d)E=−1.6V,XMo=48%, (e)E=−1.7V,XMo=53%).
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figures 9(e) and (f). As shown infigures 5 and 6, as-deposited samplewas composed of an amorphous-like
nanocrystalline structurewith ametallic Co-Mo alloy phase and amolybdenumoxide phase such asMoO and
MoO2.Hence, this CoMoO4 phase seems to be formed by alloying reaction between themetallic Co-Mophase
and themolybdenumoxide phase during the high temperature annealing processmore than 700 °C. The
molybdenumoxide phase could be involved in the electrodeposit during the abovementioned ‘induced co-
deposition’ process.

4. Conclusion

Co-Mo alloys were synthesized from an aqueous solution using a potentiostatic electrodeposition technique.
Molybdenum content in the alloy filmswas controlled up to 53%by shifting the electrode potential down to
−1.7 V versus Ag/AgCl. Amorphous-like nanocrystalline structure was observed in the electrodeposited Co-Mo
alloys. Coercivity of the electrodeposited Co-Mo alloys decreased down to 72Oewith an increase inXMo up to
ca. 53%.Microhardness increased up to 845 kgfmm−2 with an increase inXMo up to 53%. It was concluded that
the synergistic effect of solid solution strengthening and crystal grain refinement strengthening contributed to
improve themicrohardness and heat-resistance performance of electrodeposited Co-Mo alloys.

Figure 8.Effect ofmolybdenum content on the coercivity (a) andmicrohardness (b) of Co-Mo alloys.

Figure 9.Effectof annealing temperature on theXRDprofiles ofCo-53%Moalloys electrodeposited at the cathodepotential of−1.7V
((a) as-deposited, (b)TA=100 °C, (c)TA=300 °C, (d)TA=500 °C, (e)TA=700 °C, (f)TA=900 °C). Each samplewas annealed for
1 hunder argon gas atmosphere.
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