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The fundamental aeroelastic effect of the corrugation of an insect-sized simple flapping wing is numerically 
investigated. A baseline model for a corrugated flapping wing is constructed such that the balance among the 
aerodynamic, elastic, and inertial forces acting on the wing matches that acting on insect wings in accordance with the 
measured material properties of insect wings. The thickness of the corrugated airfoil and the amplitude of corrugation 
are systematically varied around the baseline to modulate both the natural frequencies and mode shapes. Unsteady 
aeroelastic simulation based on three-dimensional Naiver–Stokes equations is conducted for the corrugated flapping 
wings. The numerical simulation is validated by measuring the natural frequency and mean lift of corrugated flapping 
wings. The results indicate that the corrugation of insect flapping wings is aeroelastically effective in providing both an 
appropriate passive deformation and a light-weight wing. To maximize the hovering efficiency, the optimal amplitude 
of corrugation is 1.7 to 2.6% of the chord length, the wing mass ratio is 0.7 to 1.5, and the natural frequency is 2.1 to 2.6 
times as large as the input flapping frequency. These optimal design parameters are close to (but slightly smaller than) 
those of insect wings.  
 

Nomenclature 
aw = amplitude of corrugation 
c = chord length of wing 
fin = input flapping frequency 
fk = kth natural frequency of wing 
f1* = first natural frequency ratio to input flapping frequency 
h = thickness of wing plate 
L = lift 
mw = wing mass 
nw = wave number of corrugation 
P+ = positive total power 
Pi

+ = positive inertial power 
R = semispan length of wing 
rref = radius of reference span station of wing 
zw = corrugation shape 
λ = wavelength of corrugation 
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η = hovering efficiency 
θ = feathering angle 
ξk = kth modal coordinate 
ρ = density 
ϕ = flapping angle 
Φk = kth mode shape of wing 
ψF/F = phase lead of feathering motion relative to flapping motion 
ψI/O = phase lag of the first-mode oscillation relative to input flapping oscillation 
 
 
Subscripts 
a  = air or aerodynamics 
def  = deformation 
in  = input parameter 
out  = output response 
w  = wing structure 
 
Superscripts 
–  = time-averaged value 
^  = amplitude of oscillation 
*  = nondimensional 
 

I. Introduction 

FLAPPING-WING-TYPE micro air vehicles (FWMAVs), which mimic the superior flapping flight of birds and insects, 

have attracted attention for application as a small-sized, human-friendly drone compared with the conventional rotary drones. 

Although some FWMAVs have attained successful autonomous flight [1–5], there is still a large gap in flight performance 

between birds and insects and FWMAVs [6]. This fact implies that there still remain unutilized technologies of the flapping 

flight of birds and insects which can be applied to FWMAVs. Many previous experimental and numerical studies [7–16] have 

clarified the distinguishing aerodynamics for flapping wings, such as delayed stall, rotational circulation, and wake capture. 

Extremely light-weight wings of insects are subjected to aeroelastic deformation during a flapping cycle [17,18]. In addition, 

recent FWMAVs positively utilize passive aeroelastic deformation to achieve complicated wing kinematics with a simple 

mechanical actuation system [1–5]. Aeroelastic effects of flapping wings have also been investigated in many previous studies. 

Young et al. [19] and Du and Sun [20] studied the effects of wing deformation on aerodynamics of a flapping wing by actively 

providing the prescribed deformation based on the measured data of locust and hoverfly wings, respectively. These studies 

reported that the deformation of the flapping wings enhances lift and improves the aerodynamic efficiency due to the generation 

of preferable cambered airfoil and spanwise torsion. The effects of aeroelastically passive deformation of flapping wings have 

been also investigated in numerical [21–27] and experimental studies [28–32]. Some studies considered realistic wing structures 

of insects or FWMAVs, such as vein arrangement and structural anisotropy [23,25,29,30] and thickness distribution [23,26] 

and revealed that beneficial wing deformations to improve the aerodynamic characteristics are passively produced by 

appropriate structural designs. However, the aeroelastic effects of flapping wings have not been sufficiently clarified yet, and it 

is still unknown what an optimal wing structure for flapping flight is. Therefore, the designs of flapping wings for FWMAVs 

still depend on trial-and-error experimental methods [1–5].  

These previous studies on aeroelastic flapping wings employed a flat plate wing; however, many insects have cambered and 

corrugated wings instead of flat wings [33–36]. The aerodynamic effects of corrugated wings have been investigated mainly 

for fixed wings of dragonflies in gliding flight, which are usually used at a lower angle of attack than a flapping wing. Previous 

studies indicate that corrugated airfoils as a fixed wing are effective for lift enhancement and drag reduction [37,38], stall 

characteristics [39], and flight dynamic stability [40] due to the trapped vortices inside the valleys of corrugation. For a 



corrugated flapping wing, Meng et al. [41] and Meng and Sun [42] numerically investigated the aerodynamic effects of 

corrugated airfoils of a flapping wing in hovering and forward flight, respectively. Their results indicate that the difference in 

the aerodynamic characteristics is slight between flat and corrugated flapping wings. Du and Sun [43] and Au et al. [44] 

provided the corrugated flapping wing with the prescribed deformation in accordance with the measured data of hoverflies and 

FWMAVs, respectively, and numerically investigated the aerodynamic effects of wing deformation with corrugated airfoils. 

These results also indicate that the aerodynamic effects of a corrugated flapping wing are small even when the prescribed 

deformation is provided. Consequently, these previous studies concluded that corrugated airfoils of a flapping wing contribute 

not to aerodynamics but to structural effects. In contrast, Dao et al. [45] numerically investigated two-dimensional corrugated 

flapping wings with the prescribed deformation in accordance with the FWMAV and reported that the leading-edge corrugated 

wings were beneficial in enhancing aerodynamic performance at a higher angle of attack. The aerodynamic effect of corrugated 

flapping wings is not fully understood yet. 

Corrugation implemented in the chordwise direction generally enforces spanwise flexural rigidity and provides anisotropic 

rigidity to the wing surface even with an isotropic material. The anisotropy due to corrugation depends on not only the 

corrugation shape but also the ratio of amplitude of corrugation to plate thickness [33]. Thus, the design of corrugation shape 

and plate thickness affects both the anisotropic flexural rigidity and the mass of the wing; consequently, it not only changes the 

static structural characteristics but also the dynamic ones (i.e., natural frequencies and vibrational modes). To reveal the 

aeroelastic effects of a corrugated flapping wing, a comprehensive parametric study is required because a corrugated cross 

section simultaneously affects the aerodynamics [45], elasticity [33], and inertia [46] of a flapping wing. However, the effects 

of corrugation for a flapping wing with passive aeroelastic deformation have not been investigated yet. 

Although the anisotropic flexural rigidity of actual insect wings is provided by the vein distribution and cambered cross 

section in addition to the corrugation, we focus on the aeroelastic effect of corrugation of an insect-sized flapping wing, 

excluding the veins and cambered airfoil. The objective is not to simulate a realistic insect wing but to numerically investigate 

the fundamental aeroelastic effects of a corrugated flapping wing in hovering flight. For this purpose, a simplified wing structure 

and kinematics are constructed by reference of insect wings. However, the size, mass, and material properties of the wing model, 

which dominate the aeroelastic similarity parameters (namely, Reynolds number, reduced frequency, mass ratio, and natural 

and flapping frequency ratio [22]) must match those of the insect wings to elicit the aeroelastic effects for an insect-sized 

flapping wing. Therefore, a baseline structural wing model is constructed in accordance with the size, mass, and material 

properties of bumblebee wings. Around the baseline, the amplitude of corrugation and the plate thickness are systematically 

altered over wide ranges, which affects the anisotropic flexural rigidity and mass of the wing in addition to the aerodynamics. 

Using the results from the parametric study, we discuss the optimal corrugated cross section for an elastic flapping wing in 

comparison with the structural design of insect wings. The unsteady aeroelastic calculation is based on 3-D Navier–Stokes 

equation for aerodynamics coupled with a modified mode method for the structure. To validate the numerical method, thrust 

and natural frequencies are measured using scale-up models for an elastic flapping wing with a corrugated cross section. 

 

II. Numerical Model and Methods 

A.  Flapping-Wing Kinematics 

The three-dimensional coordinate system of a flapping wing is shown in Fig. 1. The XYZ system is fixed to the body, and the 

xyz system is fixed to the undeformed starboard wing. The simplified wing kinematics comprises two motions: flapping and 

feathering. The flapping motion is a rotational oscillation around the body axis (X-axis), and the feathering motion is a rotational 

oscillation around the span axis (y-axis) of the wing. Because this study focusses on hovering flight, the stroke plane of the 

flapping wing (YZ plane) was horizontal, and the wing was moved in the same pattern between the up- and downstrokes to 

cancel the horizontal force (or drag). The flapping angle ϕ can be defined as the angle from the neutral axis (Y-axis) of the 

flapping oscillation to the spanwise axis of the wing. The feathering angle θ can be defined as the angle between the wing chord 

line and the vertical axis. In this study, the flapping and feathering oscillations applied to the wing base were provided as two 

simple sinusoidal waves with a phase difference of 90 deg, which are given as follows:  



𝜙inሺ𝑡ሻ ൌ െ𝜙෠incos ሺ2𝜋𝑓in𝑡ሻ  

(1) 

𝜃inሺ𝑡ሻ ൌ െ𝜃෠incos ሺ2𝜋𝑓in𝑡 ൅ 𝜋/2ሻ 

A baseline model for an insect-sized corrugated flapping wing was developed in accordance with wings of bumblebees 

(Bombus terrestris), which have corrugated cross sections [36]. In accordance with the measured data for a bumblebee [47], 

the input flapping frequency fin was 150 Hz, and the input flapping amplitude ϕ෠ in was 55 deg. The input feathering amplitude 

θ෠in was 45 and 0 deg for the semi-passive or fully passive feathering to simulate both biological and robotic applications. In 

the recent FWMAVs [1–5], the feathering rotation is not input at the wing base (θ෠in = 0) and is achieved by fully passive 

torsional deformation. In contrast, the feathering response of insects is modeled as an input feathering rotation and a passive 

torsional deformation [17–20, 23, 26, 43] although the exact input amplitude is still unknown. In this study, θ෠in was set to 45 

deg, at which a rigid flapping wing generates lift close to the maximum [16]. A wing response during a flapping cycle is caused 

by these input oscillations and aeroelastic deformation. The output flapping and feathering angles are denoted by ϕout and θout, 

respectively, and the deformation angles of flapping and feathering are denoted by ϕdef (= ϕout – ϕin) and θdef (= θout – θin), 

respectively.  

    

B.  Wing Structural Model 

Insect wings are composed of complicated structural elements [33–35]. The hollow veins and extremely thin membrane 

contribute to the very light-weight structure. The distinguishing vein pattern, inhomogeneous thick distribution, and corrugated 

cross sections provide the wing with appropriate stiffness and mass distribution, resulting in a preferable aeroelastic deformation 

during a flapping cycle. In this study, the wing model was simplified as shown in Fig. 2 to elicit fundamental aeroelastic effects 

of a corrugated cross section. The wing length and mass were set to the averaged data of the bumblebee wings used for the 

tensile tests of the wings [48]. The averaged semi-span length R is 13.06 mm, and the wing mass mw is 0.52 mg. The wing had 

a rectangular planform with the same semi-span length and aspect ratio (= 2R2/Sw = 6.25 [36]) as those of the bumblebee wing 

(consequently, c = 4.18 mm). Owing to the rectangular planform, the corrugated cross section is quite identical at each span 

station. The flapping axis was at the wing base, and the feathering axis was located 0.25c away from the leading-edge. The 

wing was fixedly supported at the wing base with a width of 0.25c around the feathering axis, and the input flapping and 

Fig. 1  Coordinate systems of a flapping wing. 
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feathering oscillations shown in Eq. (1) were applied to the wing base. The corrugated cross section of the wing was simplified 

as a triangular wave, similar to previous studies [33,41–45]. Although Dao et al. [45] showed that the corrugations placed on 

the entire wing chord are not beneficial to enhance the aerodynamic performance, we implemented five waves (nw = 5) with 

an amplitude of aw0 from 0.1c to 0.9c to minimize a local reinforcement effect for a simple discussion. Consequently, a wave 

length λ is 0.16c, which covers the wave length shown in the literature [33] (0.30c for an ichneumon, 0.27c for a crane fly, and 

0.16c for a hoverfly). Furthermore, each 10% chord at the leading- and trailing-edges is flat to minimize the aerodynamic 

camber effect. Each vertex of the triangular wave was rounded from 75% amplitude to reduce the effect of sharp edges on 

aerodynamics; thus, the net amplitude is represented as aw. The rounded vertices are more feasible design in manufacturing 

than the sharp vertex. The middle surface of the corrugated plate is denoted by zw(x, y). Because the wing had an isotropic 

material and a homogeneous thickness h, the anisotropic flexural rigidity of the wing was provided by only the corrugated cross 

section. 

Material properties of the wing were determined so that the balance of elastic and inertial forces of the wing agrees with that 

of bumblebee wings. Insect wings are composed primarily of cuticle, whose material properties can vary depending on the 

hydration, sclerotization, and chitin fiber orientation [35]. In our homogeneous wing model, the Young’s modulus was set to 

3.75 GPa, which is the average of the Young’s moduli of the leading-edge vein (5.14 GPa) and of the membrane near the wing 

tip (2.36 GPa) measured in the tensile tests of the bumblebee’s wings [48]. The Poisson’s ratio is 0.49, which is commonly used 

for biomaterials [49]. The density of cuticle is 1200 kg/m3 [49]. However, when the actual material density is utilized for our 

homogeneous wing model, the inertial contribution can be overestimated compared with the elastic one because the wing model 

neglects the complicated inhomogeneous structures (e.g., hollow vein tubes, vein pattern, and thickness distribution). Thus, the 

material density was modulated so that the flexural rigidity and mass of the baseline wing model were the same as those of the 

actual wings of bumblebees. The spanwise and chordwise flexural rigidities of the baseline model were determined in 

accordance with the measurement performed by Combes and Daniel [34] in a cantilever beam bending test for wings of various 

species of insects. They obtained the regression relations of the spanwise and chordwise flexural rigidities with the size of the 

insects’ wings. Using the regression relationship, the spanwise flexural rigidity (EIs) for the baseline model was estimated to be 

3.05 × 10-6 Nm2, and the chordwise one (EIc) was 2.10 × 10-7 Nm2. When the corrugated wing was regarded as a simple 

Bernoulli-Euler cantilever beam, as was done in a previous study [34], the spanwise and chordwise flexural rigidities for the 

triangular-wave cross section without rounded vertices can be given by [33] 
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 (3) 

where EIs
flat = Ech3/12 and EIc

flat = ERh3/12, which denote the flexural rigidities for a flat plate. In accordance with Eqs. (2) and 

(3) considering rounded vertices, h = 40.1 µm and aw/c = 2.62% are necessary for the baseline model to attain both the estimated 

spanwise and chordwise flexural rigidities. The aw/c estimated above agrees well with the amplitude of corrugation of 3% used 

in previous studies [41–45], which is the average of various insects’ wings [33]. Using the estimated h and aw/c for the baseline 

model and the mass of the bumblebee’s wing mw, the apparent material density was estimated to be 202 kg/m3. In the numerical 

simulation, the apparent material density of wing ρw was approximately set to 200 kg/m3.  

Around the baseline model based on the bumblebee’s wing determined above, the two parameters, h and aw, were varied 

systematically to investigate the aeroelastic effects of corrugated flapping wings. The amplitude of the sharp triangle wave aw0 

was set to 0, 1, 2, 3, 4, and 5% c. These wings are named Flat, Crg1, Crg2, Crg3, Crg4, and Crg5, respectively. As a result of 

the rounded vertices, the net amplitude aw was reduced to 0.87, 1.74, 2.58, 3.41, 4.23% c, respectively. The structural parameters 

for each model are summarized in Table 1. The vertex angles of the respective cross sections were 152, 127, 106, 90, and 77.3 



deg, respectively, which covered the range of values of the seven species of insects, 102–160 deg, measured by Rees [33]. As 

shown in Eqs. (2) and (3), the variations of h and aw affect the ratio of the spanwise and chordwise flexural rigidities in addition 

to the wing mass; consequently, they change the natural frequencies and vibrational modes of the wing. In this study, h was 

selected so that the ratio of the first natural frequency to the input flapping frequency, f1* = f1/fin, was in the range of 1.0–4.5, as 

shown in Table 1. This frequency range covers the natural flyers at 1.25 < f1* < 3.33 [22] and is enough to demonstrate the 

aeroelastic characteristics of the insect-sized flapping wing. As described subsequently in Sec. IV, considerable deformation 

occurred at f1* < 1 whereas the wing response approached that of the rigid wing at f1* > 4.5. 

 

Table 1  Structural parameters in the range of f1
* = 1–4.5 

Wing aw/c, % f1* h, µm 2aw/h 4aw/λ EIS
crg/EIS

flat EIC
crg/EIC

flat 

Flat 0 
1.0 42 

0 0 1 1 
4.5 188 

Crg1 0.87 
1.0 9 8.1 

0.22 
52 

0.98 
4.5 182 0.40 1.2 

Crg2 1.74 
1.0 6 24 

0.43 
472 

0.93 
4.5 150 0.94 2.0 

Crg3 2.58 
1.0 4 54 

0.65 
2510 

0.87 
4.5 90 2.4 6.4 

Crg4 3.41 
1.0 3 95 

0.85 
8370 

0.80 
4.5 50 5.7 32 

Crg5 4.23 
1.0 3 117 

1.1 
13800 

0.74 
4.5 30 9.1 84 

 

C.  Numerical Methods 

Unsteady aeroelastic responses and aerodynamic characteristics of the corrugated flapping wings were calculated using the 

3-D Navier–Stokes solver coupled with the equations of motion of the wing in modal space. Prior to the unsteady aeroelastic 

analysis, modal analysis using the finite element method (FEM) was conducted for the wing models using a commercial 

structural analysis software, ANSYS 18.0. Two-dimensional four-nodes shell elements (SHELL181) were employed on the 

corrugated wing surface. The wing was rigidly supported at the wing base, as shown in Fig. 2. The k-th natural frequency fk, 

the mode shape Φk (x, y), and the modal mass Mk were obtained through modal analysis, and the in-plane vibrational modes 

were ignored. The number of elements was 187 in the spanwise direction, and 61 in the chordwise direction for Flat, 76 for 

Crg1, and 96 for Crg2–Crg5, which were based on the mesh convergence analysis. We confirmed that the modal characteristics 

calculated using the 2-D shell elements agree well with those obtained using 3-D solid elements for the range of h and aw used 

in this study. The comparison of the two results are shown in Appendix. 

In the unsteady aeroelastic analysis, the out-of-plane displacement w of the neutral surface of the corrugated plate comprises 

the forced displacement win and the elastic deflection wd, as follows: 

𝑤ሺ𝑥,𝑦, 𝑡ሻ ൌ 𝑤inሺ𝑥,𝑦, 𝑡ሻ ൅ 𝑤dሺ𝑥,𝑦, 𝑡ሻ  (4) 

In the mode method, the elastic deflection is represented as a superposition of the modes (N = 3) and is given by 

𝑤ௗሺ𝑥,𝑦, 𝑡ሻ ൌ෍𝛷௞ሺ𝑥,𝑦ሻ𝜉௞ሺ𝑡ሻ

ே

௞ୀ1

 (5) 

where ξk is the kth modal coordinate. The equation of motion for the wing is represented in modal space as follows: 



𝜉ሷ� ൅ 2𝜋ሺ𝑓௞
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1

𝑀௞
ඵሺ𝐹௡𝛷௞ െ 𝜌wℎ𝛷௞𝑤ሷ inሻ𝑑𝑥𝑑𝑦
ௌ

 (6) 

where gk is the structural damping coefficient (gk = 0.01), and Fn is the aerodynamic force normal to the wing, which is obtained 

by solving the 3-D Navier–Stokes equations with computational fluid dynamics (CFD) at each time step. The out-of-plane 

acceleration of the wing surface caused by the forced-oscillation shown in Eq. (1) is given by 

𝑤ሷ inሺ𝑥,𝑦, 𝑡ሻ ൌ 𝑥൫𝜙ሶ in
2 sin 𝜃in cos𝜃in െ 𝜃ሷin൯ ൅ 𝑦𝜙ሷ in cos𝜃in െ 𝑧w൫𝜙ሶ in

2 cos2 𝜃in ൅ 𝜃ሶin
2൯ (7) 

By solving Eq. (6) using an implicit time-integration, the modal coordinates can be obtained at each time step.  

The conventional representation of deflection in the linear mode method shown in Eq. (5) distorts the corrugated cross-

sectional shape with increasing deflection because the large rotation in geometric nonlinearity is neglected. In this study, the 

representation of the chordwise deflection was modified so that the chordwise arc length of the neutral surface of plate 

maintained its original length after deflection. The chordwise angle of deflection ζx is represented as a superposition of the 

chordwise gradient of the vibrational modes, as follows: 

𝜁�ሺ𝑥,𝑦ሻ ൌ෍
𝜕𝛷௞

𝜕𝑥
𝜉௞

ே

௞ୀ1

 (8) 

When the chordwise arc length is always maintained after deflection, the displacements of the wing section can be represented 

as an integration of the directional cosine of the line element ds from the elastic axis (x = 0), as shown in Fig. 3. In contrast, the 

displacement in the spanwise direction is still based on the conventional mode method because the spanwise bending is 

generally much smaller than the chordwise bending for flapping wings. Therefore, the displacements of the wing sections in 

the x- and z-directions, ud and wd, respectively, are updated as follows: 

𝑢dሺ𝑥,𝑦ሻ ൌ න cosሼ𝜁௫ሺ𝑠,𝑦ሻሽ 𝑑𝑠
௫

0

െ 𝑥 

(9) 

𝑤dሺ𝑥,𝑦ሻ ൌ 𝑤eaሺ0,𝑦ሻ ൅ 𝑤rሺ𝑥,𝑦ሻ ൌ෍𝛷௜ሺ0,𝑦ሻ

ே

௜ୀ1

𝜉௜ ൅ න sinሼ𝜁௫ሺ𝑠,𝑦ሻሽ 𝑑𝑠
௫

0

 

Once the neutral surface of the wing is determined, the corrugated cross section after deflection can be provided such that the 

height of the corrugation, zw, remains normal to the neutral surface, as shown in Fig. 3.  
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cross section. Fig. 4  CFD grid around the airfoil Crg3. 



 
 

The modified expression shown in Eqs. (8) and (9) approximately considers the nonlinear large rotation in the chordwise 

direction. In contrast, the effects of large rotation in flapping is smaller than that in feathering. According to previous 

experimental and numerical studies [9–12], even if the flapping rotation is linearized (i.e., sin ϕ ≈ ϕ), the aerodynamic force 

and power for the numerical results agree well with the experimental results (2% error in the mean lift and 7% in the mean 

power when ϕ෠ in = 60 deg for a rigid flapping wing [12]) because the rotational effect of flapping is small. To reduce the 

computational cost, the flapping and spanwise bending were linearized, whereas large rotation was considered in the feathering 

and chordwise bending, as follows: 
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The flow around the deformed flapping wing represented in Eq. (10) was solved using an in-house 3-D Navier–Stokes solver, 

which is based on the finite difference method with an implicit-time-integration scheme [50] and a total variation dimisishing 

scheme [51]. The details of the numerical method are described in previous studies [9,11]. The Reynolds number was 1210, 

defined using the chord length and the reference velocity defined as the mean flapping velocity (Uref = 4fin𝜙෠୧୬rref) at the radius 

of gyration rref (= R/√3). Hence, no turbulence model was employed. The reduced frequency (= πfinc/Uref = πc/4𝜙෠୧୬rref) was 

0.453. The Reynolds number and the reduced frequency are almost the same as those of bumblebees [47]. The computational 

domain was 30c in the flow-direction (X) and the stroke-direction (Z), and 3R in the spanwise direction (Y). The symmetrical 

boundary was applied on the X-Z plane. At the wing surface, the no-slip conditions were given. A body-fitted H-H grid was 

arranged around the deformed flapping wing with a zero thickness at each time step, which were moved together with the 

elastic flapping wing on the basis of the geometric conservation law [52]. The grid points were 251 (125 on the wing) in the 

chordwise direction, 44 (31 on the wing) in the spanwise direction, and 101 in the stroke direction (normal to the wing surface). 

The time step was 1/4704 of a flapping cycle. The grid around the airfoil of Crg3 are shown in Fig. 4. 

To investigate the mesh dependency, we calculated the unsteady aerodynamic forces for an elastic flapping wing of Crg5 

using a coarse grid (201 × 35 × 81) and a fine grid (301 × 52 × 121) in addition to the presently employed grid (251 × 44 × 

101). The time histories of aerodynamic force normal to the wing surface, Fn, for the three grids are shown in Fig. 5. There is 

no difference in the aerodynamic force between the present and fine grids. In addition, we confirmed that there is no difference 

in the aerodynamic force and elastic response between the present time step and a fine time step of 1/9408 of a flapping cycle. 

 

D.  Evaluation of Aeroelastic Characteristics 

The aerodynamic characteristics of an elastic flapping wing (i.e., mean lift Lሜ , mean power Pሜ , and hovering efficiency η) 

were evaluated in the eighth flapping cycle in which the aerodynamic force and elastic deformation were in a steady oscillation. 

The flapping and feathering powers required at the wing base are denoted by Pϕ (= Qϕϕ
ሶ
in) and Pθ (= Qθθ

ሶ
in), where Qϕ and Qθ 

Fig. 5  Comparison of the CFD grids. Time 
histories of fluid force normal to the wing 
surface during a flapping cycle for Crg5 

with f1
* = 4.5 when θ෠ in = 45 deg. 
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are the flapping and feathering torques at the wing base, respectively. We employed the assumption that the input flapping and 

feathering motions are actuated by separate actuators or muscles, and these actuators or muscles cannot store and utilize 

negative power [13]. Accordingly, the total mean power Pሜ
+
 is represented as follows:  

𝑃థ,ఏ
ା ሺ𝑡ሻ ൌ MAX൛𝑃థ,ఏሺ𝑡ሻ, 0ൟ, 𝑃തା ൌ mean൛𝑃థ

ାሺ𝑡ሻൟ ൅meanሼ𝑃ఏ
ାሺ𝑡ሻሽ (11) 

Note that the mean inertial power is not zero during a flapping cycle because of the assumption and is comparable in magnitude 

to the mean aerodynamic power. Thus, a light-weight structure is critical to reduce the total power. 

We evaluated the hovering efficiency η, or a figure-of-merit, of a flapping wing based on the ideal momentum theory, which 

is the mean power induced in the air divided by the mean required power [14], which is given by  

𝜂 ൌ
𝐿ത3/2

𝑃തାඥ2𝜌௔𝑅2𝜙෠out
  (12) 

where ρa is the air density. In general, the lift generated by a flapping wing is proportional to the square of the flapping amplitude, 

and the aerodynamic power is proportional to the cube. Therefore, the change in the flapping amplitude does not affect the 

hovering efficiency in terms of the aerodynamic contribution [15]. However, for an elastic flapping wing, the flapping amplitude 

affects the hovering efficiency in terms of the inertial power.  

The wing response was evaluated as the flapping and feathering angles at the reference span station (rref) and the first modal 

coordinate. The time histories of the flapping and feathering angles and the first modal coordinate are expanded in the Fourier 

series as follows:  

𝜙outሺ𝑡ሻ ൌ െ෍𝜙෠௝

∞

௝ୀ1

cos ሺ2π𝑗𝑓in𝑡 ൅ 𝛼௝ሻ 

(13) 𝜃outሺ𝑡ሻ ൌ െ෍𝜃෠௝

∞

௝ୀ1

cos ሺ2π𝑗𝑓in𝑡 ൅ 𝛽௝ሻ 

𝜉1ሺ𝑡ሻ ൌ െ෍ Ξ෠1,௝

∞

௝ୀ1

cos ሺ2π𝑗𝑓in𝑡 ൅ 𝛾1,௝ሻ 

where α, β, and γ are the phase lead with respect to the input flapping oscillation. In this study, the aeroelastic response was 

evaluated with the amplitudes and phases of the first harmonics because the first harmonics are considerably predominant over 

the others; that is, ϕ෠out ൎ ϕ෠1 and θ෠out ൎ θ෠1. The phase lead of the feathering oscillation relative to the flapping oscillation is 

defined as ψF/F = β1 – α1. The phase lag of the output relative to the input is defined as ψI/O = −γ1,1. 

 

III.  Experiments and Numerical Validation 

The numerical methods for CFD and aeroelastic analysis were validated for rigid flat flapping wings [9–12] and for elastic 

flat flapping wings [53] without corrugated airfoils. To validate the aeroelastic simulation described in Sec. II.C for the elastic 

corrugated flapping wings, we measured the natural frequencies and the mean lift using scale-up models. The experimental 

wing model had a scale-up rectangular planform (R = 80 mm and c = 25.6 mm) with the same aspect ratio as the numerical 

model. The wing was made of a polyethylene terephthalate sheet (Toray Lumirror®, Young’s modulus: 6.0 GPa, Poisson’s 

ratio: 0.35, and ρw = 1400 kg/m3). The triangular-waved cross section (aw0/c = 3% and nw = 3 from 0.1c to 0.9c) was developed 

via hot-press molding. Thus, the vertices of the triangular wave were spontaneously rounded. The net aw/c of the wings was 

2.39%, which is almost the same as the numerical models of the baseline (aw/c = 2.62%) and Crg3 (aw/c = 2.58%) with the 



rounded vertices. For comparison, three wing models were developed: a flat wing with h = 188 µm (named Flat-h188), a 

corrugated wing with h = 188 µm (Crg-h188), and a corrugated wing with h = 120 µm (Crg-h120). The thicknesses were 

selected from the available films and 2aw/h is 6.51 and 10.2, respectively, which cover the range of the numerical model shown 

in Table 1. The two resulting corrugated wings had a chordwise-bending mode due to spanwise reinforcement by corrugation. 

The wings were fixed at the wing base from 0 to 0.25c, as shown in Fig. 6a.  

 

 
 

In measurement of natural frequencies, a small sinusoidal oscillation was applied to the wing base. By sweeping the oscillated 

frequency, the responses of the wing were measured using laser displacement measurements and a fast Fourier transform (FFT) 

analyzer. Using the measured frequency spectrum, the first and second natural frequencies were identified. The natural 

frequencies were measured using a single specimen in each model. In addition, modal analysis was conducted for the 

experimental model using FEM with the element size of 0.5 mm. The first and second natural frequencies of the experimental 

and numerical results are shown in Table 2. The experimental and numerical natural frequencies show good agreement. 

The lift measurement system is shown in Fig. 6b. The wing was fixed at the wing base 30 mm apart from the flapping axis 

of the flapping mechanical apparatus and was oscillated horizontally at ϕ෠ in = 21.4 deg. These parameters were different from 

the numerical model because of the limitation of the mechanical apparatus. The wing was mounted on the apparatus such that 

the leading-edge of the wing was directed downward to minimize the interaction between the wake and the measurement 

system. The time-averaged downward lift at several input frequencies was measured using an electric balance (BX3200H, 

Shimadzu Corporation). The mean lift was measured and averaged with three specimens in each model. Additionally, 

aeroelastic analyses for the experimental models were conducted using the same grid described in Sec. II.C. The mean lift with 

respect to the input frequency for the experimental and numerical results is shown in Fig. 7, where the horizontal axis f1* is the 

ratio of the first natural frequency to the input flapping frequency. The numerical results quantitatively agree well with the 

b) Lift measurement system 

a) Photograph of the corrugated wing  

Fig. 6  Experimental apparatus and wing model. 
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Fig. 7  Mean lift with respect to the natural 
frequency ratio for experimental and 
numerical results. 
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experimental results, indicating the validity of our aeroelastic analysis. In the experiment, structural failure occurred at the wing 

bases of Crg-h188 and Crg-h120 at f1* < 1.5 due to the large deformation. 

 

Table 2  Natural frequencies of the experiment and numerical results 

Wing 
f1, Hz f2, Hz 

Exp. Num. Exp. Num. 

Flat-h188 9 8 50 45 

Crg-h188 26 27 73 76 

Crg-h120 22 21 64 63 

 

IV.  Results 

A.  Structural Characteristics 

In this study, the plate thickness h for each wing model was varied, which consequently modulates the natural frequency or 

the balance of elastic to inertial forces. Figure 8 shows the relation of f1* to the wing mass, which is proportional to h. The mass 

ratio mw
* is defined as mw/ρaSwc based on the literature [54]. The structural characteristics of the wings can be coordinated by 

changing f1* instead of h because f1* has a one-to-one relation with h and because the aeroelastic responses of the flapping wings 

are dominated by the first mode. Figure 8 shows that the corrugated cross section with a higher aw can reduce the weight with 

the natural frequency kept constant. The wing masses of Crg1–Crg4 asymptotically approach that of Crg5 with decreasing f1* 

and that of Flat with increasing f1*. The weight reduction effect due to corrugation is weaker for the wings with a higher aw or 

a smaller f1* (i.e., a thinner h).  

Figure 9a shows the representative first mode shapes at f1* = 1.5, 3.0, and 4.5. The first mode shape is categorized into a 

spanwise-bending mode, a chordwise-bending mode, or a mixture of both. To quantitatively evaluate the mode shapes, the 

representative gradient direction of mode shape was calculated, which is the average in the range of 0.5–1.0c at rref. The gradient 

directions of the first modes for the corrugated wings are shown in Fig. 9b, where the spanwise and chordwise directions denote 

0 and 90 deg, respectively. The mode shape of Flat is dominated by the spanwise bending and is independent of h (i.e., f1*), 

while the mode shape of Crg5 is dominated by the chordwise-bending mode and does not change significantly with f1*. The 

mode shapes of Crg1–Crg4 asymptotically approach that of Flat with increasing f1* and that of Crg5 with decreasing f1*, as well 

as the tendency of the wing mass, as shown in Fig. 8. These results indicate that the wings with a chordwise-bending mode 

have a lighter weight than those with a spanwise-bending mode when the wings with the same f1* are compared. 

According to Eqs. (2) and (3), the spanwise flexural rigidity ratio, EIS
crg/EIS

flat, depends on 2aw/h and 4aw/λ, whereas the 

chordwise one, EIC
crg/EIC

flat, depends only on 4aw/λ. As shown in Table 1, 4aw/λ is in the order of magnitude of 0.1–1, whereas 

2aw/h varies considerably with h. Therefore, the effect of 4aw/λ can be neglected in comparison with that of 2aw/h. Actually, 

EIC
crg/EIC

flat does not significantly vary with aw and is approximately equal to the ratio of the curve length of the corrugated 

cross section to the chord line (i.e., the wing area ratio of the flat to the corrugated wing). In contrast, EIS
crg/EIS

flat varies 

considerably with 2aw/h. Therefore, the corrugation reinforcement is considered to be approximately dependent on only 2aw/h 

and is effective for only the spanwise flexural rigidity. For the flat wing, spanwise bending appears in the first mode because 

the spanwise bending stiffness (EIS/R) is smaller than the chordwise one (EIC/c) due to the aspect ratio (R > c). For corrugated 

wings, the ratio of the spanwise to chordwise bending stiffness varies primarily with 2aw/h. When the spanwise bending stiffness 

becomes larger than the chordwise one due to the corrugation reinforcement with increasing 2aw/h, chordwise bending appears 

in the first mode. Once the chordwise bending is predominant in the first mode, the further increase of 2aw/h no longer varies 

the first mode shape because 2aw/h is not effective for the chordwise reinforcement; therefore, the structural characteristics are 

similar among the corrugated wings with increasing 2aw/h (e.g., Crg2–Crg5 at a smaller f1*). Conversely, as 2aw/h decreases, 

the corrugation reinforcement does not work, and the structural characteristics of the corrugated wing become similar to those 

of the flat wing (e.g., Crg1 at a higher f1*). 



 
 

B.  Aerodynamic and Aeroelastic Characteristics 

Prior to discussing aeroelastic characteristics, aerodynamic characteristics of the rigid corrugated wings are discussed. Table 

3 shows the mean lift, mean power, and hovering efficiency of the rigid corrugated wings divided by those of Flat when θ෠in = 

45 deg. Note that the power shown in Table 3 denotes the aerodynamic power without the inertial power. The mean lift slightly 

decreases with increasing height of corrugation, whereas the aerodynamic power slightly increases; consequently, the hovering 

efficiency decreases with the height of corrugation. These tendencies agree with a previous study on rigid corrugated flapping 

wings [41].  

 

Table 3  Aerodynamic characteristics of rigid wing models when θ෠ in = 45 deg 

 Crg1 Crg2 Crg3 Crg4 Crg5 

Lതcrg/Lതflat 1.00 0.98 0.95 0.90 0.86 

P̅a,crg/P̅a,flat 1.00 1.01 1.02 1.02 1.02 

ηcrg/ηflat 0.99 0.95 0.90 0.84 0.77 

 

Next, aerodynamic characteristics of the elastic corrugated wings are discussed. Figure 10 shows the hovering efficiency η 

with respect to f1* when θ෠in = 45 and 0 deg. Although the calculation was conducted in the range of 1 ≤ f1* ≤ 4.5, a converged 

solution was not obtained in some cases when f1* was small because of a considerable deformation and/or excitation of the 
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high-order modes. However, this is inconsequential for our discussion because these cases considerably diminish lift (as 

subsequently shown in Figs. 15a and 17a) and are at a high risk for structural failure. The aerodynamic characteristics and wing 

responses when the wing models have respective peaks of η are shown in Table 4. The tendency of η with respect to f1* is 

classified into two groups: Flat–Crg1 and Crg3–Crg5. The former group has a lower aw and a peak of η at f1* < 2, whereas the 

latter has a higher aw and a peak of η at f1* > 2. Each group has peaks of η at almost the same f1* when θ෠in = 45 and 0 deg, 

respectively. The peak value of η decreases with increasing aw for Crg3–Crg5, while it increases with aw for Flat–Crg1. Crg2 

has an intermediate tendency between the two groups. Crg2 has a peak of η at f1* = 2.6 between the two groups when θ෠in = 45 

deg, which is the maximum η among all the wings. When θ෠in = 0 deg, Crg2 has two peaks of η at f1* = 2.1 like Crg3–Crg5 

and f1* = 1.4 like Flat–Crg1. Although the peaks of η of Crg1 and Crg2 at f1* < 2 are larger than those of Crg2–Crg5 at f1* > 2, 

the corresponding lifts of Crg1 and Crg2 are extremely smaller than those of Crg2–Crg5, which means that the peaks of η at f1* 

< 2 are not a reasonable solution. Thus, Crg2 at f1* = 2.1 and Crg3 at f1* = 2.3 are regarded as optimal wings when θ෠in = 0 deg. 

In summary, the optimal wing is Crg2 (aw/c = 1.7%) with f1* = 2.6 and mw
* = 1.5 when θ෠in = 45 deg, and Crg2–Crg3 (aw/c = 

1.7–2.6%) with f1* = 2.1–2.3 and mw
* = 0.7–0.8 when θ෠in = 0 deg. The optimal wings have a mode shape which asymptotically 

approaches the chordwise-bending mode of Crg4 and Crg5, as shown in Fig. 9. In contrast, the baseline model based on the 

insect wings has aw/c = 2.6%, f1* = 3.6 and mw
* = 1.9. In comparison between the optimal results and the baseline, the optimal 

wings are close to the baseline model. This indicates that insect wings have structural characteristics which are similar to the 

optimal design although the wing design of insects is slightly conservative. Furthermore, the results show that the corrugation 

is aeroelastically effective in providing the appropriate anisotropic stiffness and light-weight structure for insect wings. 

Figure 11 shows the time histories of the response flapping and feathering motions during a flapping cycle for the wings with 

a peak η. In addition, the sequences of wing motion in the upstroke for Crg2 with a peak η are shown in Fig. 12. The waveforms 

of wing motions are also classified into two groups. The response feathering motions for the wings with a higher aw and a peak 

η at f1* > 2 are similar trapezoidal waves, whereas those for the wings with a lower aw and a peak η at f1* < 2 are similar 

sinusoidal waves. According to a previous study [12], a trapezoidal feathering motion enhances lift and efficiency more than a 

sinusoidal one. In the next chapter, we discuss the optimal corrugated flapping wing from the perspectives of the aeroelastic 

responses and the structural characteristics. 

 

 

Table 4  Aeroelastic characteristics with the maximum η 

θ෠in Wing f1* mw
* η Lത ϕ෠out  θ෠out ψI/O 

deg        mN deg deg deg 

45 

Flat 1.9 3.0  0.15 1.8 69 47 106 

Crg1 1.9 2.0  0.17 1.6 65 55 111 

Crg2 2.6 1.5  0.20 1.2 60 60 105 

Crg3 3.1 1.3  0.19 1.0 58 60 103 

Crg4 3.3 1.3  0.18 1.0 57 59 103 

Crg5 3.3 1.2  0.16 0.9 56 59 103 

0 

Flat 1.0 1.6  0.01 0.2 36 8 126 

Crg1 1.2 0.5  0.20 0.5 41 65 98 

Crg2 1.4 0.4  0.17 0.5 55 70 94 

2.1 0.8  0.16 1.3 60 51 113 

Crg3 2.3 0.7  0.16 1.1 59 53 113 

Crg4 2.2 0.6  0.15 1.0 57 54 114 

Crg5 2.3 0.7  0.14 0.9 56 51 117 
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Fig. 12  Wing motion sequences in the upstroke for 

Crg2 with the maximum η. 
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V.  Discussion 

A.  Aeroelastic Responses in Semi-Passive Feathering 

Figures 13a and 13b show the response amplitudes of flapping and feathering motions at rref with respect to f1* when θ෠in = 

45 deg. Figures 13c and 13d show the phase lag between the input and output oscillations, ψI/O, and the phase lead of the 

feathering motion relative to the flapping motion, ψF/F. First, we focus on the responses at f1* > 2. A decrease in f1* (i.e., a 

decrease of h) reduces the flexural rigidity of the wing in both the spanwise and chordwise directions, which consequently 

increases the quasi-static elastic deformation. Moreover, a further decrease in f1* approaching the resonance (f1* = 1) adds a 

dynamic elastic deformation to the response. As shown in Figs. 13a and 13b, for the wings with the spanwise-bending mode 

(i.e., Flat and Crg1), ϕ෠def  and ϕ෠out  increase with decreasing f1*, whereas θ෠def  and θ෠out  do not change. Similarly, for the 

wings with the chordwise-bending mode (i.e., Crg3–Crg5), θ෠def and θ෠out increase with decreasing f1*, whereas ϕ෠def and ϕ෠out 

do not change. For Crg2, θ෠def and θ෠out remarkably increase at f1* = 3.0 to 2.4, which is attributed to the drastic changes in the 

mode shape from the spanwise to chordwise-bending directions, as shown in Fig. 9b. Next, we focus on the responses at f1* < 

2. For Flat, ϕ෠out decreases with decreasing f1* despite the increase in ϕ෠def. This is caused by the rapid shift in ψI/O at f1* < 2 due 

to resonance, as shown in Fig. 13c. The spanwise bending with large phase lag relative to the input flapping oscillation not only 

reduces the flapping amplitude but also causes a large figure-of-eight stroke deviation at the wing tip in the semi-passive 

feathering motion, as shown in Fig. 14a, resulting in lift reduction and a slight decrease in the efficiency [16]. For Crg1, both 

the rapid shift in ψI/O and the mode conversion from the spanwise to chordwise-bending directions occur at the same time at f1* 

< 2, which causes both a reduction in ϕ෠out  and an increase in θ෠out . In the semi-passive feathering motion, ψF/F is mainly 

dominated by the input ψF/F of 90 deg when ψI/O is small at f1* far from 1.0, as shown in Figs. 13c and 13d. However, the increase 

in ψI/O with f1* decreasing and approaching the resonance also causes a drastic increase in ψF/F apart from the input of 90 deg, 

which significantly reduces the efficiency [12,16] for Flat and Crg1, as shown in Fig. 10a.  

The mean lift with respect to f1* is shown in Fig. 15a. At f1* = 4.5, where the wing is considered to be rigid, the small difference 

in lift among Flat–Crg5 is attributed to the aerodynamic effect of the corrugated airfoils and agrees with those in the rigid cases 

shown in Table 3. The lift for the wings with the spanwise-bending mode (e.g., Flat and Crg1) increases with decreasing f1* but 

decreases considerably at f1* < 2. This tendency of lift agrees with that of ϕ෠out shown in Fig. 13a because lift is proportional to 

the square of ϕ෠out. In contrast, lift for the wings with the chordwise-bending mode (e.g., Crg3–Crg5) slightly varies with f1*. A 

small peak of Crg3–Crg5 appears at f1* = 3.4–4.0 when θ෠out reaches 54–55 deg with the appropriate chordwise bending. The 

mean total power with respect to f1* are shown in Fig. 15b. As shown in the rigid case, the effect of corrugation on the 

aerodynamic power is small. Nevertheless, at f1* = 4.5, where the wing responses are almost the same among Flat–Crg5, there 

is a remarkable difference in the total power among the wing models. This indicates that the difference in the total power is 

mainly attributed to that in the inertial power, or the wing mass. The total power tends to decrease with decreasing f1*, which is 

similar to the tendency of mw, as shown in Fig. 8. At f1* < 3, the total power of Flat and Crg1 increases with decreasing f1* 

despite the decrease in mw, which is attributed to the increase in the aerodynamic and inertial powers due to the increase in the 

flapping amplitude. 

The hovering efficiency η is mainly dominated by the aerodynamic effect of airfoil, wing response, and inertial power (or 

wing mass). When Crg2–Crg5 have the respective maximum η, the wing responses and wing masses are almost the same 

among them (e.g., θ෠out = 59–60 deg), as shown in Table 4. Thus, the difference in the peak value of η among Crg2–Crg5 is 

attributed to the aerodynamic effect of the corrugated airfoils; that is, a high amplitude of corrugation is aerodynamically 

detrimental to the hovering efficiency, as shown in the rigid case. In contrast, Flat and Crg1, which have a spanwise-bending 

mode, does not attain the preferable feathering angle of 60 deg at f1* > 2. Although Crg1 attains the feathering angle of 59 deg 

at f1* = 1.8, the mode shape stil includes spanwise bending; consequently, the wing mass is heavier than the wings with the 

chordwise bending (i.e., Crg2–Crg5). At f1* < 2, the rapid phase shifts in ψI/O and ψF/F occur due to resonance. The drastic phase 

shift in ψF/F apart from 90 deg reduces η [12,16]. Furthermore, for the wings including spanwise bending in the first mode, the 

phase shift in ψI/O is detrimental to the hovering efficiency because of a decrease of ϕ෠out and an occurrence of the figure-of-

eight stroke deviation. In addition, Flat and Crg1 with the maximum η do not have a trapezoidal waveform but a sinusoidal 



waveform of feathering motion, as shown in Figs. 11b, which also reduces η [12,16]. Therefore, the maximum η of Crg1 at f1* 

< 2 is smaller than that of Crg2 at f1* > 2. 
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Fig. 13  Aeroelastic responses with respect to the 
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B.  Aeroelastic Responses in Fully Passive Feathering 

Figure 16 shows ϕ෠out, θ
෠

out, ψI/O, and ψF/F with respect to f1* when θ෠in = 0 deg. Figure 16b indicates that θ෠out increases 

monotonically with decreasing f1* for the wings with the chordwise-bending mode (e.g., Crg2–Crg5) due to the decrease in the 

chordwise flexural rigidity. Figure 16a indicates that Flat has a peak of ϕ෠out at f1* = 1.5 although ϕ෠def increases monotonically 

with decreasing f1*. This is attributed to the rapid phase shift in ψI/O at f1* < 2, as shown in Fig. 16c. The increase in ψI/O not only 

reduces ϕ෠out but also produces an inappropriate flapping motion with a phase lag between the wing base and tip, as shown in 

Fig. 14b. The remarkable difference in the wing response between θ෠in = 0 and 45 deg is the relation of ψI/O to ψF/F. When a 

wing ideally has only a pure chordwise bending without spanwise bending, ψF/F = 180 deg − ψI/O when θ෠in = 0 deg. For the 

wings in which the chordwise-bending mode is predominant (i.e., Crg3–Crg5), this relation is approximately satisfied; that is, 

when ψI/O increases rapidly from 45 to 90 deg with decreasing f1*, ψF/F decreases from 135 to 90 deg, which improves the 

hovering efficiency [12,16]. For the wings including spanwise bending in the first mode (e.g., Flat), the shift in ψI/O does not 

affect the shift in ψF/F significantly because it affects both phases of flapping and feathering oscillations at the same time. 

The mean lift with respect to f1* is shown in Fig. 17a. For Crg2–Crg5, the peaks of lift appear at f1* = 2.3–2.8 when θ෠out = 

42–44 deg; the peak value is larger with a lower aw. In contrast, the peaks of lift for Flat and Crg1 appear at f1* = 1.5–1.6, at 

which ϕ෠out has almost the maximum value. The peak values of lift for Flat and Crg1 are smaller than those of Crg2 because 

θ෠out is as small as 6 deg for Flat and 35 deg for Crg1. The mean total power with respect to f1* is shown in Fig. 17b. The total 

power of each wing model tends to decrease with decreasing f1* because of the decrease in the wing mass and the increase in 

the feathering amplitude. Similar to the case with θ෠in = 45 deg, the difference in total power among Flat–Crg5 is mainly 

attributed to that in wing mass; that is, the wings with the chordwise-bending mode have a lighter weight and reduce the inertial 

power. In contrast, the wings with the spanwise-bending mode (e.g., Flat and Crg1) need larger total power because of the larger 

flapping amplitude and the heavier wing mass than the others. 

As shown in Fig. 10b, the peaks of η appear at f1* = 2.1–2.3 for Crg2–Crg5. Among the four wings, the wing responses and 

wing masses are almost the same (e.g., θ෠out = 51–54 deg), as shown in Table 4. Thus, the difference in the peak value of η 

among Crg2–Crg5 is attributed only to the aerodynamic effect of the corrugated airfoils. In contrast, on the peaks of Crg1 and 

Crg2 at f1* < 2, θ෠out  = 65–70 deg, which is larger than the feathering angle of 51–54 deg for Crg3–Crg5 with peak η. 

Furthermore, the drastic phase shift in ψI/O at f1* < 2 causes an inappropriate flapping motion, as shown in Fig. 14b. Therefore, 

Crg2 at f1* = 2.1 has the maximum η of all the wings. 

 

C.  Effects of High-Order Modes 

In this section, the effects of high-order modes on the aeroelastic characteristics of the corrugated flapping wings are 

discussed. Figure 18 shows the intensity (root mean square) of each modal coordinate with respect to f1*. The intensity in the 

third mode is not shown on the graph because it is much smaller than the others. When θ෠in = 45 deg, the effect of the second 

mode is much lower than that of the first mode; therefore, the previous discussion focusing on the behavior of the first mode is 

valid. When θ෠in = 0 deg, the intensity of the second mode increases at f1* < 2.5. The representative second mode shapes for 

Flat–Crg5 at f1* = 2.0 are shown in Fig. 19. All the second modes have similar spanwise torsion, and no remarkable mode 

conversion with respect to f1* occurs unlike that for the first modes. To evaluate the effect of the second mode on the aeroelastic 

characteristics, we conducted an identical aeroelastic simulation using only the first mode and neglecting the second and third 

modes. The hovering efficiency calculated with only the single mode is shown in Fig. 20, in addition to the results calculated 

with the three modes shown in Fig. 10. When θ෠in = 45 deg, the results with the single mode show good agreement with those 

with the three modes. In contrast, when θ෠in = 0 deg, there is a large discrepancy of η at 1.3 < f1* < 2.5 due to the excitation of 

the second mode, which indicates that the dips of η at 1.3 < f1* < 2.2 for Crg2 and Crg3 in the calculation with the three modes 

are mainly attributed to the excitation of the second modes. To elaborate the wing motions when the dip of η appears, the time 

histories of the flapping and feathering motions for Crg2 with the single and with the three modes are shown in Fig. 21. In 

comparison with Figs 21a and 21b, it can be seen that the feathering motions calculated with the three modes do not have a 

trapezoidal waveform but have a twin-peak waveform in each up- and downstroke at 1.3 < f1* < 2.2. This result indicates that 

the second mode extremely enhances the third-harmonic oscillation of the feathering motion in 1.3 < f1* < 2.2, which causes a 



reduction in the hovering efficiency. Further study is necessary to clarify the effects of high-order modes and high harmonics 

on the aeroelastic characteristics of a flapping wing. However, as can be seen from Fig. 20, the maximum η appears at almost 

the same f1* (i.e., the same structural design) between the calculations with the single and three modes; f1* = 1.0 and 1.0 for Flat, 

1.3 and 1.2 for Crg1, 1.9 and 2.1 for Crg2, 2.0 and 2.3 for Crg3, 2.1 and 2.2 for Crg4, and 2.2 and 2.3 for Crg5 in the calculations 

with the single and three modes, respectively. Therefore, the previous discussion focusing on the vibrational behavior of the 

first mode is still valid for explaining the fundamental aeroelastic characteristics of the corrugated flapping wings.  

 

 

 

D.  Optimal Structure of a Corrugated Flapping Wing 

In this study, the optimal wing was Crg2 at f1* = 2.6 when θ෠in = 45 deg and Crg2–Crg3 at f1* = 2.1–2.3 when θ෠in = 0 deg, 

both of which have chordwise bending in the first mode. For the wings with the chordwise-bending mode, the maximum η 

appears when the feathering motion has an appropriate amplitude and phase, which is dominated by an appropriate modal 

stiffness (i.e., f1*). The wings including spanwise bending in the first mode are not preferable for obtaining a high efficiency 

because they have a heavier wing mass than the wings with the chordwise-bending mode, as shown in Fig. 8. For a corrugated 

wing, an increase in aw or a decrease of h yields chordwise bending in the first mode. However, the airfoil with a higher aw 

reduces the hovering efficiency due to the negative aerodynamic effect of corrugation; thus, a corrugated airfoil with a lower 

aw is preferable in terms of aerodynamics. To attain the chordwise-bending mode with a lower aw, a much thinner h is required, 

which results in a decrease in f1*. Therefore, it is difficult for the wings with a lower aw to attain both the chordwise-bending 

mode and the appropriate modal stiffness (i.e., f1*). Furthermore, when f1* decreases less than about two (i.e., fin/f1 > 0.5), a 

drastic phase shift in ψI/O occurs because the resonance is approached, which is detrimental to the hovering efficiency, especially 

for the wings with the spanwise-bending mode because of the occurrence of an inappropriate flapping motion (i.e., a phase lag 

between the wing base and tip and/or a large stroke deviation). In addition, at f1* < 2, the high-order modes induce detrimental 

high-harmonic oscillation to the wing response, which also decreases η. Therefore, the optimal wing satisfies two conditions: 

(1) the amplitude of corrugation is as low as possible in terms of aerodynamics, and (2) the chordwise-bending mode attains as 
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high a f1* as possible without the influences of drastic phase shift due to resonance and the excitation of high-order modes. The 

amplitude of corrugation for the optimal wings, or Crg2 and Crg3, is 1.7–2.6% c, which is close to 1.4–3.3% c of the measured 

data of several insect wings [33]. The wing mass ratio for the optimal wings (mw
* = 0.7–1.5) is also close to that for the baseline 

model (mw
* = 1.9). These agreements between the optimal wings and insect wings indicate that insects utilize corrugation to 

attain both preferable aeroelastic deformation and wing-weight reduction. Furthermore, the optimal f1* of 2.1–2.6 (i.e., fin/f1 = 

0.38–0.48 as a conventional expression) is close to those shown in previous studies (fin/f1 = 0.4 [22], 0.5–0.6 [31], and 0.3–0.35 

[54]). 

 

 

 

The structural parameters of the optimal wings (f1* = 2.1–2.6 are mw
* = 0.7–1.5) are slightly smaller than those of the baseline 

model (f1* = 3.6 and mw
* = 1.9), which indicates that the plate thickness of the optimal wings is thinner than that of the baseline 

model. This disagreement indicates that insect wings are designed conservatively in comparison with the optimal wings. In this 

study, the strength of the wing structure was not considered despite the large deformation occurring in the optimal wings. If the 

strength and fatigue of the wing material are considered, a more conservative design with a larger thickness (i.e., a larger f1*) 

could be obtained in the numerical result. The optimal wing structure can be obtained not only by corrugation but also by an 

anisotropic material. If a highly anisotropic material is employed, even a flat wing could achieve such an optimal structure with 

a light weight. However, according to previous studies [35,48], the material properties of veins and membranes for insect wings 

are comparable to each other. Therefore, the structural anisotropy of insect wings is provided by corrugation and veins rather 

than anisotropic material. If the wing was reinforced by only veins without corrugation, the veins as thick as the corrugation 

would be required when a similar material is used, which would lead to a similar conclusion to the corrugated wings shown in 

this study. The results shown in this study indicate that the corrugation is useful for an elastic flapping wing to enhance the 

aerodynamic performance even without veins. Thus, if the corrugation was combined with veins, higher aerodynamic 
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performance would be expected. Actually, the veins of insect wings are usually placed at the vertices of corrugation [33], which 

reinforces the flexural rigidity and enhance the aerodynamic performance with a decrease of the required amplitude of 

corrugation. Although the corrugation in this study is implemented homogeneously and globally on the wing surface, the 

designs of insect wings are more complicated. A local arrangement of veins and corrugation can provide a more preferable 

wing deformation. In contrast to the wing model in this study, the elastic flapping wings with a local reinforcement generate 

positive camber deformation in both the up- and downstrokes, which improves the aerodynamic performance [23, 30, 32]. In 

future work, it is necessary to investigate an optimal combination and arrangement of corrugation and veins for an elastic 

flapping wing in both hovering and forward flights. 

 

VI.  Conclusions 

In this study, the authors numerically investigated the fundamental aeroelastic effects of corrugation of an insect-sized 

flapping wing in hovering flight. A simple, reasonable structural model for an insect-sized corrugated flapping wing was 

constructed as a baseline, which was based on the material properties of bumblebee wings. The aeroelastic characteristics were 

calculated for the corrugated flapping wings by changing the thickness and amplitude of corrugation around the baseline model, 

which modulated the natural frequencies and mode shapes of the wing. The numerical results indicate that the optimal wing to 

maximize the hovering efficiency has an amplitude of corrugation of 1.7–2.6% chord length, a natural frequency that is 2.1–

2.6 times as large as the input frequency, and a wing mass ratio of 0.7–1.5. These structural parameters are close to but slightly 

smaller than the values of the baseline model. Therefore, the results indicate that the corrugation of insect flapping wings is 

aeroelastically effective in providing both an appropriate passive deformation and a lightweight wing. The optimal flapping 

wing has chordwise bending in the first mode, which is attained by a reduction in the thickness or an increase in the amplitude 

of corrugation. However, a higher amplitude of corrugation is detrimental to the hovering efficiency. In contrast, a reduction in 

the thickness results in a decrease in the natural frequency, which causes a very large torsion. Furthermore, a natural frequency 

less than two times as large as the input frequency causes a rapid phase shift between the output and input oscillation due to 

resonance and induces detrimental high-harmonic oscillation due to the high-order modes, significantly reducing the hovering 

efficiency. Therefore, the optimal wing with the chordwise-bending mode is attained by trade-off between the amplitude of 

corrugation, which must be as low as possible, and the natural frequency, which should be sufficiently high for the effects of 

phase shift and high-order modes to be neglected. The results indicate that the corrugation is useful for an elastic flapping wing 

to enhance the aerodynamic performance even with an isotropic material. With local arrangement and combination of veins 

and corrugation like insect wings, the elastic flapping wings would be expected to improve the aerodynamic performance even 

without a highly anisotropic material. 

 

Appendix: Comparison between 2-D and 3-D models 

To validate the 2-D shell model for the wing structure with corrugation, we compared the first natural frequencies between 

the 2-D shell and 3-D solid models. Three-dimensional 20-node solid elements (SOLID186) were arranged 225 in the spanwise, 

85 in the chordwise, and 2 in the thickwise direction (Consequently, 38,250 elements and 212,183 nodes). The error of the first 

natural frequencies between the 2-D shell and 3-D solid models are shown in Table A1. The error increases as aw increases and 

2aw/h decreases. The maximum error is 7.9% at f1* = 4.5 for Crg2. In the case with a maximum η, the frequency error is 2.3% 

or less when θ෠in = 0 deg, 3.3% or less when θ෠in = 45 deg. This result indicates that the modal analysis with the 2-D shell 

model is valid in the parameter range of this study. 

 

 

 

 

 



Table A1  Error of the first natural frequencies between 2-D shell and 3-D solid models 

Wing 

(f1 – f1,3D)/ f1,3D 

Max η in θ෠in = 0 

deg 

Max η in θ෠in = 

45 deg 
f1* = 4.5 

Flat 0.2% (f1* = 1.0) 0.2% (f1* = 1.9) 0.2% 

Crg1 1.7% (f1* = 1.2) 2.6% (f1* = 1.9) 4.0% 

Crg2 2.0% (f1* = 2.1) 2.8% (f1* = 2.6) 7.9% 

Crg3 1.5% (f1* = 2.3) 2.5% (f1* = 3.1) 5.9% 

Crg4 1.2% (f1* = 2.2) 2.2% (f1* = 3.3) 3.7% 

Crg5 1.0% (f1* = 2.3) 1.7% (f1* = 3.3) 3.0% 
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