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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of
coronavirus disease 2019 (COVID-19). Real-time RT-PCR is the most commonly used method for
COVID-19 diagnosis. However, serological assays are urgently needed as complementary tools to
RT-PCR. Hachim et al. 2020 and Burbelo et al. 2020 demonstrated that anti-nucleocapsid(N) SARS-
CoV-2 antibodies are higher and appear earlier than the spike antibodies. Additionally, cross-reactive
antibodies against N protein are more prevalent than those against spike protein. We developed a less
cross-reactive immunoglobulin G (IgG) indirect ELISA by using a truncated recombinant SARS-CoV-
2 N protein as assay antigen. A highly conserved region of coronaviruses N protein was deleted and
the protein was prepared using an E. coli protein expression system. A total of 177 samples collected
from COVID-19 suspected cases and 155 negative control sera collected during the pre-COVID-19
period were applied to evaluate the assay’s performance, with the plaque reduction neutralization
test and the commercial SARS-CoV-2 spike protein IgG ELISA as gold standards. The SARS-CoV-2 N
truncated protein-based ELISA showed similar sensitivity (91.1% vs. 91.9%) and specificity (93.8% vs.
93.8%) between the PRNT and spike IgG ELISA, as well as also higher specificity compared to the
full-length N protein (93.8% vs. 89.9%). Our ELISA can be used for the diagnosis and surveillance of
COVID-19.
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1. Introduction

Coronavirus disease 2019 (COVID-19) is an emerging viral disease caused by the
novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The
virus was first reported in Wuhan City, China, in late 2019 and rapidly spread in the
country and throughout the world [1]. As of 9 March 2020, COVID-19 cases were reported
in more than 100 countries [2]. Subsequently, the disease was declared a pandemic by
the World Health Organization (WHO) on 11 March 2020 [3]. At the beginning of the
COVID-19 outbreak, molecular techniques were first applied to detect the viral genome
using conventional reverse transcription-polymerase chain reaction (RT-PCR) and deep
sequencing [4–6]. Currently, real-time RT-PCR is considered the most commonly used
technique for diagnosing COVID-19 [7]. Nevertheless, molecular methods rely on the
timing of sample collection, adequate sample collection technique, and a sufficient amount
of viral RNA from the sample collection site [4]. Reliable serological assays are urgently
needed as complementary tools to molecular techniques to enhance the capability of
laboratory diagnosis [8,9], especially for individuals with viral load undetectable by real-
time RT-PCR [10]. Furthermore, the detection of SARS-CoV-2 asymptomatic carriers who
have a strong transmission capacity remains critical, especially in resource-limited regions.
In such situations, reliable, convenient, and cost-effective diagnosis methods such as
serologic tests [11] are highly needed for COVID-19 diagnosis, understanding the immune
response to SARS-CoV-2 [12,13], and epidemiological surveillance [14].

SARS-CoV-2 is an enveloped, positive-sense RNA virus with an approximately
30-kilobase genome size that belongs to the Coronaviridae family, in the Betacoronavirus
genus [15]. The SARS-CoV-2 genome contains a minimum of six open reading frames
(ORFs) [12]. Like other coronaviruses, the SARS-CoV-2 genome encodes four major struc-
tural proteins, including spike (S), envelop (E), membrane (M), and nucleocapsid (N) [1]
and sixteen non-structural proteins (nsp 1-16) [12]. Among these proteins, N and S are
the main antigens used for serological diagnosis of coronaviruses [16–18]. The structural
protein N is smaller than S protein and lacks glycosylation sites; it is involved in assembly
by binding to the viral RNA genome [2,12]. Although its immunological importance is not
well known, this protein plays a key function in regulating the viral RNA transcription
during the replication stage [19]. The N protein encounters the host immune system after
dissociating from the viral genome inside the cell. However, the S protein specifically binds
to the receptor of the host cells through its receptor-binding domain (RBD) both before,
during, and after the infection has been initiated [19]. These properties make it a good
target antigen for the detection of neutralizing antibodies [12] as well as for enzyme-linked
immunosorbent assay (ELISA) [14,20].

Before the COVID-19 outbreak, six members of the Coronaviridae family were known
to infect humans. Two of these species, severe acute respiratory coronavirus (SARS-CoV)
and Middle East respiratory syndrome coronavirus (MERS-CoV), cause severe respiratory
illness, whereas four are responsible for common cold symptoms (human coronavirus
[HCoV] HKU1, OC43, NL 63, and 229E) [21]. These human coronaviruses (HCoVs) share
90.5%, 46.1%, 27.6%, 26.5%, 20.0%, and 19.1% amino acid homology with SARS-CoV-2 N
protein, respectively [4].

Most serological tests have focused on the S protein antibody detection method [13],
which may not detect asymptomatic SARS-CoV-2 carriers eight weeks after the infection
has occurred [22]. In addition, the performance of S protein might be affected by the
mutations resulting from the immune pressure [12]. In contrast, the smaller size of N
protein, including the absence of glycosylation sites, makes cloning easier by prokaryotic
expression systems [12]. Moreover, antibodies to N protein are generated earlier than S
protein [12,23,24]. However, N protein might generate false-positive results [25].
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This study aimed to develop a less cross-reactive IgG SARS-CoV-2 N protein-based
ELISA, which is faster and cheaper than the current RT-PCR. The cross-reactivity with
other human coronaviruses was reduced by deleting the first 121 residues of N protein,
which contains a highly conserved motif (FYYLGTGP) of all coronaviruses [26,27]. The
reliability of the assay was evaluated using the plaque reduction neutralization test (PRNT)
and the commercial S protein-based IgG indirect ELISA.

2. Materials and Methods
2.1. Human Samples

Over 600 clinical samples were collected from suspected COVID-19 cases in 2020 in
Nagasaki, Nagasaki City, Japan, for virological and serological diagnoses. Nasopharyngeal
swab samples were used to detect viral genes by real-time RT-PCR [6] and/or reverse
transcription loop-mediated isothermal amplification (RT-LAMP) assay [28]. Of these, 149
were laboratory confirmed as either symptomatic or asymptomatic positives cases, and
the remainder were diagnosed as negative cases. Among them, EDTA blood samples were
collected one month later in 2020 from 177 people for serological diagnosis. In this group,
139 real-time RT-PCR and/or RT-LAMP positive samples were included. In addition,
100 serum samples collected from febrile illness cases and 55 serum samples collected from
healthy volunteers in 2007 were used for the pre-COVID-19 group. All 332 plasma/serum
samples were heat-treated at 56 ◦C for 30 min before applying ELISA and PRNT.

2.2. Virus Inoculation and RNA Extraction

SARS-CoV-2 strain 2019-nCoV/Japan/TY/WK-521/2020 (not registered in the Gen-
Bank) that was isolated in Tokyo from migrants from Wuhan in January–February 2020 [29]
was inoculated to confluent monolayer Vero E6 cells maintained at 37 ◦C in Eagle’s mini-
mum essential medium (MEM) containing 2% fetal calf serum (FCS) and 0.2 mM nonessen-
tial amino acids. Infected culture fluid (ICF) was harvested by centrifugation (2000× g
for 10 min) on day 4 when strong cytopathic effects (CPE) appeared (80% to 100%). Viral
RNA was extracted from the ICF by using a QIAamp viral RNA mini kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions and stored at −80 ◦C until use.

2.3. Construction of SARS-CoV-2 Truncated and Full-Length Nucleocapsid Recombinant Plasmids

SARS-CoV-2 RNA was used as a template to generate the SARS-CoV-2 N truncated
gene, in which the first 121 amino acids (aa) were deleted (N∆121) by real-time RT-PCR
using Takara PrimeScript one-step RT-PCR kit (Takara Bio, Kusatsu, Japan).

The SARS-CoV-2/human/CHN/HS_194/2020 MT081068.1 strain was used to design
the In-fusion primer sets 5′-TCACCATCACGGATCCCTGCCGTACGGTGCTAA-3′ and
5′-TTGGCTGCAGGTCGACTCAAGCCTGGGTAGAGT-3′, which were used to amplify
the upstream sense region and the downstream anti-sense region of the SARS-CoV-2 N∆121
gene, respectively. For the SARS-CoV-2 full-length rN gene construct, the forward primer
5′-TCACCATCACGGATCCATGTCTGATAATGGCCCC-3′ with the reverse rN∆121 primer
was used. The expected size of the N∆121 and full-length N RT-PCR product was confirmed
after electrophoresis on the agarose gel. The PCR product was then purified from the
agarose gel using a QIAEX II Gel Extraction Kit (Qiagen GmbH, Hilden, Germany). The
pQE-30 plasmid DNA was extracted from the Lauria-Bertani medium (LB broth) containing
µg/mL ampicillin E. coli culture fluid by using a Qiagen plasmid mini kit (Qiagen GmbH,
Hilden, Germany) and digested with BamHI (Takara Bio, Kusatsu, Japan) and SalI (Takara
Bio, Kusatsu, Japan) restriction enzymes. Finally, the plasmid backbone was purified from
the agarose gel after gel electrophoresis using a QIAEX II Gel Extraction Kit (Qiagen GmbH,
Hilden, Germany) and treated with calf intestinal alkaline phosphatase (CIAP) (Takara Bio,
Kusatsu, Japan).

The purified SARS-CoV-2 N∆121 or full-length N gene product was then cloned into
the pQE-30 plasmid vector using the In-fusion method (5x In-Fusion HD Enzyme Premix,
Takara Bio, Kusatsu, Japan) and then transformed into E. coli XL-1 Blue. The selection of
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positive clones containing the SARS-CoV-2 N∆121 or full-length N gene from the E. coli
colonies that appeared on the LB agar plate was performed by PCR. The nucleotide
sequence of the plasmid DNA extracted from PCR-positive clones was verified by Sanger
sequencing to confirm that the sequence was in frame and had no mutations.

2.4. Expression and Purification of Recombinant Proteins

The expression of N∆121 and full-length N proteins were conducted using the E. coli
protein expression system. Briefly, a large-scale culture of E. coli (1 L) was performed in
a shaker incubator (37 ◦C, 130 rpm) in LB broth containing 50 µg/mL ampicillin. When
the optical density (OD) at 595 nm reached 1.0, expression of rN∆121 and full-length N
protein was induced with 0.1 M isopropyl-β-D-thiogalactopyranoside (IPTG). Three hours
after induction, the E. coli culture fluid was centrifuged at 7000× g rpm at 4 ◦C for 30 min.
The pellet was resuspended in denature-lysis-binding buffer containing 8 M urea, 20 mM
sodium phosphate, and 30 mM imidazole and sonicated on ice for 5 min (5 s plateau, 5 s
interval between pulses). The sonicated mixture was centrifuged at 14,000× g rpm at 4 ◦C
for 30 min, and the supernatant was filtered with a 0.45 µm pore size filter before applying
it to the histidine (His) tag affinity column. The expressed protein was double-purified
using the His-tag affinity nickel (Ni2+) column (GE Healthcare Biosciences AB, Uppsala,
Sweden) under 8 M urea in a denatured condition and His tag affinity cobalt (Co2+) column
(GE Healthcare Biosciences AB, Uppsala, Sweden) without urea. Finally, the rN∆121 and
full-length N protein were eluted with 50 mM sodium phosphate, 300 mM sodium chloride,
and 150 mM imidazole pH 7.4 elution buffer. The eluted true-peak fractions were pooled
and stored at −30 ◦C before use. In total, 1 to 1.5 mg of purified protein was obtained per
1 L of E. coli culture, and its final concentration was 0.5 mg/mL.

2.5. Western Blot Analysis and Silver Staining

The expected sizes of SARS-CoV-2 rN∆121 protein and full-length N protein were
confirmed by Western blotting after SDS-PAGE. Immunostaining was performed using
anti-His IgG (anti-6x His mouse monoclonal antibody [mAb] 4A12EU, Thermo Fisher
Scientific, Waltham, MA, USA) and horseradish peroxidase (HRP)-conjugated goat anti-
mouse IgG (American Qualex, CA, USA). The reaction was visualized by diaminobenzidine
(DAB) substrate (Dojindo, Kumamoto, Japan). The purity was checked by silver staining
(Cosmo Bio Co., Ltd., Tokyo, Japan) according to the manufacturer’s instructions.

2.6. In-House SARS-CoV-2 N Truncated and Full-Length N Proteins-Based IgG Indirect ELISAs

As described above, 177 plasma samples from the COVID-19 suspected cases and
155 pre-COVID-19 group serum samples were applied to evaluate our in-house IgG indirect
ELISA. The optimal concentration of Co2+ purified SARS-CoV-2 rN∆121 was determined by
checkerboard titration, and 0.13 µg/µL showed low background. Hence, the Co2+ purified
protein was diluted at 0.13 µg/100 µL/well [27] in carbonate buffer pH 9.6, then coated on a
96-well flat-bottom ELISA plate at 4 ◦C overnight. The same concentration was applied for
SARS-CoV-2 full-length N protein-based IgG ELISA. Immulon 1B plate (Thermo Scientific,
Rochester, NY, USA) was applied for these ELISAs to reduce the background color reaction.
The following day, 100 µL/well of Block Ace (UK-1 B 80, Yukijirushi, Sapporo, Japan) was
added to the plate, excluding the blank wells, and the plate was incubated at 37 ◦C for
1 h for blocking. After washing three times with PBS-Tween 20 (PBS-T), 100 µL/well of
1:200 diluted plasma/serum samples in Block Ace were applied in duplicate. The plate
was incubated at 37 ◦C for 1 h. After washing three times with PBS-T, 100 µL/well of
1:10,000-diluted HRP-conjugated anti-human IgG (American Qualex, CA, USA) in PBS-T
with a one-tenth volume of Block Ace was added. The plate was then incubated at 37 ◦C
for 1 h and washed three times with PBS-T. Finally, 100 µL/well of o-phenylenediamine
dihydrochloride (OPD) substrate (0.5 mg/mL) (Sigma Chemical, St. Louis, MO, USA) was
added. The plate was incubated in the dark at room temperature for 30 min to 1 h before
adding 100 µL/well of the stop solution (1N hydrochloric acid). The plate OD was read
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at 492 nm (Multiscan JX, Thermolab System, Tokyo, Japan). The mean OD of duplicate
sample wells was calculated, including the SN (sample/negative control [NC]) ratio (mean
sample OD ÷mean NC OD). The negative control serum was selected among yellow fever
vaccinated healthy volunteers collected in 2018. The endpoint IgG titers of the samples
were also calculated using the standard curve of the high titer positive control serum. The
standard curve was prepared using the 492 nm OD values of the positive control serum
starting with a 200-fold dilution and followed by serial two-fold dilutions up to 1:211 in
PBS-T + 10% Block Ace.

2.7. Commercial SARS-CoV-2 S Protein-IgG Indirect ELISA

To evaluate the reliability of our in-house rN∆121 IgG indirect ELISA, a commercial S
protein-based IgG ELISA (Cell Signaling Technology, Danvers, MA, USA) was applied to
the same samples following the manufacturer’s instructions. Briefly, the assay was a solid-
phase ELISA that detects the binding of human IgG to full-length SARS-CoV-2 S protein.
The mean absorbance at 450 nm of each duplicate sample was calculated. Sample values
greater than 4.1 × NC absorbance, less than 3 × NC absorbance, and between 3 × NC and
4.1 × NC absorbance were considered positive, negative, and inconclusive, respectively.

2.8. Plaque Reduction Neutralization Test

A 50% plaque reduction neutralization test (PRNT50) was performed in biosafety
level 3 laboratory (BSL-3) conditions. Briefly, human sera were heat-inactivated at 56 ◦C
for 30 min and two-fold serially diluted (from 1:10 to 1:10,240) in 2% FCS MEM containing
0.2 mM nonessential amino acids. An equal volume of 100 PFU/200 µL/well virus (SARS-
CoV-2 virus strain 2019-nCoV/Japan/TY/WK-521/2020) diluted in the same diluent as
the serum sample was added with each diluted serum and incubated at 37 ◦C for 1 h in 5%
CO2. Subsequently, 200 µL of the mixture was added in duplicate on confluent Vero E6 cells
growing in a 24-well plate and incubated at 37 ◦C for 1 h in 5% CO2. Finally, 500 µL of 1.25%
methylcellulose overlay medium prepared in 1% FCS with 2 times concentrated MEM
containing 0.2 mM nonessential amino acids was added per well and incubated at 37 ◦C
in 5% CO2. When CPE appeared on day 5, fixation with 4% paraformaldehyde solution
was performed, and the plate was stained with 0.25% crystal violet. The reciprocal of the
endpoint serum dilution that provided a 50% or greater reduction in the mean number of
plaques relative to the control wells that contained no serum was defined as the PRNT50.

2.9. Statistical Analysis

Statistical analysis was performed using STATA software version 15.1. The cut-off
value of the SN ratio was determined using the receiver operating characteristic (ROC)
curve analysis at a 95% confidence interval (CI). The area under the ROC curve (AUC) and
the sensitivity and specificity of the IgG indirect ELISA SN ratio were calculated based
on the PRNT50 result. The SN ratio with the highest AUC was selected as the optimal
cut-off point. Pearson’s chi-square test was used to compare the SN ratio to the PRNT50
titer using GraphPad Prism 9.1.1.

3. Results
3.1. Expression and Purification of the Recombinant SARS-CoV-2 Nucleocapsid Protein

In this study, we deleted the first 121 aa of SARS-CoV-2 N protein to reduce cross-
reactivity with others HCoVs. Both truncated and full-length SARS-CoV-2 N proteins
were successfully expressed in the E. coli protein expression system, purified by His-tag
affinity chromatography column, and used as assay antigens to detect IgG against SARS-
CoV-2. The reliability of SARS-CoV-2 N∆121 protein-based IgG ELISA was compared with
PRNT50, which is the gold standard method of coronaviruses serology [30,31]. Given
that SARS-CoV-2 serological methods have focused on S protein [13,20], a commercial
SARS-CoV-2 full-length S protein-based IgG indirect ELISA was used as the second gold
standard. As a monomer and an oligomer, the SARS-CoV-2 N protein has a molecular mass
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of 51.38 kDa and >670 kDa, respectively [32,33]. However, the SDS-PAGE silver-stained
gel (Figure 1A) and the Western blot (Figure 1B) revealed a 47 kDa and 33 kDa band sizes
of full-length (lane 2) and truncated (lane 3) N proteins, respectively. This might be due
to the 3D structure of N proteins affecting the faster migration. Additionally, additional
bands were detected by anti-His below the 33 kDa band (Figure 1A, lane 3), which might
be due to the degradation of rN protein [34].

Int. J. Environ. Res. Public Health 2021, 18, x  6 of 15 
 

 

3. Results 
3.1. Expression and Purification of the Recombinant SARS-CoV-2 Nucleocapsid Protein 

In this study, we deleted the first 121 aa of SARS-CoV-2 N protein to reduce cross-
reactivity with others HCoVs. Both truncated and full-length SARS-CoV-2 N proteins 
were successfully expressed in the E. coli protein expression system, purified by His-tag 
affinity chromatography column, and used as assay antigens to detect IgG against SARS-
CoV-2. The reliability of SARS-CoV-2 NΔ121 protein-based IgG ELISA was compared with 
PRNT50, which is the gold standard method of coronaviruses serology [30,31]. Given that 
SARS-CoV-2 serological methods have focused on S protein [13,20], a commercial SARS-
CoV-2 full-length S protein-based IgG indirect ELISA was used as the second gold stand-
ard. As a monomer and an oligomer, the SARS-CoV-2 N protein has a molecular mass of 
51.38 kDa and >670 kDa, respectively [32,33]. However, the SDS-PAGE silver-stained gel 
(Figure 1A) and the Western blot (Figure 1B) revealed a 47 kDa and 33 kDa band sizes of 
full-length (lane 2) and truncated (lane 3) N proteins, respectively. This might be due to 
the 3D structure of N proteins affecting the faster migration. Additionally, additional 
bands were detected by anti-His below the 33 kDa band (Figure 1A, lane 3), which might 
be due to the degradation of rN protein [34]. 

 
Figure 1. Expression and purification of SARS-CoV-2 rfull-length N and rNΔ121 proteins in Silver 
Staining (A), Western blotting (B). Lane 1, protein marker; lane 2, cobalt column purified rfull-length 
N protein; lane 3, cobalt column purified rNΔ121 protein in A and B. The purified size band of rNΔ121 
and rfull-length N proteins is 33 kDa and 47 kDa, respectively. 

3.2. SARS-CoV-2 N Truncated Protein-Based IgG ELISA 
The purified rNΔ121 protein was used as an assay antigen for the anti-SARS-CoV-2 

IgG indirect ELISA at the optimal concentration of 0.13 µg/100 µL/well. An SN ratio of 2.4 
showed the highest AUC (0.9244), and was selected as the positive cut-off criterion (Fig-
ures 2 and 3). 

Figure 1. Expression and purification of SARS-CoV-2 rfull-length N and rN∆121 proteins in Silver
Staining (A), Western blotting (B). Lane 1, protein marker; lane 2, cobalt column purified rfull-length
N protein; lane 3, cobalt column purified rN∆121 protein in A and B. The purified size band of rN∆121

and rfull-length N proteins is 33 kDa and 47 kDa, respectively.

3.2. SARS-CoV-2 N Truncated Protein-Based IgG ELISA

The purified rN∆121 protein was used as an assay antigen for the anti-SARS-CoV-2
IgG indirect ELISA at the optimal concentration of 0.13 µg/100 µL/well. An SN ratio of
2.4 showed the highest AUC (0.9244), and was selected as the positive cut-off criterion
(Figures 2 and 3).
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curve was generated by plotting the sensitivity and 1-specificity values of the SN ratio on the y-axis
and x-axis, respectively. The arrow indicates the highest area under the ROC curve (AUC), which
was 0.9244.

The positive cut-off IgG titer was considered 1:354, equivalent to 2.4 times the negative
control IgG titer. Of the 177 COVID-19 suspected case samples, 118 were IgG positive and,
59 were negative, whereas 8 of 155 pre-COVID-19 samples were IgG positive and 147 were
negative (Table 1).

Table 1. Sensitivity and specificity of SARS-CoV-2 rN∆121 IgG indirect ELISA with reference to
PRNT50

*.

COVID-19 Suspected
PRNT50

Positive Negative Total

rN∆121 IgG ELISA
Positive 113 5 118

Negative 11 48 59
Total 124 53 177

Pre-COVID-19
PRNT50

Positive Negative Total

rN∆121 IgG ELISA
Positive 0 8 8

Negative 0 147 147
Total 0 155 155

* Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and concordance of
332 total samples were 91.1%, 93.8%, 89.7%, 94.7%, and 92.8%, respectively.

3.3. SARS-CoV-2 SARS-CoV-2 Full-Length N Protein-Based IgG ELISA

To compare the relative performance between the SARS-CoV-2 N∆121 and the full-
length N protein-based IgG ELISA, the same concentration of the assay antigen (0.13 µG/100µL)
and SN ratio cut-off criterion (2.4) were applied for SARS-CoV-2 full-length N protein-based
IgG ELISA. With reference to the PRNT gold standard, 124 of 177 COVID-19 suspected
case samples were IgG positive, while 17 of 155 pre-COVID-19 samples were positive and
138 were negative (Table 2).
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Table 2. Sensitivity and specificity of SARS-CoV-2 rN full-length IgG indirect ELISA with reference
to PRNT50

*.

COVID-19 Suspected
PRNT50

Positive Negative Total

rfull-length N IgG ELISA
Positive 120 4 124
Negative 4 49 53
Total 124 53 177

Pre-COVID-19
PRNT50

Positive Negative Total

rfull-length N IgG ELISA
Positive 0 17 17
Negative 0 138 138
Total 0 155 155

* Sensitivity, specificity, PPV, NPV, and concordance of 332 total samples were 96.8%, 89.9%, 85.1%, 97.9%, and
92.8%, respectively.

Compared to the commercial S protein-based IgG ELISA, 124 of 177 and 16 of 155
were positive among COVID-19 suspected cases samples and pre-COVID-19 samples,
respectively (Table 3).

Table 3. Sensitivity and specificity of SARS-CoV-2 rN full-length IgG indirect ELISA with reference
to S IgG ELISA *.

COVID-19 Suspected
S IgG ELISA

Positive Negative Total

rfull-length N IgG ELISA
Positive 120 4 124
Negative 1 52 53
Total 121 56 177

Pre-COVID-19
S IgG ELISA

Positive Negative Total

rfull-length N IgG ELISA
Positive 1 16 17
Negative 0 138 138
Total 1 154 155

* Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and concordance of
332 total samples were 99.2%, 90.5%, 85.8%, 99.5%, and 93.7%, respectively.

3.4. SARS-CoV-2 S Protein-Based IgG ELISA

To compare the reactivity between the commercial SARS-CoV-2 S protein-based IgG
indirect ELISA and our in-house rN∆121 IgG indirect ELISA, all 332 samples were also
assessed by S IgG ELISA. Among 177 COVID-19 suspected case samples, 121 were IgG
positive, and 56 were IgG negative (Table 4). By contrast, only 2 of 155 pre-COVID-19 were
IgG positive (Table 4), and 153 were IgG negative. No inconclusive results were found.

Table 4. Sensitivity and specificity of SARS-CoV-2 S IgG indirect ELISA with reference to PRNT50
*.

COVID-19 Suspected
PRNT50

Positive Negative Total

S IgG ELISA
Positive 119 2 121
Negative 5 51 56
Total 124 53 177

Pre-COVID-19
PRNT50

Positive Negative Total

S IgG ELISA
Positive 0 2 2
Negative 0 153 153
Total 0 155 155

* Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and concordance of
332 total samples were 96.0%, 98.1%, 96.8%, 97.6%, and 97.3%, respectively.
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3.5. Plaque Reduction Neutralization Test

The PRNT50 titer≥ 1:10 was applied as the positive cut-off criterion [30]. Of 177 COVID-19
suspected case samples, 124 samples were positive, with a PRNT50 titer ranging from 1:10
to 1:5120 (mode titer of positive samples, 1:160), and 53 samples were negative (<1:10
PRNT50 titer) (Table 5).

Table 5. PRNT titer distribution of COVID-19 suspected case samples and pre-COVID-19 samples.

Pre-COVID-19 COVID-19 Suspected

PRNT50 titer Number Number

1:5120 0 4
1:2560 0 5
1:1280 0 12
1:640 0 14
1:320 0 29
1:160 0 33
1:80 0 18
1:40 0 4
1:20 0 0
1:10 0 5

<1:10 155 53

Total 155 177

As expected, the PRNT50 titers of all 155 pre-COVID-19 samples were below 1:10
(Figure 4 and Table 5).
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3.6. Comparison of SARS-CoV-2 N Truncated Protein-Based IgG ELISA with Plaque Reduction
Neutralization Test

The performance of our in-house N∆121 IgG ELISA was evaluated with the PRNT
gold standard. Of 118 rN∆121 IgG ELISA positive samples, 113 were confirmed positive
by PRNT50, and 48 of 59 negative rN∆121 IgG ELISA samples were confirmed negative by
PRNT50 (Table 1). Compared with PRNT50 results, our in-house N∆121 protein-based IgG
ELISA showed 91.1% sensitivity, 93.8% specificity, 89.7% positive predictive value (PPV),
94.7% negative predictive value (NPV), and 92.8% concordance (Table 1). The correlation
between the SN ratio of rN∆121 IgG indirect ELISA and PRNT50 titer was statistically
significant (R2 = 0.4642, 95% CI: 0.6191–0.7350, p < 0.0001) (Figure 5).
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3.7. Comparison of SARS-CoV-2 N Truncated Protein-Based IgG ELISA with S IgG Protein-Based
IgG ELISA

Among 118 rN∆121 IgG ELISA positive COVID-19 suspected case samples, 113 were
confirmed positive by S IgG ELISA, and 51 of 59 rN∆121 IgG ELISA negative samples were
confirmed negative by S IgG ELISA (Table 6).

Table 6. Sensitivity and specificity of SARS-CoV-2 rN∆121 IgG indirect ELISA with reference to S IgG
ELISA *.

COVID-19 Suspected
S IgG ELISA

Positive Negative Total

rN∆121 IgG ELISA
Positive 113 5 118
Negative 8 51 59
Total 121 56 177

Pre-COVID-19
S IgG ELISA

Positive Negative Total

rN∆121 IgG ELISA
Positive 0 8 8
Negative 2 145 147
Total 2 153 155

* Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and concordance of
332 total samples were 91.9%, 93.8%, 89.7%, 95.2%, and 93.1%, respectively.

Of the 155 pre-COVID-19 samples, 153 samples were confirmed negative by S IgG
ELISA (Table 6). Compared with the commercial S protein-based IgG ELISA, our in-house
N∆121 protein-based IgG ELISA showed 91.9% sensitivity, 93.8% specificity, 89.7% PPV,
95.2% NPV, and 93.1% concordance (Table 6).

3.8. Comparison of SARS-CoV-2 S Protein-Based IgG ELISA with Plaque Reduction
Neutralization Test

As for the rN∆121 IgG ELISA, we evaluated the performance of the commercial S IgG
ELISA with PRNT50 as the gold standard. Among 121 COVID-19 suspected IgG-positive
samples, 119 were confirmed positive by PRNT, and 51 of 56 IgG-negative samples were
confirmed negative by PRNT (Table 4). In comparison with the PRNT50 gold standard, S
protein-based IgG ELISA showed 96.0% sensitivity, 98.1% specificity, 96.8% PPV, 97.6%
NPV, and 97.3% concordance (Table 4).
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4. Discussion

Recombinant nucleocapsid protein has been used for the serodiagnosis of several
viruses, such as SARS-CoV [27,35], MERS-CoV [36], severe fever with thrombocytope-
nia syndrome virus (SFTSV) [37,38], Rift Valley fever virus [39], Nipah virus [40], and
SARS-CoV-2 [41–44]. Although SARS-CoV-2 immunoassays and point-of-care assays are
appearing in the market, comparative performance data are urgently needed for laboratory
diagnosis and the public health response to COVID-19 [45].

In this study, we developed and evaluated an in-house SARS-CoV-2 rN∆121 protein-
based IgG ELISA. As indicated in the table below, our in-house SARS-CoV-2 N∆121 protein-
based IgG ELISA showed similar performance to the PRNT and S IgG ELISA (Table 7).
Xiang et al. evaluated the performance of an in-house SARS-CoV-2 full N protein-based
IgG indirect ELISA using 85 RT-PCR-confirmed COVID-19 samples and 60 negative control
samples [46]. A similar study was conducted by Tehrani et al. with a larger sample size
(100 RT-PCR confirmed COVID-19 cases vs. 300 pre-COVID-19 samples) [43]. Although
the size of the assay antigen (truncated vs. full-length) and the gold standards are different
(PRNT vs. RT-PCR), the sensitivity of our in-house rN∆121 IgG indirect ELISA appeared
much higher than that reported by Xiang et al. (Table 7). This could be due to the difference
in ELISA sampling time, which was conducted earlier in the Xiang et al. study (13 days
after RT-PCR) than in our study (1 month after RT-PCR/RT-LAMP). The differences in
sensitivity, specificity, and concordance between Tehrani’s study and our results (Table 7)
might be due to the disparity in the number of negative samples (300 vs. 155). Compared
to SARS-CoV-2 full-length N protein, the rN∆121 detected a low number of false-positive
samples (13 vs. 21) (Tables 1 and 2). Overall, the truncation improved the specificity of our
in-house ELISA.

Table 7. Comparison between in-house full-length N, N∆121 and other studies rSARS-CoV-2 IgG ELISAs.

In-House rSARS-CoV-2 ELISA Sensitivity (%) Specificity (%) PPV (%) NPV (%) Concordance (%) Reference Test

N∆121 91.1 93.8 89.7 94.7 92.8 PRNT
N∆121 91.9 93.8 89.7 95.2 93.1 Commercial S IgG ELISA

Full-length N 96.8 89.9 85.1 97.9 92.5 PRNT
Full-length N (Xiang et al.) 83.3 95.0 94.8 83.8 88.9 RT-PCR

Full-length N (Tehrani et al.) 89.0 98.0 96.0 RT-PCR

Previous reports demonstrated that antibody levels remain low or undetectable in
mild or asymptomatic COVID-19 cases [47,48]. This study used plasma samples from mild,
asymptomatic, and negative cases of COVID-19 collected one month after RT-PCR/RT-
LAMP. Our results showed very few samples with high PRNT50 titers (Figure 4 and Table 3)
or SN ratios of rN∆121 IgG indirect ELISA (Figure 2), which could be explained by the weak
correlation between the SN ratio and PRNT50 titer observed in our study (Figure 5).

To date, cross-reactivity with other human coronaviruses remains a significant concern
of SARS-CoV-2 serological tests, including ELISA [13,49]. We deleted the first 121 aa of the
N protein, which contain highly conserved N protein regions among coronaviruses [26,27].
Our in-house IgG rN∆121 IgG ELISA detected a lower number of false-positive IgG sera
than the full-length IgG ELISA (13 vs. 21) (Tables 1 and 2). These false-positive IgG results
could be due to pre-existing cross-reactive antibodies with common cold HCoVs [13],
non-specific binding antibodies [50], or specific antibodies without neutralizing ability [51].
Our study has one limitation. We could not confirm whether false-positive IgG samples
were cross-reactive antibodies to common cold HCoVs.

5. Conclusions

Population testing plays a key role in controlling the COVID-19 pandemic. We have
developed a highly sensitive and specific SARS-CoV-2 N∆121 protein-based IgG ELISA,
which matches at 93% as concordances with two gold standard tests. Our in-house ELISA
is cheaper, faster, and simpler than molecular tests. It can be scaled up and made into
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immunochromatographic kits, representing a valid option for routine diagnosis and surveil-
lance of COVID-19.
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