1	Mitochonic acid-5 ameliorates chlorhexidine gluconate-induced peritoneal
2	fibrosis in mice
3	
4	Hiro Inoue ¹ , Kenta Torigoe ¹ , Miki Torigoe ¹ , Kumiko Muta ¹ , Yoko Obata ¹ ,
5	Takehiro Suzuki ² , Chitose Suzuki ² , Takaaki Abe ² , Takehiko Koji ³ , Hiroshi
6	Mukae ⁴ , Tomoya Nishino ¹
7	
8	¹ Department of Nephrology, Nagasaki University Graduate School of Biomedical
9	Sciences, Nagasaki, Japan
10	² Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku
11	University Graduate School of Medicine, Sendai, Japan
12	³ Department of Histology and Cell Biology, Nagasaki University Graduate
13	School of Biomedical Sciences, Nagasaki, Japan
14	⁴ Department of Respiratory Medicine, Nagasaki University Graduate School of
15	Biomedical Sciences, Nagasaki, Japan
16	
17	Corresponding author: Kenta Torigoe, MD, PhD
18	Department of Nephrology, Nagasaki University Hospital, 1-7-1 Sakamoto,

- 19 Nagasaki 852-8501, Japan
- 20 Tel: +81-95-819-7282; Fax: +81-95-849-7285
- 21 E-mail: ktorigoe@nagasaki-u.ac.jp
- 22
- 23 Key words: Peritoneal dialysis, peritoneal fibrosis, mitochonic acid-5,
- 24 chlorhexidine gluconate

25 Abstract

26 **Purpose:** Peritoneal fibrosis is a serious complication of long-term peritoneal 27 dialysis, attributable to inflammation and mitochondrial dysfunction. Mitochonic acid-5 (MA-5), an indole-3-acetic acid derivative, improves mitochondrial 28 29 dysfunction and has therapeutic potential against various diseases including 30 kidney diseases. However, whether MA-5 is effective against peritoneal fibrosis 31 remains unclear. Therefore, we investigated the effect of MA-5 using a peritoneal 32 fibrosis mouse model. 33 Methods: Peritoneal fibrosis was induced in C57BL/6 mice via intraperitoneal injection of chlorhexidine gluconate (CG) every other day for 3 weeks. MA-5 34 35 was administered daily by oral gavage. The mice were divided into control, MA-36 5, CG, and CG + MA-5 groups. Following treatment, immunohistochemical analyses were performed. 37 38 **Results:** Fibrotic thickening of the parietal peritoneum induced by CG was 39 substantially attenuated by MA-5. The number of α -smooth muscle actin-40 positive myofibroblasts, transforming growth factor β -positive cells, F4/80-41 positive macrophages, monocyte chemotactic protein 1-positive cells, and 4-42 hydroxy-2-nonenal-positive cells was considerably decreased. In addition,

43	reduced ATP5a1-positive and uncoupling protein 2-positive cells in the CG group
44	were notably increased by MA-5.
45	Conclusions: MA-5 may ameliorate peritoneal fibrosis by suppressing
46	macrophage infiltration and oxidative stress, thus restoring mitochondrial
47	function. Overall, MA-5 has therapeutic potential against peritoneal fibrosis.

49 Introduction

51	Peritoneal dialysis (PD) is a well-established treatment for end-stage renal
52	disease. However, long-term PD leads to histopathological changes in the
53	peritoneum, such as peritoneal fibrosis, which is attributed to increased collagen
54	accumulation and myofibroblast proliferation with inflammatory cell infiltration
55	in submesothelial areas [1–3]. In particular, peritoneal fibrosis leads to decreased
56	PD effectiveness and ultrafiltration failure, resulting in PD withdrawal [4].
57	Moreover, peritoneal fibrosis can progress to encapsulating peritoneal sclerosis
58	resulting in high mortality; it is one of the most critical complications of PD [5].
59	Recently, oxidative stress has been reported to play an important role in
60	peritoneal injury, including fibrosis [6]. However, the precise mechanism of
61	peritoneal fibrosis in patients with PD remains unclear, and no specific treatment
62	has been established.
63	Mitochondrial dysfunction causes increased oxidative stress and plays an
64	important role in fibrosis in organs such as the lungs [7, 8], liver [9, 10], and
65	kidneys [11] by increasing the production of cytokines, such as transforming
66	growth factor β (TGF- β), by macrophages and the activation of myofibroblasts.

Additionally, mitochondrial dysfunction contributes to peritoneal fibrosis by
increasing oxidative stress [6, 12–14].

69	Mitochonic acid 5 (MA-5), 4-(2,4-difluorophenyl)-2-(1H-indol-3-yl)-4-
70	oxobutanoic acid, is a newly-identified mitochondria-homing drug. MA-5 is a
71	derivative of indole-3-acetic acid (IAA), which is a plant hormone auxin and
72	accumulates in patients with renal failure [15]. MA-5 facilitates mitochondrial
73	ATP production and reduces oxidative stress in fibroblasts from patients with
74	mitochondrial diseases [16]. Moreover, MA-5 has therapeutic potential against
75	mitochondrial dysfunction in kidney disease models [17]. Based on these results,
76	we predicted that MA-5 may ameliorate peritoneal fibrosis by improving
77	mitochondrial dysfunction. Therefore, our aim was to investigate the effect of
78	MA-5 in a peritoneal fibrosis mouse model induced by chlorhexidine gluconate
79	(CG).
80	
81	Materials and Methods

82

83 Materials

85	MA-5 was provided by Dr. T. Abe (Tohoku University Graduate School of
86	Medicine, Sendai, Japan) and was dissolved in 0.2 mL distilled water to obtain a
87	final concentration of 0.25 mg/mL (2 mg/kg). We started administering MA-5 at
88	a low dose of 2 mg/kg, and as the antifibrotic effect was confirmed and no
89	adverse events such as liver damage were observed, we set the concentration to 2
90	mg/kg. CG solution was purchased from Dainippon Sumitomo Pharma (Osaka,
91	Japan) and diluted to 0.05% with 15% ethanol in saline.
92	
93	Animals
94	
94 95	Ten-week-old male C57BL/6 mice weighing 24–29 g (Japan SLC Inc., Shizuoka,
	Ten-week-old male C57BL/6 mice weighing 24–29 g (Japan SLC Inc., Shizuoka, Japan) were used in this study. They were housed in standard rodent cages in a
95	
95 96	Japan) were used in this study. They were housed in standard rodent cages in a
95 96 97	Japan) were used in this study. They were housed in standard rodent cages in a light- and temperature-controlled room at the Biomedical Research Center,
95 96 97 98	Japan) were used in this study. They were housed in standard rodent cages in a light- and temperature-controlled room at the Biomedical Research Center, Center for Frontier Life Sciences, Nagasaki University (Nagasaki, Japan). They
95 96 97 98 99	Japan) were used in this study. They were housed in standard rodent cages in a light- and temperature-controlled room at the Biomedical Research Center, Center for Frontier Life Sciences, Nagasaki University (Nagasaki, Japan). They had free access to pelleted rodent food and drinking water. The experimental

104 Animal experimental protocol

106 Peritoneal fibrosis was induced via the intraperitoneal injection of 0.05% CG in 107 15% ethanol dissolved in saline, as described previously, with a slight 108 modification [18, 19]. The mice were injected with CG into the peritoneal cavity 109 at a volume of 10 mL/kg every other day. When injecting CG into the peritoneal 110 cavity, the needle was inserted into the lateral abdomen of the mice. The 111 peritoneal tissues were collected from the midline part. The collected peritoneal tissues were not affected by the needle prick. MA-5 was administered orally 112 113 every day at a concentration of 2 mg/kg from the time of the initial CG injection. 114 The mice were divided into four groups: control (CTL), in which 15% ethanol 115 dissolved in saline was injected intraperitoneally, and the vehicle was 116 administered orally (n = 5); MA-5, in which 15% ethanol dissolved in saline was 117 injected intraperitoneally, and MA-5 was administered orally (n = 5); CG, in 118 which CG was injected intraperitoneally, and the vehicle was administered orally (n = 8); and CG + MA-5, in which CG was injected intraperitoneally, and MA-5 119 120 was administered orally (n = 8). Twenty-one days after the first administration,

121 the mice were sacrificed, and the peritoneal tissues were dissected.

122

123 Histological and immunohistochemical analyses

124

125	The peritoneal tissues were fixed in 4% paraformaldehyde in phosphate-buffered
126	saline (PBS; pH 7.4) immediately after sampling and embedded in paraffin for
127	histological examination and immunohistochemistry. For morphological
128	examination, 4- μ m-thick paraffin-embedded tissues were stained with Masson's
129	trichrome stain. The following antibodies were used for immunohistochemistry:
130	rabbit anti-type III collagen (1:400; LB-1393; LSL Co., Tokyo, Japan); rabbit
131	anti- TGF- β (1:25; sc-146; Santa Cruz Biotechnology, Santa Cruz, CA); mouse
132	anti- α -smooth muscle actin (α -SMA; 1:50; A2547; Sigma-Aldrich, St. Louis,
133	MO), which was used as a myofibroblast marker; rat anti-F4/80 (1:50; MCA497;
134	Bio-Rad, Hercules, CA), which was used as a macrophage marker; goat anti-
135	monocyte chemotactic protein 1 (MCP1; 1:200; sc-1784; Santa Cruz
136	Biotechnology); rabbit anti-CD31 (1:1000; ab182981; Abcam, Cambridge, UK),
137	which was used as a vessel marker; mouse anti-4-hydroxy-2-nonenal (4-HNE;
138	1:50; MHN-100P; JaICA, Shizuoka, Japan), which was used as an oxidative

139	stress marker; rabbit anti-superoxide dismutase 2 (SOD2; 1:100; ab13534,
140	Abcam), which was used as an antioxidant marker; rabbit anti-ATP5a1 (1:50;
141	A5884; ABclonal, Woburn, MA); and uncoupling protein 2 (UCP2; 1:50;
142	ab203244, Abcam), which was used as a mitochondrial expression marker.
143	After deparaffinization, the sections were treated with proteinase K (P2308;
144	Sigma-Aldrich) for 15 min at 37 °C for antigen retrieval for type III collagen,
145	TGF- β , α -SMA, F4/80, MCP1, and UCP2 staining. For CD31, 4-HNE, SOD2,
146	and ATP5a1 staining, the sections were heated to 95 °C for 15 min in 10 mM
147	citrate buffer (pH 6.0) for antigen retrieval. The sections were treated with 0.3%
148	H_2O_2 in methanol for 20 min to inactivate endogenous peroxidase activity and
149	then incubated with a blocking solution (Protein Block Serum-Free [X0909;
150	Dako, Carpinteria, CA], 10% normal goat serum, or 10% normal rabbit serum)
151	for 30 min at room temperature (RT). The sections were then incubated with the
152	primary antibody diluted in the blocking solution for 1 h at RT (type III collagen,
153	α -SMA, and MCP1) or overnight at 4 °C (TGF- β , F4/80, CD31, 4-HNE, SOD2,
154	ATP5a1, and UCP2). For type III collagen staining, the sections were treated
155	with the primary antibody for 1 h at RT followed by incubation with horseradish
156	peroxidase (HRP)-conjugated swine anti-rabbit immunoglobulin antibody

157	(P0399; Dako) diluted at 1:50 for 30 min at RT. The sections were reacted with
158	the avidin-biotin complex using appropriate VECTASTAIN Elite ABC Kits (PK-
159	6101 for TGF- β staining or PK-6105 for MCP1 staining; Vector Laboratories,
160	Burlingame, CA) after incubation with the primary antibody for TGF- β staining
161	and MCP1 staining, respectively. For α -SMA staining, the sections were stained
162	using the rabbit EnVision kit (K4002; Dako) with a complex of the primary
163	antibody and HRP-conjugated rabbit anti-mouse immunoglobulin antibody
164	(P0161; Dako) for 1 h at RT. For F4/80 staining, the sections were treated with
165	the primary antibody overnight at 4 °C, and HRP-conjugated rabbit anti-rat
166	immunoglobulin antibody (P0450; Dako) diluted to 1:100 ratio for 30 min at RT
167	and then incubated with HRP-conjugated swine anti-rabbit immunoglobulin
168	antibody (P0399; Dako) diluted to 1:50 ratio for 30 min at RT. For CD31
169	staining, after treating the sections with the primary antibodies overnight at 4 °C,
170	they were incubated with the rabbit EnVision kit (K4003; Dako) for 1 h at RT.
171	For 4-HNE, SOD2, ATP5a1, and UCP2 staining, after treating the sections with
172	the primary antibodies overnight at 4 °C, they were incubated with HRP-
173	conjugated goat anti-mouse immunoglobulin antibody (P0447; Dako) diluted to
174	1:50 ratio or goat anti-rabbit immunoglobulin antibody (P0448; Dako) diluted to

175	1:200 ratio for 1 h at RT. After each reaction, the sections were washed with PBS.
176	The reaction products were visualized by treating the sections with hydrogen
177	peroxide and 3,3-diaminobenzidine tetrahydrochloride. Finally, after
178	counterstaining with methyl green, the sections were dehydrated and mounted.
179	For all specimens, negative controls were prepared using normal IgG instead of
180	the primary antibody.
181	
182	Immunofluorescence staining
183	
184	The peritoneal tissues were fixed in 4% paraformaldehyde in PBS (pH 7.4)
185	immediately after sampling and embedded in paraffin for immunofluorescence
186	staining. The primary antibodies used for immunohistochemistry were as
187	follows: mouse anti-4-HNE (1:50; MHN-100P; JaICA) and UCP2 (1:100;
188	ab203244; Abcam). After deparaffinization, the sections were heated to 95 °C for
189	15 min in 10 mM citrate buffer (pH 6.0) for antigen retrieval. The sections were
190	incubated with a blocking solution (Protein Block Serum-Free [X0909; Dako])
191	for 60 min at RT. The sections were then incubated with the primary antibodies
192	diluted in the blocking solution overnight at 4 °C. The sections were incubated

193	with the following secondary antibodies for 1 h: Alexa Fluor dye (Molecular
194	Probes Inc., Eugene, OR), 488-labeled goat anti-mouse IgG (A11001; Invitrogen,
195	Paisley, UK) for 4-HNE staining, or Alexa Fluor dye 594-labeled goat anti-rabbit
196	IgG (A11012; Invitrogen) for UCP2 staining. After each reaction, the sections
197	were washed with PBS. Finally, after counterstaining with 4',6-diamidino-2-
198	phenylindole (DAPI), the sections were dehydrated and mounted. The sections
199	were analyzed using a fluorescence microscope (BZ-X710; KEYENCE, Osaka,
200	Japan). For all specimens, negative controls were prepared using normal IgG
201	instead of the primary antibody.
202	
203	Histological analysis
204	
205	To perform semiquantitative analysis of the morphological changes in the
206	peritoneum, we used digitized images and image analysis software
207	(WinROOF2018; Mitani Corporation, Fukui, Japan). We measured the thickness
208	of the submesothelial compact zone above the abdominal muscle in cross-
209	sections of the abdominal wall. The image was transformed into a matrix of 1440

211	microscope (Nikon ECLIPSE Ci-L; Nikon, Tokyo, Japan). Five different regions
212	were randomly selected, and the thickness of the submesothelial compact zone
213	was measured by Masson's trichrome staining. In each peritoneal sample, the
214	type III collagen-positive area was calculated in five fields at $200 \times$
215	magnification. The cells that were positive for TGF- β , α -SMA, F4/80, MCP1, 4-
216	HNE, SOD2, ATP5a1, and UCP2 were counted in five fields at $200 \times$ or $400 \times$
217	magnification. For SOD2, ATP5a1, and UCP2, the proportion of positive cells
218	among all cells in the submesothelial compact zone per field was calculated. The
219	CD31-positive vessels were counted in five fields at 200× magnification.
220	
220 221	Peritoneal equilibration test (PET)
	Peritoneal equilibration test (PET)
221	Peritoneal equilibration test (PET) The peritoneal equilibration test (PET) was performed just before the sacrifice on
221 222	
221 222 223	The peritoneal equilibration test (PET) was performed just before the sacrifice on
221222223224	The peritoneal equilibration test (PET) was performed just before the sacrifice on day 21. Eight milliliters of 2.5% Reguneal solution (ATB3627; Baxter Japan,
 221 222 223 224 225 	The peritoneal equilibration test (PET) was performed just before the sacrifice on day 21. Eight milliliters of 2.5% Reguneal solution (ATB3627; Baxter Japan, Tokyo, Japan) was injected into the abdominal cavity of mice. After 1 h, the

229	ratio	of	creatinine	was	calcu	lated.

231	Quantification of proteins by enzyme-linked immunosorbent assay (ELISA)
232	
233	Protein concentration in PD effluent and serum was measured using an enzyme-
234	linked immunosorbent assay (ELISA) for 8-hydroxy-2'-deoxyguanosine (8-
235	OHdG; KOG-HS10/E; JaICA). Optical density was measured using a microplate
236	reader (Synergy LX Multi-Mode Microplate Reader; BioTek, Winooski, VT).
237	
238	Statistical analyses
239	
240	Data are expressed as mean \pm standard error. Differences among the groups were
241	examined for statistical significance using repeated measures analysis of variance
242	(Tukey's honest significant difference test). Statistical significance was set at $p <$
243	0.05. All statistical analyses were performed using JMP version 15 software
244	(SAS Institute Inc., Cary, NC).
245	

Results

248 MA-5 attenuates peritoneal fibrotic thickening induced by CG

250	To assess the effect of MA-5 on peritoneal fibrotic thickening induced by CG, we
251	performed Masson's trichrome staining (Fig. 1a-e). In the CTL group, the
252	surface of the peritoneal tissue was covered with a monolayer of mesothelial
253	cells but displayed no thickening of the submesothelial compact zone (Fig. 1a).
254	In the MA-5 group, the peritoneum was not affected by the administration of
255	MA-5 and was similar to that in the CTL group (Fig. 1b) (14.1 vs. 21.0 μ m, <i>p</i> =
256	0.90). However, the peritoneal tissues in the CG group showed considerable
257	thickening of the submesothelial compact zone (Fig. 1c) (93.8 vs. 21.0 μ m, p <
258	0.0001). Additionally, the thickness of the submesothelial compact zone in the
259	CG + MA-5 group was significantly lower than that in the CG group (Fig. 1d)
260	(66.5 vs. 93.8 μ m, $p = 0.0092$).
261	Further, we performed immunohistochemistry of type III collagen to analyze
262	collagen deposition (Fig. 1f-i). In the CG group, type III collagen was diffusely
263	expressed, and the positive area was significantly larger than that in the CTL
264	group (Fig. 1f, g) (198.3 vs. 27.8 μ m ² , $p < 0.0001$). Type III collagen-positive

265	area in the CG + MA-5 group (Fig. 1h) was significantly reduced compared with
266	that in the CG group (110.6 vs. 198.3 μ m ² , $p = 0.0022$).
267	These results indicate that MA-5 has an antifibrotic effect on peritoneal
268	fibrosis induced by CG.
269	Furthermore, we evaluated peritoneal permeability by performing PET (Online
270	Resource 1). The D/S ratio of creatinine in the CG group was significantly higher
271	than that in the CTL group (0.76 vs. 0.46, $p = 0.0091$). However, the D/S ratio of
272	creatinine in the CG + MA-5 group was lower than that in the CG group,
273	although the difference was not statistically significant (0.70 vs. 0.76, $p = 0.76$).
274	These results, consistent with the results of the histological analysis, suggest that
275	MA-5 may attenuate the peritoneal hyperpermeability of our CG-induced
276	peritoneal fibrosis mouse model.
277	
278	MA-5 attenuates fibrosis by suppressing TGF- β and α -SMA
279	
280	As TGF- β is known to be a crucial factor in the development of fibrosis, we
281	examined the number of TGF- β -positive cells in the peritoneal tissues using
282	immunohistochemistry (Fig. 2a–d). In the CTL group, a few TGF- β -positive cells

283	were found in the submesothelial zone (Fig. 2a, e). In the CG group, numerous
284	TGF- β -positive cells were observed in the thickened peritoneum (Fig. 2b, f)
285	(226.5 vs. 23.1 cells/field, $p = 0.021$), whereas TGF- β -positive cells were
286	significantly reduced in the CG + MA-5 group (Fig. 2c, g) compared with those
287	in the CG group (69.8 vs. 226.5 cells/field, $p = 0.0089$).
288	Furthermore, we evaluated the expression of α -SMA, which is a marker of
289	myofibroblasts in peritoneal tissues (Fig. 2h-n). In the CTL group, the number of
290	α -SMA-positive cells was low in the submesothelial zone (Fig. 2h, l). On the
291	contrary, in the CG group, numerous α -SMA-positive cells accumulated in the
292	thickened peritoneum, especially in the upper layer (Fig. 2i, m) (281.3 vs. 29.7
293	cells/field, $p = 0.0023$), whereas the number of α -SMA-positive cells was
294	significantly decreased in the CG + MA-5 group (Fig. 2j, n) compared with that
295	in the CG group (116.3 vs. 281.3 cells/field, $p = 0.015$).
296	These results indicate that MA-5 suppressed TGF- β expression and α -SMA-
297	positive myofibroblast proliferation in the peritoneum in our CG-induced
298	peritoneal fibrosis mouse model.
299	

MA-5 ameliorates macrophage infiltration and MCP1 expression

302	CG induces peritoneal fibrosis via macrophage infiltration [20]. Therefore, we
303	investigated the degree of macrophage infiltration by performing
304	immunohistochemistry for F4/80 as a marker for mouse macrophages in
305	peritoneal tissues (Fig. 3a-g). In the CTL group, a small number of macrophages
306	were found in the submesothelial zone (Fig. 3a, e). In the CG group, numerous
307	macrophages were observed in the thickened peritoneum (Fig. 3b, f) (107.6 vs.
308	9.6 cells/field, $p < 0.0001$), whereas the number of macrophages was
309	considerably reduced in the CG + MA-5 group (Fig. 3c, g) compared to that in
310	the CG group (62.1 vs. 107.6 cells/field, $p = 0.0010$). We also investigated the
311	expression of MCP1, which promotes macrophage infiltration (Fig. 3h–n). In the
312	CTL group, a few MCP1-positive cells were found in the submesothelial zone
313	(Fig. 3h, l). In the CG group, numerous MCP1-positive cells were detected in the
314	thickened peritoneum (Fig. 3i, m) (262.4 vs. 20.7 cells/field, $p = 0.0011$),
315	whereas MCP1-positive cells were considerably decreased in the CG + MA-5
316	group (Fig. 3j, n) compared with those in the CG group (96.7 vs. 262.4
317	cells/field, $p = 0.0062$).

318 These results suggest that MA-5 repressed the expression of MCP1 and

macrophage infiltration in the peritoneum of our CG-induced peritoneal fibrosismouse model.

321

322 MA-5 suppresses angiogenesis

323

224	т .	/ 1º 1	1 (1)	1 '	1 1
3/4	In our previous s	fildies we hav	e shown that some	ariigs improved	neritoneal
521	In our previous s	rudics, we hav	c shown that some	arugs improved	pernomean

325 fibrosis and reduced angiogenesis [21, 22]. Therefore, in this study, we evaluated

326 angiogenesis by immunohistochemistry of CD31, a marker of vessels, in the

327 peritoneal tissues (Fig. 4a–g). In the CTL group, no CD31-positive vessels were

found in the submesothelial zone (Fig. 4a, e). On the contrary, in the CG group,

329 several CD31-positive vessels were detected (Fig. 4b, f) (17.4 vs. 0.0

vessels/field, p < 0.0001), whereas CD31-positive vessels were significantly

decreased in the CG + MA-5 group (Fig. 4c, g) compared with those in the CG

group (6.4 vs. 17.4 vessels/field, p = 0.0010). These results indicate that MA-5

333 suppressed angiogenesis in the peritoneum of our CG-induced peritoneal fibrosis

334 mouse model.

335

336 MA-5 decreases oxidative stress

338	4-HNE is a natural byproduct of lipid peroxidation, which generally reflects
339	oxidative stress [12]. Therefore, we evaluated the oxidative stress level in
340	peritoneal tissues by immunohistochemistry for 4-HNE (Fig. 5a-g). In the CTL
341	group, a few 4-HNE-positive cells were found in the submesothelial zone (Fig.
342	5a, e). In the CG group, numerous 4-HNE-positive macrophages and
343	myofibroblasts were observed in the thickened peritoneum (Fig. 5b, d, f) (75.3
344	vs. 0.7 cells/field, $p < 0.0001$), whereas 4-HNE-positive cells were significantly
345	reduced in the CG + MA-5 group (Fig. 5c, g), compared with those in the CG
346	group (45.5 vs. 75.3 cells/field, $p = 0.0051$). These results suggest that MA-5
347	may reduce peritoneal oxidative stress induced by CG.
348	Additionally, we measured the concentration of 8-OHdG, one of the oxidative
349	stress markers, in peritoneal effluent and serum (Online Resource 2). No
350	significant difference in the 8-OHdG concentration in both peritoneal effluent
351	(0.13 vs. 0.22 ng/mL, p = 0.48; 0.22 vs. 0.19 ng/mL, p = 0.87) and serum $(0.20 serum)$
352	vs. 0.24 ng/mL, $p = 0.99$; 0.24 vs. 0.80 ng/mL, $p = 0.051$) between the CTL and
353	the CG groups and the CG and the CG + MA-5 groups was observed. These
354	results indicated that the effect of MA-5 could be limited to the peritoneal region.

355	Moreover, we performed immunohistochemistry of SOD2 to evaluate
356	antioxidant capacity (Online Resource 3). There was no significant difference in
357	the proportion of SOD2-positive cells in the submesothelial zone (74.0% vs.
358	79.7%, $p = 0.53$; 79.7% vs. 81.5%, $p = 0.92$) between the CTL (Online Resource
359	3a) and the CG group (Online Resource 3b) and the CG and CG + MA-5 groups
360	(Online Resource 3c). These results suggested that MA-5 might not be involved
361	in the antioxidant capacity of the peritoneum.
362	
363	MA-5 restores the decreased expression of mitochondrial components
364	
365	Mitochondrial dysfunction has been reported to cause peritoneal fibrosis via
366	increased oxidative stress [6, 12–14], and MA-5 recovers mitochondrial function
367	by reducing oxidative stress in kidney tissues and cardiac myocytes [18].
368	Therefore, we assessed the mitochondrial component expression level in the
369	peritoneal tissues by performing immunohistochemistry of ATP5a1 and UCP2,
370	both of which play an important role in mitochondrial function (Fig. 6a-g). In the
371	CTL group, ATP5a1 and UCP2 expression was preserved in the submesothelial

373	proportion of positive cells for ATP5a1 and UCP2 was lower than that in the CTL
374	group (Fig. 6b, f) (58.3% vs. 83.5%, <i>p</i> = 0.0006; 54.2% vs. 89.5%, <i>p</i> < 0.0001).
375	Meanwhile, the decreased proportion of positive cells for ATP5a1 and UCP2 was
376	restored in the CG + MA-5 group mainly in myofibroblasts and macrophages
377	(Fig. 6c, g) (74.2% vs. 58.3%, <i>p</i> = 0.011; 87.3% vs. 54.2 %, <i>p</i> < 0.0001). These
378	results suggest that MA-5 may ameliorate mitochondrial dysfunction in the
379	peritoneum of our CG-induced peritoneal fibrosis mouse model.
380	Moreover, we performed double immunofluorescence staining of 4-HNE and
381	UCP2 (Fig. 7a–c). In the CTL group, most of the cells, the majority of which
382	were mesothelial cells, were 4-HNE-negative and UCP2-positive (Fig. 7a). In the
383	CG group, most of the cells that appeared to be myofibroblasts were 4-HNE-
384	negative and UCP2-positive, whereas 4-HNE-positive and UCP2-negative cells
385	were observed among the cells that appeared to be macrophages (Fig. 7b). In the
386	CG + MA-5 group, myofibroblasts were similar to those in the CG group;
387	however, 4-HNE-negative and UCP2-positive macrophages were increased
388	compared with those in the CG group (Fig. 7c). These results suggest MA-5
389	treatment may reduce oxidative stress in cells with improved mitochondrial
390	function, which appear to be mainly macrophages.

202	D '	•
392	Discu	SCIUN
572	Discu	22101

394	In this study, we demonstrate that MA-5 considerably attenuated CG-induced
395	peritoneal fibrosis by reducing the number of myofibroblasts in mice.
396	Furthermore, this antifibrotic effect was accompanied by a decrease in
397	macrophage infiltration. We also showed that oxidative stress was reduced, and
398	mitochondrial function was restored by treatment with MA-5. These findings
399	suggest that MA-5 is beneficial for preventing the progression of peritoneal
400	fibrosis.
401	Macrophage infiltration is involved in CG-induced peritoneal fibrosis [19]. In
402	the present study, we observed that MA-5 reduced macrophage infiltration into
403	the peritoneum. Moreover, MA-5 suppressed MCP1 expression of
404	myofibroblasts and macrophages in the peritoneum. MCP1 has been shown to
405	play an important role in the initiation and progression of peritoneal fibrosis via
406	the recruitment and activation of macrophages, which secrete profibrotic
407	cytokines, such as TGF- β [20, 23]. Thus, our results suggest that MA-5
408	ameliorates peritoneal fibrosis by repressing macrophage infiltration and TGF- β

409	expression via the suppression of MCP1 expression. Furthermore, MA-5 reduced
410	CD31-positive vessels in the peritoneum, suggesting that MA-5 also has anti-
411	angiogenic effects accompanied by its antifibrotic effects.
412	Oxidative stress triggers inflammatory conditions, including macrophage
413	infiltration in the peritoneum, and mitochondria are a major site for the
414	production of reactive oxygen species (ROS) [6, 14, 24, 25]. As for the
415	mechanism of the effects of MA-5 on mitochondria, previous studies have shown
416	that MA-5 binds to mitofilin, an inner mitochondrial membrane protein, and
417	induces ATP synthase oligomerization, supercomplex formation, and a
418	conformational change in cristae [26]. These improvements in mitochondrial
419	morphology and dynamics promote effective ATP synthesis without generating
420	mitochondrial ROS [26]. In addition, it has been reported that supercomplex
421	formation prevents excessive mitochondrial ROS production [27]. Furthermore,
422	the proportion of ATP5a1- and UCP2-positive cells in myofibroblasts and
423	macrophages was restored in our study. The number of 4-HNE-positive
424	myofibroblasts and macrophages was reduced in the CG + MA-5 group
425	compared with that in the CG group, suggesting that MA-5 treatment recovered
426	mitochondrial function and reduced oxidative stress in cells comprising the

427	peritoneal submesothelial compact zone. The double immunofluorescence
428	staining for 4-HNE and UCP2 showed that 4-HNE-negative and UCP2-positive
429	macrophages in the CG + MA-5 group increased compared with those in the CG
430	group, suggesting that MA-5 treatment improved the mitochondrial function of
431	macrophages mainly and reduced oxidative stress.
432	These results indicate that MA-5 can inhibit peritoneal fibrosis by suppressing
433	inflammation, including macrophage infiltration, via the reduction of oxidative
434	stress by restoring mitochondrial function.
435	Although our results show the beneficial effects of MA-5 treatment, our study
436	has some limitations. First, we used a CG-induced peritoneal fibrosis mouse
437	model, but CG may not imitate human peritoneal fibrosis. Nevertheless, the CG
438	model can be regarded as an important experimental model because the
439	histological changes, including myofibroblast proliferation and macrophage
440	infiltration in the CG model, were similar to those of peritoneal fibrosis in PD
441	patients. These similarities strongly indicate that the CG model is suitable for
442	studying the pathogenesis and treatment of peritoneal fibrosis. Second, MA-5
443	and CG were administered simultaneously. The effects of MA-5 as a therapeutic
444	intervention after CG initiation have not been determined. Therefore, the

445	therapeutic efficacy of MA-5 requires further investigation. Finally, in our study,
446	the direct causal relationship between MA-5 and the restoration of mitochondrial
447	function and morphology was not elucidated. However, it has been confirmed by
448	electron microscopy that mitochondrial cristae enlarged and shortened by
449	mitochondrial damage become thinner and longer with MA-5 administration
450	[26]. Further studies are needed to establish the protective mechanism of MA-5.
451	
452	Conclusions
453	
454	We demonstrate that MA-5 can ameliorate peritoneal fibrosis in a CG-induced
455	peritoneal fibrosis mouse model. Our results indicate that the antifibrotic effect of
456	MA-5 may involve the suppression of macrophage infiltration via the recovery of
457	mitochondrial function and reduction in oxidative stress. Thus, MA-5 constitutes
458	a novel treatment option for the prevention of peritoneal fibrosis.
459	

460 **CONFLICT OF INTEREST**

- 461 The authors declare that they have no conflicts of interest.
- 462

463 FUNDING

- 464 This work was supported in part by a National Grant-in-Aid for Scientific Research
- 465 from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 466 (18H02822(TA)) and Japan Agency for Medical Research and Development
- 467 (AMED) J21000294.
- 468

469 ACKNOWLEDGMENTS

- 470 We would like to thank Ms. Ryoko Yamamoto for her excellent experimental
- 471 assistance.
- 472

474 **References**

475	1.	Gandhi VC, Huma	vun HM. Ing	TS. Daugirdas	s JT. Jablokow	VR. Iwatsuki S	S.
.,.			· / ••••• • • • • • • • • • • • • •	, . ~ ,	,		~,

- 476 Geis WP, Hano JE (1980) Sclerotic thickening of the peritoneal membrane in
- 477 maintenance peritoneal dialysis patients. Arch Intern Med 140:1201–1203.
- 478 https://doi.org/10.1001/archinte.1980.00330200077024
- 479 2. Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR,
- 480 Mackenzie RK, Williams GT, Peritoneal Biopsy Study Group (2002)
- 481 Morphologic changes in the peritoneal membrane of patients with renal
- 482 disease. J Am Soc Nephrol 13:470–479.
- 483 https://doi.org/10.1681/ASN.V132470
- 484 3. Zhang Z, Jiang N, Ni Z (2017) Strategies for preventing peritoneal fibrosis in
- 485 peritoneal dialysis patients: New insights based on peritoneal inflammation
- 486 and angiogenesis. Front Med 11:349–358. https://doi.org/10.1007/s11684-
- 487 017-0571-2
- 488 4. Kawaguchi Y, Ishizaki T, Imada A, Oohira S, Kuriyama S, Nakamoto H,
- 489 Nakamoto M, Hiramatu M, Maeda K, Ota K, Study Group for Withdrawal
- 490 from PD in Japan (2003) Searching for the reasons for drop-out from
- 491 peritoneal dialysis: A nationwide survey in Japan. Perit Dial Int 23

492 Supplement 2:S175-7. https://doi.org/10.1177/089686080302302s36:S175493 S177

- 494 5. Nakayama M, Miyazaki M, Honda K, Kasai K, Tomo T, Nakamoto H,
- 495 Kawanishi H (2014) Encapsulating peritoneal sclerosis in the era of a multi-
- 496 disciplinary approach based on biocompatible solutions: The next-PD study.

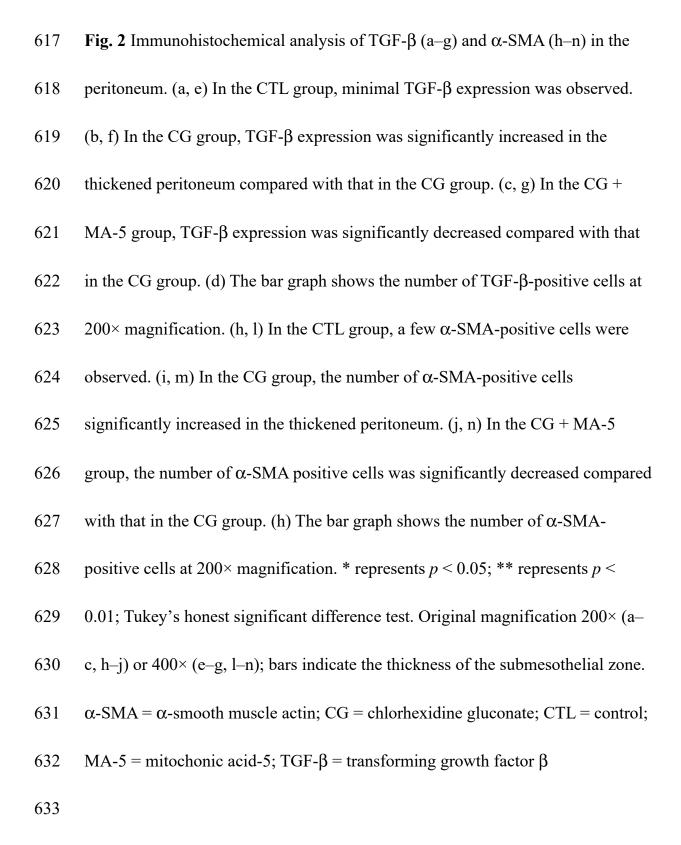
497 Perit Dial Int 34:766–774. https://doi.org/10.3747/pdi.2013.00074

- 498 6. Roumeliotis S, Dounousi E, Salmas M, Eleftheriadis T, Liakopoulos V
- 499 (2020) Unfavorable effects of peritoneal dialysis solutions on the peritoneal
- 500 membrane: The role of oxidative stress. Biomolecules 10:768.
- 501 https://doi.org/10.3390/biom10050768
- 502 7. Rangarajan S, Bernard K, Thannickal VJ (2017) Mitochondrial dysfunction
- 503 in pulmonary fibrosis. Ann Am Thorac Soc 14:S383–S388.
- 504 https://doi.org/10.1513/AnnalsATS.201705-370AW
- 505 8. Mora AL, Bueno M, Rojas M (2017) Mitochondria in the spotlight of aging
- and idiopathic pulmonary fibrosis. J Clin Invest 127:405–414.
- 507 https://doi.org/10.1172/JCI87440
- 508 9. Pérez-Carreras M, del Hoyo P, Martín MA, Rubio JC, Martín A, Castellano
- 509 G, Colina F, Arenas J, Solis-Herruzo JA (2003) Defective hepatic

510	mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis.
511	Hepatology 38:999–1007. https://doi.org/10.1053/jhep.2003.50398
512	10. Paradies G, Paradies V, Ruggiero FM, Petrosillo G (2014) Oxidative stress,
513	cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease.
514	World J Gastroenterol 20:14205–14218.
515	https://doi.org/10.3748/wjg.v20.i39.14205
516	11. Xinyu Li, Wei Zhang, Qingtai Cao, Zeyu Wang, Mingyi Zhao, Linyong Xu,
517	Quan Zhuangcorresponding (2020) Mitochondrial dysfunction in fibrotic
518	diseases. Cell Death Discov 6: 80. https://doi.org/10.1038/s41420-020-
519	00316-9
520	12. Shin HS, Ko J, Kim DA, Ryu ES, Ryu HM, Park SH, Kim YL, Oh ES, Kang
520	12. Shin HS, Ko J, Kim DA, Ryu ES, Ryu HM, Park SH, Kim YL, Oh ES, Kang
520 521	12. Shin HS, Ko J, Kim DA, Ryu ES, Ryu HM, Park SH, Kim YL, Oh ES, Kang DH (2017) Metformin ameliorates the phenotype transition of peritoneal
520 521 522	12. Shin HS, Ko J, Kim DA, Ryu ES, Ryu HM, Park SH, Kim YL, Oh ES, Kang DH (2017) Metformin ameliorates the phenotype transition of peritoneal mesothelial cells and peritoneal fibrosis via a modulation of oxidative stress.
520521522523	 12. Shin HS, Ko J, Kim DA, Ryu ES, Ryu HM, Park SH, Kim YL, Oh ES, Kang DH (2017) Metformin ameliorates the phenotype transition of peritoneal mesothelial cells and peritoneal fibrosis via a modulation of oxidative stress. Sci Rep 7:5690. https://doi.org/10.1038/s41598-017-05836-6
 520 521 522 523 524 	 12. Shin HS, Ko J, Kim DA, Ryu ES, Ryu HM, Park SH, Kim YL, Oh ES, Kang DH (2017) Metformin ameliorates the phenotype transition of peritoneal mesothelial cells and peritoneal fibrosis via a modulation of oxidative stress. Sci Rep 7:5690. https://doi.org/10.1038/s41598-017-05836-6 13. Hung KY, Liu SY, Yang TC, Liao TL, Kao SH (2014) High-dialysate-

528	14. Lu H, Chen W, Liu W, Si Y, Zhao T, Lai X, Kang Z, Sun X, Guo Z (2020)
529	Molecular hydrogen regulates PTEN-AKT-mTOR signaling via ROS to
530	alleviate peritoneal dialysis-related peritoneal fibrosis. FASEB J 34:4134-
531	4146. https://doi.org/10.1096/fj.201901981R
532	15. Toyohara T, Akiyama Y, Suzuki T, Takeuchi Y, Mishima E, Tanemoto M,
533	Momose A, Toki N, Sato H, Nakayama M, Hozawa A, Tsuji I, Ito S, Soga T,
534	Abe T (2010) Metabolomic profiling of uremic solutes in CKD patients.
535	Hypertens Res 33:944–952. https://doi.org/10.1038/hr.2010.113
536	16. Suzuki T, Yamaguchi H, Kikusato M, Matsuhashi T, Matsuo A, Sato T, Oba
537	Y, Watanabe S, Minaki D, Saigusa D, Shimbo H, Mori N, Mishima E, Shima
538	H, Akiyama Y, Takeuchi Y, Yuri A, Kikuchi K, Toyohara T, Suzuki C,
539	Kohzuki M, Anzai J, Mano N, Kure S, Yanagisawa T, Tomioka Y, Toyomizu
540	M, Ito S, Osaka H, Hayashi K, Abe T (2015) Mitochonic acid 5 (MA-5), a
541	derivative of the plant hormone indole-3-acetic acid, improves survival of
542	fibroblasts from patients with mitochondrial diseases. Tohoku J Exp Med
543	236:225-232. https://doi.org/10.1620/tjem.236.225
544	17. Suzuki T, Yamaguchi H, Kikusato M, Hashizume O, Nagatoishi S, Matsuo A,
545	Sato T, Kudo T, Matsuhashi T, Murayama K, Ohba Y, Watanabe S, Kanno S,

546	Minaki D, Saigusa D, Shinbo H, Mori N, Yuri A, Yokoro M, Mishima E,
547	Shima H, Akiyama Y, Takeuchi Y, Kikuchi K, Toyohara T, Suzuki C,
548	Ichimura T, Anzai J, Kohzuki M, Mano N, Kure S, Yanagisawa T, Tomioka
549	Y, Toyomizu M, Tsumoto K, Nakada K, Bonventre JV, Ito S, Osaka H,
550	Hayashi K, Abe T (2016) Mitochonic acid 5 binds mitochondria and
551	ameliorates renal tubular and cardiac myocyte damage. J Am Soc Nephrol
552	27:1925–1932. https://doi.org/10.1681/ASN.2015060623
553	18. Mishima Y, Miyazaki M, Abe K, Ozono Y, Shioshita K, Xia Z, Harada T,
554	Taguchi T, Koji T, Kohno S (2003) Enhanced expression of heat shock
555	protein 47 in rat model of peritoneal fibrosis. Perit Dial Int 23:14–22.
556	https://doi.org/10.1177/089686080302300102
557	19. Nakazawa M, Obata Y, Nishino T, Abe S, Nakazawa Y, Abe K, Furusu A,
558	Miyazaki M, Koji T, Kohno S (2013) Involvement of leptin in the
559	progression of experimentally induced peritoneal fibrosis in mice. Acta
560	Histochem Cytochem 46:75-84. https://doi.org/10.1267/ahc.13005
561	20. Topley N, Liberek T, Davenport A, Li FK, Fear H, Williams J (1996)
562	Activation of inflammation and leukocyte recruitment into the peritoneal
563	cavity. Kidney International, Supplement.


564	21. Kitamura M, Nishino T, Obata Y, Furusu A, Hishikawa Y, Koji T, Kohno S
565	(2012) Epigallocatechin gallate suppresses peritoneal fibrosis in mice. Chem
566	Biol Interact 5:95–104. https://doi.org/10.1016/j.cbi.2011.11.002.
567	22. Io K, Nishino T, Obata Y, Kitamura M, Koji T, Kohno S (2015) SAHA
568	Suppresses Peritoneal Fibrosis in Mice. Perit Dial Int 35:246–58.
569	https://doi.org/10.3747/pdi.2013.00089.
570	23. Lee SH, Kang HY, Kim KS, Nam BY, Paeng J, Kim S, Li JJ, Park JT, Kim
571	DK, Han SH, Yoo TH, Kang SW (2012) The monocyte chemoattractant
572	protein-1 (MCP-1)/CCR2 system is involved in peritoneal dialysis-related
573	epithelial-mesenchymal transition of peritoneal mesothelial cells. Lab Invest
574	92:1698-1711. https://doi.org/10.1038/labinvest.2012.132
575	24. Liakopoulos V, Roumeliotis S, Gorny X, Eleftheriadis T, Mertens PR (2017)
576	Oxidative stress in patients undergoing peritoneal dialysis: A current review
577	of the literature. Oxid Med Cell Longev 2017:3494867.
578	https://doi.org/10.1155/2017/3494867
579	25. Indo HP, Davidson M, Yen HC, Suenaga S, Tomita K, Nishii T, Higuchi M,
580	Koga Y, Ozawa T, Majima HJ (2007) Evidence of ROS generation by
581	mitochondria in cells with impaired electron transport chain and

582 mitochondrial DNA damage. Mitochondrion 7:106–118.
--

- 583 https://doi.org/10.1016/j.mito.2006.11.026
- 584 26. Matsuhashi T, Sato T, Kanno SI, Suzuki T, Matsuo A, Oba Y, Kikusato M,
- 585 Ogasawara E, Kudo T, Suzuki K, Ohara O, Shimbo H, Nanto F, Yamaguchi
- 586 H, Saigusa D, Mukaiyama Y, Watabe A, Kikuchi K, Shima H, Mishima E,
- 587 Akiyama Y, Oikawa Y, Hsin-Jung HO, Akiyama Y, Suzuki C, Uematsu M,
- 588 Ogata M, Kumagai N, Toyomizu M, Hozawa A, Mano N, Owada Y, Aiba S,
- 589 Yanagisawa T, Tomioka Y, Kure S, Ito S, Nakada K, Hayashi KI, Osaka H,
- 590 Abe T (2017) Mitochonic acid-5 (MA-5) facilitates ATP synthase
- 591 oligomerization and cell survival in various mitochondrial diseases.
- 592 EBioMedicine 20:27–38. https://doi.org/10.1016/j.ebiom.2017.05.016
- 593 27. Maranzana E, Barbero G, Falasca AI, Lenaz G, Genova ML (2013)
- 594 Mitochondrial respiratory supercomplex association limits production of
- reactive oxygen species from complex I. Antioxid Redox Signal 19:1469–
- 596 1480. https://doi.org/10.1089/ars.2012.4845
- 597

598 Figure Legends

599 Fig. 1 Masson's trichrome staining of the peritoneum (a–e) and 600 immunohistochemical analysis of type III collagen in the peritoneum (f–i). (a, b) 601 In the CTL and MA-5 groups, the monolayer of mesothelial cells covered the 602 entire surface of the peritoneum without thickening of the submesothelial 603 compact zone. (c) The parietal peritoneal tissues of the CG group showed 604 considerable fibrotic thickening of the submesothelial compact zone and the 605 presence of numerous cells. (d) The CG + MA-5 group showed significantly less 606 thickening of the submesothelial area than the CG group. (e) The bar graph 607 shows the thickening of the submesothelial compact zone. (f) In the CTL group, 608 there was slight type III collagen deposition. (g) In the CG group, the type III 609 collagen-positive area significantly increased in the thickened peritoneum. (h) In 610 the CG + MA-5 group, the type III collagen-positive area significantly decreased 611 compared with that in the CG group. (i) The bar graph shows the type III collagen-positive area. ** represents p < 0.01; *** represents p < 0.001; Tukey's 612 613 honest significant difference test. Original magnification 200×; bars indicate the 614 thickness of the submesothelial zone. CG = chlorhexidine gluconate; CTL = 615 control; MA-5 = mitochonic acid-5

634	Fig. 3 Immunohistochemical analysis for F4/80 (a–g) and MCP1 (h–n) in the
635	peritoneum. (a, e) In the CTL group, a few F4/80-positive cells were observed.
636	(b, f) In the CG group, the number of F4/80-positive cells was significantly
637	increased in the thickened peritoneum. (c, g) In the CG + MA-5 group, the
638	number of F4/80-positive cells significantly decreased compared with that in the
639	CG group. (d) The bar graph shows the number of F4/80-positive cells at 200× $$
640	magnification. (h, l) In the CTL group, minimal MCP1 expression was observed.
641	(i, m) In the CG group, MCP1 expression was significantly increased in the
642	thickened peritoneum compared with that in the CTL group. (j, n) In the CG +
643	MA-5 group, MCP1 expression was significantly decreased compared with that
644	in the CG group. (k) The bar graph shows the number of MCP1-positive cells at
645	200× magnification. * represents $p < 0.05$; ** represents $p < 0.01$; *** represents
646	p < 0.001; Tukey's honest significant difference test. Original magnification
647	$200 \times (a-c, h-j)$ or $400 \times (e-g, l-n)$; bars indicate the thickness of the
648	submesothelial zone. CG = chlorhexidine gluconate; CTL = control; MA-5 =
649	mitochonic acid-5; MCP1 = monocyte chemotactic protein 1.
650	

651 Fig. 4 Immunohistochemical analysis for CD31 in the peritoneum. (a, e) In the

652	CTL group, no CD31-positive vessels were observed. (b, f) In the CG group, the
653	number of CD31-positive vessels was significantly increased in the thickened
654	peritoneum. (c, g) In the CG + MA-5 group, the number of CD31-positive
655	vessels significantly decreased compared with that in the CG group. (d) The bar
656	graph shows the number of CD31-positive vessels. ** represents $p < 0.01$; ***
657	represents $p < 0.001$; Tukey's honest significant difference test. Original
658	magnification 200× (a–c) or 400× (e–g); bars indicate the thickness of the
659	submesothelial zone. CTL = control; MA-5 = mitochonic acid-5; CG =
660	chlorhexidine gluconate. Arrows indicate CD31-positive vessels
661	

Fig. 5 Immunohistochemical analysis of 4-HNE (a–g) in the peritoneum. (a, e) In 662

the CTL group, minimal 4-HNE expression was observed. (b, f) In the CG group, 663

4-HNE expression significantly increased in the thickened peritoneum compared 664

665 with that in the CTL group. (c, g) In the CG + MA-5 group, 4-HNE expression

significantly decreased compared with that in the CG group. (d) The bar graph 666

shows the number of 4-HNE-positive cells at 200× magnification. ** represents 667

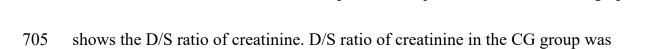
p < 0.01; *** represents p < 0.001; Tukey's honest significant difference test. 668

Original magnification $200 \times (a-c)$ or $400 \times (e-g)$; bars indicate the thickness of 669

670 the submesothelial zone. 4-HNE = 4-hydroxy-2-nonenal; CTL = control; MA-5 =

671 mitochonic acid-5; CG = chlorhexidine gluconate

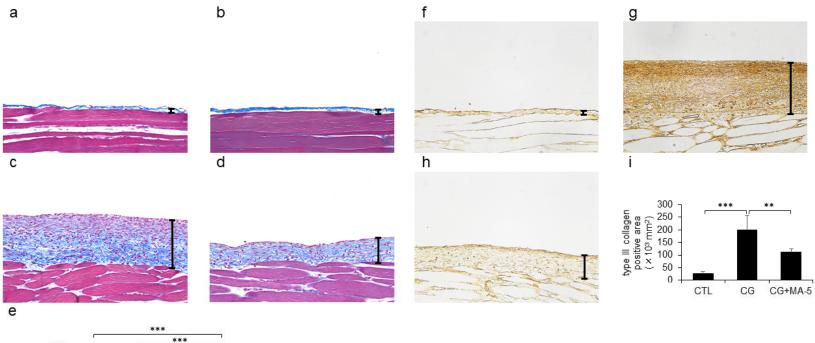
672

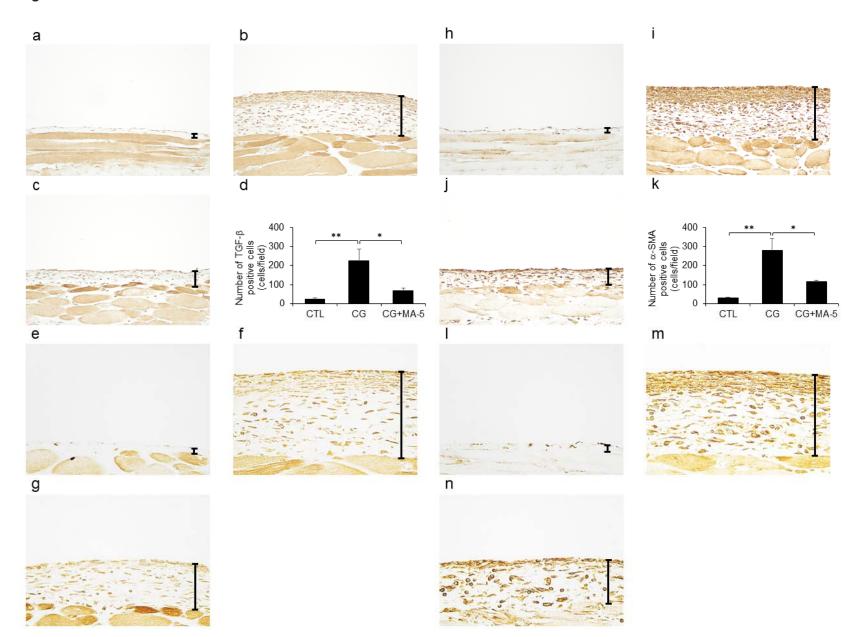

673	Fig. 6 Immunohistochemical analysis for ATP5a1 (a–d) and UCP2 (e–h) in the
674	peritoneum. (a) In the CTL group, ATP5a1 expression in the component cells was
675	preserved. (b) In the CG group, the proportion of ATP5a1-positive cells
676	significantly decreased in the thickened peritoneum compared with that in the
677	CTL group. (c) In the CG + MA-5 group, the decreased proportion of ATP5a1-
678	positive cells was significantly restored compared with that in the CG group. (d)
679	The bar graph shows the proportion of ATP5a1-positive cells. (e) In the CTL
680	group, the expression of UCP2 in the component cells was maintained. (f) In the
681	CG group, the proportion of UCP2-positive cells significantly reduced in the
682	thickened peritoneum. (g) In the CG + MA-5 group, the reduced proportion of
683	UCP2-positive cells was significantly recovered compared with that in the CG
684	group. (h) The bar graph shows the proportion of UCP2-positive cells. **
685	represents $p < 0.01$; *** represents $p < 0.001$; Tukey's honest significant
686	difference test. Original magnification 400×; bars indicate the thickness of the
687	submesothelial zone. UCP2 = uncoupling protein 2; CTL = control; MA-5 =

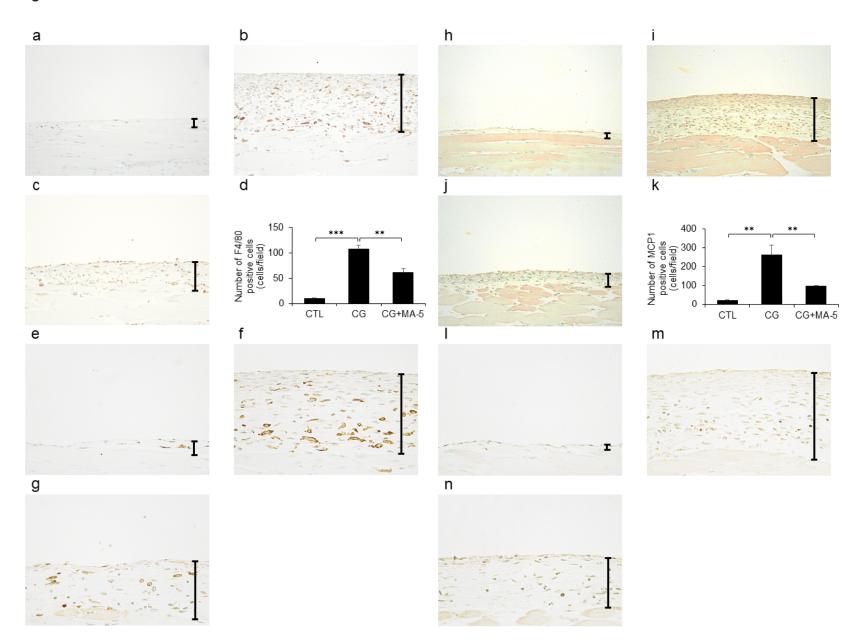
688 mitochonic acid-5; CG = chlorhexidine gluconate

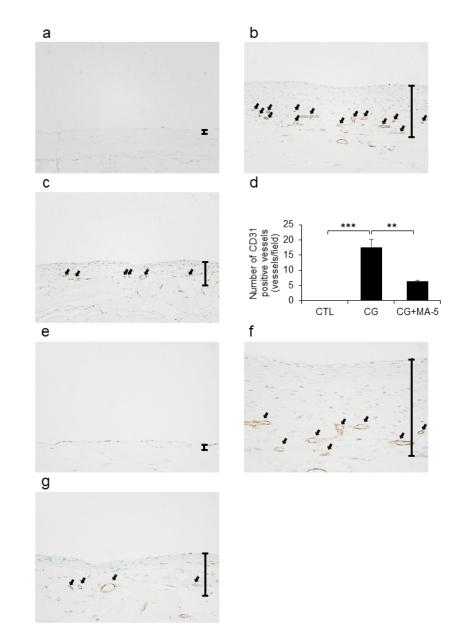
689

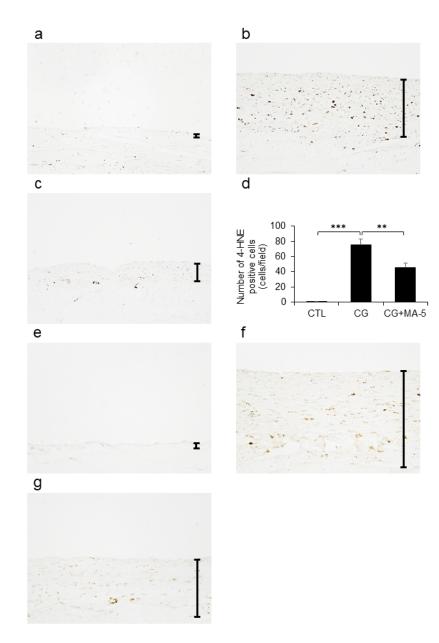
704

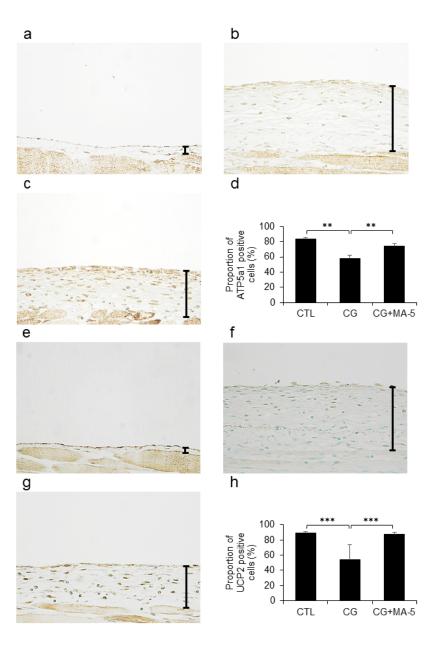

690 Fig. 7 Immunofluorescence staining of 4-HNE and UCP2 in the peritoneum. (a) 691 In the CTL group, most of the cells were 4-HNE-negative and UCP2-positive. (b) 692 In the CG group, most of the cells that appeared to be myofibroblasts were 4-693 HNE-negative and UCP2-positive, and 4-HNE-positive and UCP2-negative cells 694 were observed among the cells that appeared to be macrophages. (c) In the CG + 695 MA-5 group, most of the cells that appeared to be myofibroblasts were 4-HNE-696 negative and UCP2-positive, and 4-HNE-negative and UCP2-positive cells that 697 appeared to be macrophages were increased compared with those in the CG 698 group. Original magnification 400×; bars indicate the thickness of the 699 submesothelial zone. 4-HNE = 4-hydroxy-2-nonenal; UCP2 = uncoupling protein 2; DAPI = 4',6-diamidino-2-phenylindole; CTL = control; MA-5 = mitochonic 700 701 acid-5; CG = chlorhexidine gluconate. Arrows indicate myofibroblasts, and 702 arrowheads indicate macrophages 703

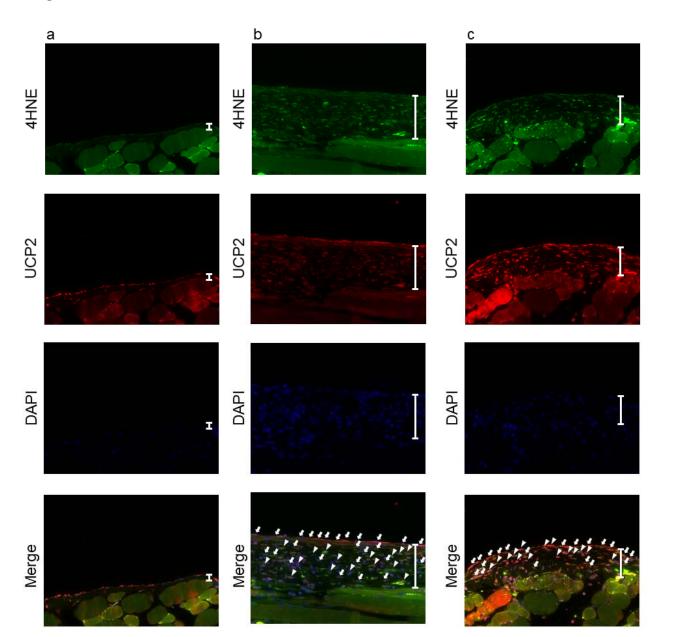

Online Resource 1 The results of the peritoneal equilibration test. The bar graph

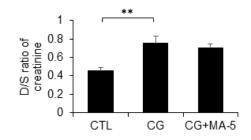

706	higher compared with that in the CTL group. The D/S ratio of creatinine in the
707	CG + MA-5 group was lower than that in the CG group, although the difference
708	was not statistically significant. ** represents $p < 0.01$. D/S = dialysate-to-serum;
709	CTL = control; MA-5 = mitochonic acid-5; CG = chlorhexidine gluconate
710	
711	Online Resource 2 The concentration of 8-OHdG in peritoneal effluent (a) and
712	serum (b). The bar graphs show the concentration of 8-OHdG. There was no
713	significant difference in the concentration of 8-OHdG both in peritoneal effluent
714	and serum among the groups. 8-OHdG = 8-hydroxy-2'-deoxyguanosine; CTL =
715	control; MA-5 = mitochonic acid-5; CG = chlorhexidine gluconate
716	
717	Online Resource 3 Immunohistochemical analysis for SOD2 in the peritoneum
718	(a-d). There was no significant difference in the proportion of SOD2-positive
719	cells in the submesothelial zone among the CTL group (a), the CG group (b), and
720	the CG + MA-5 group (c). (d) The bar graph shows the proportion of SOD2-
721	positive cells. Original magnification 400×; bars indicate the thickness of the
722	submesothelial zone. SOD2 = superoxide dismutase 2; CTL = control; MA-5 =
723	mitochonic acid-5; CG = chlorhexidine gluconate

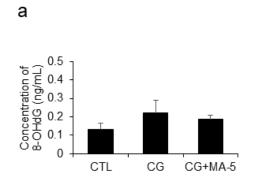


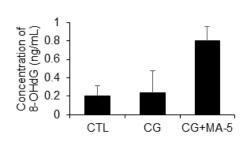



Lipid CTL MA-5 CG CG+MA-5

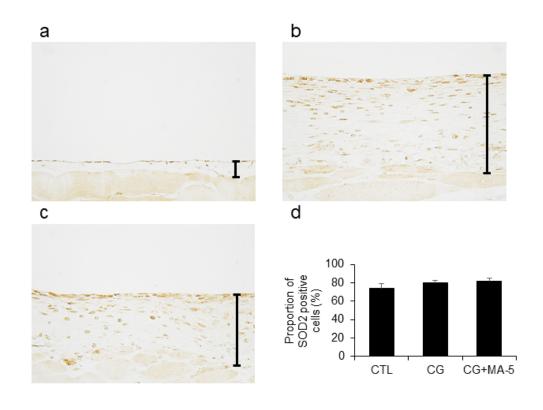








Online Resource 1


Online Resource 2

b

Online Resource 3

