1	Title: The surveillance of colistin-resistance and mobilized colistin resistance genes in
2	multi-drug resistant Enterobacteriaceae isolated in Japan
3	
4	Running Title: Surveillance of colistin-resistant Enterobacteriaceae
5	
6	Authors:
7	Yasuhide Kawamoto ¹ , Norihito Kaku ^{1,2,3} , Norihiko Akamatsu ¹ , Kei Sakamoto ^{1,2}
8	Kosuke Kosai ^{1,2} , Yoshitomo Morinaga ^{1,2,4} , Norio Ohmagari ⁵ , Koichi Izumikawa ⁶ ,
9	Yoshihiro Yamamoto ⁷ , Hiroshige Mikamo ⁸ , Mitsuo Kaku ⁹ , Kazunori Oishi ^{10,11} ,
10	Katsunori Yanagihara ^{1,2}
11	
12	Affiliations:
13	¹ Department of Laboratory Medicine, Nagasaki University Hospital, Japan.
14	² Department of Laboratory Medicine, Nagasaki University Graduate School of
15	Biomedical Sciences, Japan.
16	³ Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine,
17	University of Michigan, Japan.

18	⁴ Department of Microbiology, Graduate School of Medicine and Pharmaceutical
19	Sciences, University of Toyama,
20	⁵ Disease Control and Prevention Center, National Center for Global Health and
21	Medicine, Japan.
22	⁶ Department of Infectious Diseases, Nagasaki University Graduate School of
23	Biomedical Sciences, Japan.
24	⁷ Department of Clinical Infectious Diseases, Graduate School of Medicine and
25	Pharmaceutical Sciences for Research, University of Toyama, Japan.
26	⁸ Department of Clinical Infectious Diseases, Aichi Medical University Graduate School
27	of Medicine, Japan.
28	⁹ Department of Infection Control and Laboratory Diagnostics, Tohoku University
29	Graduate School of Medicine, Japan
30	¹⁰ Infectious Disease Surveillance Center, National Institute of Infectious Diseases
31	Correspondence, Japan
32	¹¹ Toyama Institute of Health, Japan.

33 Address for correspondence:

34	Norihito Kaku, Department of Laboratory Medicine, Nagasaki University Graduate
35	School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Nagasaki 852-8501, Japan;
36	email: norihitk@gmail.com; tel/fax: +81-95-819-7413
37	
38	Abstract
39	Background. The plasmid-mediated bacterial colistin-resistant gene, <i>mcr</i> , is of global
40	concern in clinical health care. However, there are few reports of surveillance for mcr in
41	Japan. This study aimed to study the prevalence of colistin resistance by identifying
42	nine mcr genes in ESBL-producing Enterobacteriaceae and CRE isolates in Japan.
43	<i>Methods.</i> We collected 273 ESBL and CRE clinical isolates from the patients in five
44	tertiary hospitals between August 2016 to March 2017. MIC of colistin was measured
45	using the microdilution method. PCR was performed to detect mcr-1 to mcr-9 genes in
46	all strains. Additionally, if we identified a mcr-gene that had not been reported from
47	patients in Japan, we performed a WGS analysis.
48	<i>Results.</i> The rate of colistin resistance was 7.7% in all strains. The rate of colistin
49	resistance in the CRE strains was higher than that in the ESBL-producing strains
50	(20.4% versus 1.1%). The mcr-5 and mcr-9 gene were detected in one ESBL-producing

51	E. coli strain (1/273, 0.37%) and three CRE strains (3/273, 1.1%), respectively. Since
52	the ESBL-producing <i>E. coli</i> strain was the first clinical strain with <i>mcr-5</i> in Japan,
53	whole-genome sequencing analysis was performed for the strain. The sequence type of
54	the mcr-5 positive strain was ST1642 and it carried two distinct plasmids, ESBL gene-
55	carrying pN-ES-6-1, and <i>mcr-5.1</i> -carrying pN-ES-6-2.
56	<i>Conclusions.</i> We showed that the frequency of colistin resistance and <i>mcr</i> -positive
57	strains is not high in Japan. Since the MIC for colistin was low in the mcr-5.1 and mcr-9
58	gene-positive strain, continuous monitoring of mcr genes is necessary.
59	Keywords. mcr-5; mcr-9; colistin; Enterobacteriaceae; Surveillance; Japan

60 Introduction

61 The emergence and spread of antimicrobial resistance are a cause of global concern. In Japan, a previous study reported that ESBL-producing Escherichia coli (E. coli) and 62 63 Klebsiella pneumoniae (K. pneumoniae) strains are spreading, accounting for 23.0% of 64 E. coli and 10.7% of K. pneumoniae infections from 2014 to 2015 [1]. Because of the 65 distribution of fluoroquinolone resistance in ESBL-producing E. coli, the clinical use of 66 carbapenems is increasing [2, 3]. The increased use of carbapenems induces carbapenem-resistant Enterobacteriaceae (CRE), therefore, colistin is becoming an 67 68 important alternative to carbapenems[4]. In recent years, carbapenem-resistant 69 Enterobacteriaceae (CRE) has become a serious problem worldwide. Some CREs have 70 multidrug resistance against fluoroquinolone as well as beta-lactam [5]. Therefore, 71 colistin, which belongs to the family of polymyxins and has broad-spectrum activity 72 against gram-negative bacteria, is an important antibiotic in the treatment of CRE and 73 ESBL-producing Enterobacteriaceae [6]. 74 The major colistin resistance mechanisms are as follows: alteration of the LPS moiety 75 resulting in a reduced net negative charge of LPS, increased drug efflux, overexpression 76 of outer membrane protein (OprH), and the formation of capsules (siaD, ompA, cps) [7, 77 8]. Since these resistance mechanisms are intrinsic, mutational, and adaptive, colistin

78	resistance is unlikely to spread from cell to cell through the delivery of plasmids like
79	ESBL and carbapenemase-producing Enterobacteriaceae (CPE). However, in 2016, the
80	first plasmid-mediated colistin resistance gene, mcr, was identified in animals in China
81	[9]. Thereafter, <i>mcr</i> -positive Enterobacteriaceae have been identified in healthy people
82	and patients all over the world [10]. In Japan, although there have been some reports on
83	mcr-positive E. coli in animals and food sources [11-13], there are few studies in
84	humans [14]. In addition, the percentage of colistin resistance in Japan remains
85	unknown because the MIC of colistin in Enterobacteriaceae including ESBL and CRE
86	has not been evaluated.
87	The purpose of this study was to clarify the prevalence of colistin resistance and nine
88	mcr genes in ESBL-producing Enterobacteriaceae and CRE isolated from patients in
89	tertiary hospitals in Japan. Additionally, if we identify mcr-gene that had not been
90	reported from patients in Japan, we performed a WGS analysis for the strain.
91	
92	Materials and methods
93	Strains
94	A total of 273 different clinical ESBL-producing Enterobacteriaceae and CRE isolates
95	were collected between August 2016 and March 2017 from five tertiary hospitals

96	representing the Western, Eastern, and Central regions of Japan. Only one isolate per
97	patient was included in this study. Proteus spp. and Providencia rettgeri were excluded
98	from the analysis because they are intrinsically resistant to colistin. A total of 180
99	ESBL-producing strains and 93 CRE strains were collected during the study period. The
100	ESBL-producing strains were E. coli (81.7%), K. pneumoniae (15.6%), and Klebsiella
101	oxytoca (2.8%). The CRE strains were Klebsiella aerogenes (45.2%), Enterobacter
102	cloacae complex (38.7%), K. pneumoniae (11.8%), E. coli (2.2%), and Citrobacter spp.
103	(2.2%). The strains were stored in a Microbank tube and placed at -80°C.
104	
105	Analysis of strains
106	Bacteria were identified using MALDI-TOF MS (Bruker Daltonics GmbH, Bremen,
107	Germany). ESBL production was detected using the BD Phoenix system NMIC-207

- 108 panel (Becton Dickinson, Holdrege, USA) according to the manufacturer's instructions.
- 109 Carbapenemase genes were evaluated by Xpert Carba-R assay (Cepheid, Sunnyvale,
- 110 USA) according to the manufacturer's instructions. Broth microdilution MIC testing
- 111 was performed with colistin, piperacillin, ceftazidime, ceftriaxone, cefpodoxime,
- cefepime, cefmetazole, aztreonam, piperacillin-tazobactam, ampicillin-sulbactam, 112
- 113 imipenem, meropenem, gentamicin, amikacin, minocycline, ciprofloxacin, levofloxacin,

114	and sulfamethoxazole-trimethoprim by a manual assay using the MIC panels (Eiken
115	Chemical Co., Ltd, Tokyo, Japan). Susceptibility was determined according to the CLSI
116	M100-S25 except for colistin[15], which was interpreted according to the EUCAST
117	version 9.0 (MIC for susceptible, $\leq 2 \text{ mg/L}$; MIC for resistant, $\geq 2 \text{ mg/L}$)[16].
118	
119	Analysis of mcr genes
120	PCR was performed to detect mcr-1 to mcr-9 genes in all strains using previously
121	reported primers[17, 18]. DNA was extracted using the boiling method with minor
122	modifications [19]. PCR amplification about mcr-1 to mcr-5 was performed under the
123	following conditions: 15 min at 94°C, 25 cycles of 30 s at 94°C, 30 s at 58°C, 60 s at
124	72°C, and 10 min at 72°C for the final extension [17]. PCR amplification about mcr-6

to mcr-9 was performed under the following conditions: 3 min at 95°C, 30 cycles of 30

- 126 s at 95°C, 30 s at 55°C, 60 s at 72°C, and 10 min at 72°C for the final extension[18].
- 127

- 128 Whole-genome sequencing (WGS)
- 129 For one *mcr-5*-positive strain, WGS was performed according to the following
- 130 procedure. DNA was extracted using the Quick-DNATM Fecal/Soil Microbe Miniprep
- 131 kit according to the manufacturer's instructions (Zymo Research, CA, USA). Whole-

132	genome sequencing was performed using NextSeq 500 (Illumina Inc. San Diego CA
133	USA) and GridION X5 (Oxford Nanopore Technologies, Oxford, UK). The de novo
134	hybrid assembly of both short-reads (NextSeq 500) and long-reads (GridION X5) was
135	performed using Unicycler v0.4.7 under conservative conditions. CheckM v1.0.12 was
136	used to assess the quality of assembled genomes. The allele sequences and sequence
137	types (STs) were determined according to the E. coli database
138	(http://mlst.warwick.ac.uk/mlst/dbs/Ecoli). In the plasmid analysis, Prokka v1.13 was
139	used for genome annotation. Antimicrobial resistance genes were identified using
140	ResFinder v3.2 (https://cge.cbs.dtu.dk/services/ResFinder/). The bacterial insertion
141	sequence was detected using the IS Finder database (<u>https://isfinder.biotoul.fr</u>).
142	PlasmidFinder v2.0.1 was used to determine plasmid incompatibility (Inc) groups.
143	Importing Prokka's annotation result and drawing the plasmid map with Snap Gene
144	v4.3.10 GSL Biotech.
145	
146	Phylogenetic analysis and genetic environment

147 The *mcr-5*-carrying plasmid sequencing from *Salmonella enterica* (Gene accession no.

148 NC_003277.2), Salmonella enterica (Gene accession no. LC488708.01), Escherichia

149 *coli* (Gene accession no. BENI01000099.1), pN-ES-6-2 *Escherichia coli*, and

150	Salmonella enterica (Gene accession no. KY807921.1) were downloaded from
151	GenBank database. Phylogenetic tree and genetic environment were constructed using
152	CLC Genomics Workbench version 21.0.3.
153	
154	Data availability
155	Raw data were generated at Nagasaki University Hospital. Derived data supporting the
156	findings of this study are available from the corresponding author upon request.
157	
158	Ethics
159	This study was approved by the Ethics Committee of Nagasaki University Hospital
160	(16072509). Data regarding clinical ESBL-producing Enterobacteriaceae and CRE
161	isolates were anonymized and individually numbered when they were collected from
162	the hospitals.
163	
164	
165	Results
166	Colistin Resistance

167	The rate of colistin resistance amongst all strains was 7.7% (Table 1). The rate of
168	colistin resistance in the CRE strains was higher than that in the ESBL-producing
169	strains (20.4% versus 1.1%, Table 1). The MIC of colistin in both ESBL-producing
170	strains and CRE formed a bimodal distribution (Fig. 1A). The Enterobacter cloacae
171	complex had the highest rate of colistin resistance (50.0%) (Table 1). The rate of
172	colistin resistance was not significantly different based on the site of infection or region
173	where the strain was isolated (Table 2). In the CRE strains, carbapenemase-producing
174	Enterobacteriaceae (CPE) had a higher rate of colistin resistance (40.0%) than non-CPE
175	strains (16.6%) (Fig. 1B).
176	
177	Detection of mcr genes
178	The 273 strains (ESBL and CRE) were screened using PCR for the presence of the
179	nine mcr genes, mcr-1 to mcr-9. The mcr-5 gene was detected in only one ESBL-
180	producing <i>E. coli</i> strain (1/273, 0.37%), and the <i>mcr-9</i> gene was detected in three CRE

- 181 *Enterobacter cloacae* complex strains (3/273, 1.1%). The two of three *mcr-9* positive
- 182 strains were isolated in the same hospital, but the ward and the department were
- 183 different. All the *mcr* positive strains had very low MIC for colistin (Table S1).
- 184

Whole-genome sequencing of mcr-5 gene-positive strain

186	Since there were no reports of mcr-5 positive ESBL-producing E. coli isolated from
187	humans in Japan, we performed a detailed analysis for one strain by whole-genome
188	sequencing. The draft genome of the mcr-5 gene-positive E. coli strain (DDBJ
189	accession no. DRA010253) comprised 5,027,748 bp with an overall GC content of
190	50.76%. The genome consisted of 22 rRNA operons, 80 tRNA genes, and 4686
191	protein-coding genes (CDSs). The mcr-5 gene-positive E. coli was classified as
192	ST1642 and <i>fimH</i> subtype 31. The isolate harbored two distinct plasmids, pN-ES-6-1
193	(DDBJ accession no. LC553463, 94901 bp), and pN-ES-6-2 (DDBJ accession no.
194	LC553464, 79974 bp) (Figure 2). pN-ES6-1 had various resistance genes, including
195	mph(A), dfrA17, bla _{TEM-1B} , sul2, tet(B), aac(3)-lld, aac(3'')-lb, and aph(6)-ld, whereas
196	pN-ES-6-2 had only one resistance gene (mcr-5.1) (Table 3). The Plasmid Inc. groups
197	and transposons of pN-ES-6-2 were IncFII and TnShfr1 (Tn3-family), respectively
198	(Table 3). Phylogenetic analysis of <i>mcr-5</i> carrying plasmid revealed that pN-ES-6-2
199	showed similarities to Escherichia coli (Gene accession no. BENI01000099.1) isolated
200	in Japan, but less to the first reported mcr-5 carrying plasmid (Gene accession no.
201	KY807921.1, Salmonella enterica, Germany) (Figure 3A). pN-ES-6-2 lacked some

202 major facilitator superfamily (MFS) gene in comparison with other *mcr-5* carrying
203 plasmids (Figure 3B).

204

205 Discussion

206 In this study, we studied the prevalence of colistin resistance in ESBL-producing

207 Enterobacteriaceae and CRE. The rates of colistin resistance were 0.7% for *E. coli*,

208 2.6% for *K. pneumoniae*, and 50.0% for *Enterobacter cloacae* complex. The

209 Surveillance of Multicenter Antimicrobial Resistance in Taiwan reported that the

210 resistance rate of colistin was 0.3% in *E. coli* and 2.4% in *K. pneumoniae* [20] Global

surveillance in 2015 reported that the resistance rate of colistin was 0.3% in *E. coli*,

212 2.4% in *K. pneumoniae*, and 39.1% in *Enterobacter asburiae* [21]. These results are

213 consistent with our study. In this study, *Enterobacter cloacae* complex showed a higher

214 colistin resistance rate than *E. coli* and *K. pneumoniae*. In the previous report,

215 Enterobacter cloacae complex also showed a higher colistin resistance rate than E. coli

- and K. pneumoniae including K. aerogenes [22]. Although there is a study that reported
- the mechanism of colistin-resistance in *Enterobacter* spp. [23], the reason for the high
- 218 rates of colistin-resistant *Enterobacter cloacae* complex remains unclear.

219	In the current study, the colistin-resistance rate in ESBL-producing and CRE strains was
220	7.7%. Accordingly, in Japan, it is considered that colistin-resistant bacteria have not
221	become widespread. However, in the CRE strains, the rate of colistin resistance in CPE
222	strains was higher than that in non-CPE strains. A previous study reported a strong
223	association between the presence of carbapenemase and increased resistance to colistin
224	in Enterobacteriaceae strains [21]. In addition, other investigators have reported clonal
225	spread of colistin resistance due to multiple mutational mechanisms in CPE [24]. Since
226	the number of CPE strains has been increasing in Japan, it will be necessary to
227	continually monitor the MIC of colistin in carbapenemase-producing
228	Enterobacteriaceae strains[25].
228 229	Enterobacteriaceae strains[25]. Nine <i>mcr</i> genes in ESBL-producing Enterobacteriaceae and CRE strains were
229	Nine mcr genes in ESBL-producing Enterobacteriaceae and CRE strains were
229 230	Nine <i>mcr</i> genes in ESBL-producing Enterobacteriaceae and CRE strains were investigated in this study. The positive rate of <i>mcr</i> genes in all strains was 1.5%, which
229 230 231	Nine <i>mcr</i> genes in ESBL-producing Enterobacteriaceae and CRE strains were investigated in this study. The positive rate of <i>mcr</i> genes in all strains was 1.5%, which was similar to that in other previous reports from clinical samples (0.2-3.2%) [9, 26-29].
229 230 231 232	Nine <i>mcr</i> genes in ESBL-producing Enterobacteriaceae and CRE strains were investigated in this study. The positive rate of <i>mcr</i> genes in all strains was 1.5%, which was similar to that in other previous reports from clinical samples (0.2-3.2%) [9, 26-29]. Therefore, in Japan, it seems that <i>mcr</i> genes have not become widespread in bacteria.
229 230 231 232 233	Nine <i>mcr</i> genes in ESBL-producing Enterobacteriaceae and CRE strains were investigated in this study. The positive rate of <i>mcr</i> genes in all strains was 1.5%, which was similar to that in other previous reports from clinical samples (0.2-3.2%) [9, 26-29]. Therefore, in Japan, it seems that <i>mcr</i> genes have not become widespread in bacteria. One of the reasons for this is that colistin is currently used only in limited situations in

237	<i>1</i> -mediated colistin resistance originated in animals and subsequently spread to humans
238	[9]. In addition, the presence of plasmids containing mcr genes in E. coli from livestock
239	animals has previously been reported in Japan. High prevalence of mcr-1 and mcr-5
240	have been observed among strains isolated from diseased pigs [12]. Thus, we need to be
241	wary of the future spreading of <i>mcr</i> gene-positive strains in humans.
242	The mcr-1 and mcr-9 are distributed worldwide, mcr-4, mcr-2, and mcr-8 has a limited
243	distribution, and other mcr are rarely reported[33]. In this study, we identified three
244	mcr-9 positive Enterobacter cloacae complex. Although the Enterobacter cloacae
245	complex harboring carbapenemase gene and <i>mcr-9</i> has previously been reported in
246	Japan[34], carbapenemase genes were not detected in the three mcr-9 positive stains.
247	We also identified one <i>mcr-5</i> positive <i>E. coli</i> , but there were no reports of <i>mcr-5</i>
248	positive E. coli isolated from humans in Japan. The patient infected with the mcr-5
249	gene-positive strain had recurrent urinary tract infection, but the patient had never been
250	treated with colistin. The acquisition of mcr gene-positive strains in humans has been
251	reported to be transmitted from livestock[9], but the patient had no history of contact
252	with animals. There was a possibility that the <i>mcr-5</i> -positive strain resulted from meat
253	consumption in this case because the number of <i>mcr-5</i> positive strains isolated in
254	livestock was higher in Japan than in other countries [12]. In this case, there was no

255	history of treatment with colistin, whereas the patient was previously treated with
256	levofloxacin and piperacillin-tazobactam. Since a previous study reported that the risk
257	factors for mcr-positive Enterobacteriaceae were immunosuppression and history of
258	antibiotic use, particularly carbapenems and fluoroquinolones [35], past use of
259	levofloxacin may have been a risk factor for acquiring the mcr-5-positive strain in this
260	patient.
261	Whole-genome sequencing analysis revealed that the mcr-5-positive strain was
262	ST1642 and carried two distinct plasmids, the ESBL gene-carrying pN-ES-6-1 and mcr-
263	5-carrying pN-ES-6-2. Although one study reported three mcr-1-harboring ESBL-
264	producing <i>E. coli</i> ST1642 strains from bovine fecal samples[36], the <i>mcr-5.1</i> -harboring
265	ESBL-producing E. coli ST1642 has not been reported previously. We found
266	transposons of TnShfr1 (Tn3-family) in the mcr-5 carrying E. coli. The mcr-5.1 gene is
267	reportedly located on the Tn3-family transposon of the Salmonella enterica Paratyphi B
268	and Cupriavidus gilardii [37]. Therefore, there is a possibility that the E. coli strain
269	received plasmid from these bacteria. In this study, the mcr genes-positive strain
270	exhibited low MIC for colistin, which was not interpreted as resistant according to
271	EUCAST. The results are the same as the previous reports [12, 38]. These results

 the stealth phenotype CPE [39]. This study has some limitations. We investigated the prevalence of colistin-resistant and plasmid-mediated colistin resistance genes in ESBL-producing and CRE strains. Since mcr-positive strains have also been reported detected in non-ESBL-producing and non-CRE strains [40], we need to perform surveillance in all Enterobacteriaceae including drug-sensitive strains. In addition, we did not investigate intrinsic resistance to colistin. In this study, we performed a WGS analysis for the strain harbored mcr-gene that had not been reported from patients in Japan. Thus, we didn't perform a WGS analysis for mcr-9 positive strains. However, further investigation for mcr-9 positive strains is necessary to verify whether the same mcr-9 positive strains detected in this study are similar to the previous report. In conclusion, we revealed that the rates of colistin-resistance and mcr-positive strains are not high in Japan. Since the MIC for colistin was low in the mcr-5 or mcr-9 gene- positive strain, continuous monitoring of plasmid-mediated mcr genes in Enterobacteriaceae is necessary. 	272	indicate that mcr-5 and mcr-9 may silently spread among Enterobacteriaceae, such as
 and plasmid-mediated colistin resistance genes in ESBL-producing and CRE strains. Since <i>mcr</i>-positive strains have also been reported detected in non-ESBL-producing and non-CRE strains [40], we need to perform surveillance in all Enterobacteriaceae including drug-sensitive strains. In addition, we did not investigate intrinsic resistance to colistin. In this study, we performed a WGS analysis for the strain harbored <i>mcr</i>-gene that had not been reported from patients in Japan. Thus, we didn't perform a WGS analysis for <i>mcr-9</i> positive strains. However, further investigation for <i>mcr-9</i> positive strains is necessary to verify whether the same <i>mcr-9</i> positive strains detected in this study are similar to the previous report. In conclusion, we revealed that the rates of colistin-resistance and <i>mcr</i>-positive strains are not high in Japan. Since the MIC for colistin was low in the <i>mcr-5</i> or <i>mcr-9</i> gene- positive strain, continuous monitoring of plasmid-mediated <i>mcr</i> genes in Enterobacteriaceae is necessary. 	273	the stealth phenotype CPE [39].
 Since mcr-positive strains have also been reported detected in non-ESBL-producing and non-CRE strains [40], we need to perform surveillance in all Enterobacteriaceae including drug-sensitive strains. In addition, we did not investigate intrinsic resistance to colistin. In this study, we performed a WGS analysis for the strain harbored mcr-gene that had not been reported from patients in Japan. Thus, we didn't perform a WGS analysis for mcr-9 positive strains. However, further investigation for mcr-9 positive strains is necessary to verify whether the same mcr-9 positive strains detected in this study are similar to the previous report. In conclusion, we revealed that the rates of colistin-resistance and mcr-positive strains are not high in Japan. Since the MIC for colistin was low in the mcr-5 or mcr-9 gene- positive strain, continuous monitoring of plasmid-mediated mcr genes in Enterobacteriaceae is necessary. 	274	This study has some limitations. We investigated the prevalence of colistin-resistant
 non-CRE strains [40], we need to perform surveillance in all Enterobacteriaceae including drug-sensitive strains. In addition, we did not investigate intrinsic resistance to colistin. In this study, we performed a WGS analysis for the strain harbored <i>mcr</i>-gene that had not been reported from patients in Japan. Thus, we didn't perform a WGS analysis for <i>mcr-9</i> positive strains. However, further investigation for <i>mcr-9</i> positive strains is necessary to verify whether the same <i>mcr-9</i> positive strains detected in this study are similar to the previous report. In conclusion, we revealed that the rates of colistin-resistance and <i>mcr</i>-positive strains are not high in Japan. Since the MIC for colistin was low in the <i>mcr-5</i> or <i>mcr-9</i> gene- positive strain, continuous monitoring of plasmid-mediated <i>mcr</i> genes in Enterobacteriaceae is necessary. 	275	and plasmid-mediated colistin resistance genes in ESBL-producing and CRE strains.
 including drug-sensitive strains. In addition, we did not investigate intrinsic resistance to colistin. In this study, we performed a WGS analysis for the strain harbored <i>mcr</i>-gene that had not been reported from patients in Japan. Thus, we didn't perform a WGS analysis for <i>mcr-9</i> positive strains. However, further investigation for <i>mcr-9</i> positive strains is necessary to verify whether the same <i>mcr-9</i> positive strains detected in this study are similar to the previous report. In conclusion, we revealed that the rates of colistin-resistance and <i>mcr</i>-positive strains are not high in Japan. Since the MIC for colistin was low in the <i>mcr-5</i> or <i>mcr-9</i> gene- positive strain, continuous monitoring of plasmid-mediated <i>mcr</i> genes in Enterobacteriaceae is necessary. 	276	Since mcr-positive strains have also been reported detected in non-ESBL-producing and
 to colistin. In this study, we performed a WGS analysis for the strain harbored <i>mcr</i>-gene that had not been reported from patients in Japan. Thus, we didn't perform a WGS analysis for <i>mcr-9</i> positive strains. However, further investigation for <i>mcr-9</i> positive strains is necessary to verify whether the same <i>mcr-9</i> positive strains detected in this study are similar to the previous report. In conclusion, we revealed that the rates of colistin-resistance and <i>mcr</i>-positive strains are not high in Japan. Since the MIC for colistin was low in the <i>mcr-5</i> or <i>mcr-9</i> gene- positive strain, continuous monitoring of plasmid-mediated <i>mcr</i> genes in Enterobacteriaceae is necessary. 	277	non-CRE strains [40], we need to perform surveillance in all Enterobacteriaceae
 that had not been reported from patients in Japan. Thus, we didn't perform a WGS analysis for <i>mcr-9</i> positive strains. However, further investigation for <i>mcr-9</i> positive strains is necessary to verify whether the same <i>mcr-9</i> positive strains detected in this study are similar to the previous report. In conclusion, we revealed that the rates of colistin-resistance and <i>mcr</i>-positive strains are not high in Japan. Since the MIC for colistin was low in the <i>mcr-5</i> or <i>mcr-9</i> gene- positive strain, continuous monitoring of plasmid-mediated <i>mcr</i> genes in Enterobacteriaceae is necessary. 	278	including drug-sensitive strains. In addition, we did not investigate intrinsic resistance
 analysis for <i>mcr-9</i> positive strains. However, further investigation for <i>mcr-9</i> positive strains is necessary to verify whether the same <i>mcr-9</i> positive strains detected in this study are similar to the previous report. In conclusion, we revealed that the rates of colistin-resistance and <i>mcr-positive strains</i> are not high in Japan. Since the MIC for colistin was low in the <i>mcr-5</i> or <i>mcr-9</i> gene- positive strain, continuous monitoring of plasmid-mediated <i>mcr</i> genes in Enterobacteriaceae is necessary. 	279	to colistin. In this study, we performed a WGS analysis for the strain harbored mcr-gene
 strains is necessary to verify whether the same <i>mcr-9</i> positive strains detected in this study are similar to the previous report. In conclusion, we revealed that the rates of colistin-resistance and <i>mcr</i>-positive strains are not high in Japan. Since the MIC for colistin was low in the <i>mcr-5</i> or <i>mcr-9</i> gene- positive strain, continuous monitoring of plasmid-mediated <i>mcr</i> genes in Enterobacteriaceae is necessary. 	280	that had not been reported from patients in Japan. Thus, we didn't perform a WGS
 study are similar to the previous report. In conclusion, we revealed that the rates of colistin-resistance and <i>mcr</i>-positive strains are not high in Japan. Since the MIC for colistin was low in the <i>mcr</i>-5 or <i>mcr</i>-9 gene- positive strain, continuous monitoring of plasmid-mediated <i>mcr</i> genes in Enterobacteriaceae is necessary. 	281	analysis for mcr-9 positive strains. However, further investigation for mcr-9 positive
 In conclusion, we revealed that the rates of colistin-resistance and <i>mcr</i>-positive strains are not high in Japan. Since the MIC for colistin was low in the <i>mcr-5</i> or <i>mcr-9</i> gene- positive strain, continuous monitoring of plasmid-mediated <i>mcr</i> genes in Enterobacteriaceae is necessary. 	282	strains is necessary to verify whether the same mcr-9 positive strains detected in this
 are not high in Japan. Since the MIC for colistin was low in the <i>mcr-5</i> or <i>mcr-9</i> gene- positive strain, continuous monitoring of plasmid-mediated <i>mcr</i> genes in Enterobacteriaceae is necessary. 	283	study are similar to the previous report.
 286 positive strain, continuous monitoring of plasmid-mediated <i>mcr</i> genes in 287 Enterobacteriaceae is necessary. 	284	In conclusion, we revealed that the rates of colistin-resistance and <i>mcr</i> -positive strains
287 Enterobacteriaceae is necessary.	285	are not high in Japan. Since the MIC for colistin was low in the mcr-5 or mcr-9 gene-
	286	positive strain, continuous monitoring of plasmid-mediated mcr genes in
288	287	Enterobacteriaceae is necessary.
	288	

289 Notes

290	Author	contributions.
200	110000	contributions.

291	NK, NA, KS, KK,	YM, and KY	contributed to	study de	esign and o	lata interpretation.	Κ
-----	-----------------	------------	----------------	----------	-------------	----------------------	---

- 292 I, YY, HM, MK, and KO contributed to the study design and collection of isolates and
- 293 data. N. K. provided expert advice, critically reviewed the manuscript, including for
- aspects related to the English language, and contributed to its content. All authors
- 295 reviewed and approved the final version of the manuscript.
- 296

297 Disclaimer.

298 The funders had no role in the design of the study, the collection or analysis of data, or

the decision to publish.

300

301 Financial support.

302 This work was supported by the Japanese Society of Laboratory Medicine Fund for the

303 Promotion of Scientific and the Health and Labour Sciences Research Grants from the

304 Ministry of Health, Labour and Welfare, Japan (H28-Shinkou-Ippan-003).

305

306 Potential conflicts of interest.

307 All authors: No reported conflicts of interest.

309 Acknowledgment

310 We would like to thank Editage (www.editage.com) for English language editing.

312 References

- **313** [1] Takesue Y, Kusachi S, Mikamo H, Sato J, Watanabe A, Kiyota H, et al.
- 314 Antimicrobial susceptibility of pathogens isolated from surgical site infections in
- 315 Japan: Comparison of data from nationwide surveillance studies conducted in
- 316 2010 and 2014-2015. Journal of infection and chemotherapy : official journal of
- the Japan Society of Chemotherapy. 2017;23:339-48.
- 318 [2] Salah FD, Soubeiga ST, Ouattara AK, Sadji AY, Metuor-Dabire A, Obiri-
- 319 Yeboah D, et al. Distribution of quinolone resistance gene (qnr) in ESBL-
- 320 producing Escherichia coli and Klebsiella spp. in Lomé, Togo. Antimicrob Resist
- **321** Infect Control. 2019;8:104.
- 322 [3] Pana ZD, Zaoutis T. Treatment of extended-spectrum β -lactamase-
- 323 producing Enterobacteriaceae (ESBLs) infections: what have we learned until
- **324** now? F1000Res. 2018;7.
- 325 [4] Ku YH, Lee MF, Chuang YC, Chen CC, Yu WL. In vitro activity of colistin
- 326 sulfate against Enterobacteriaceae producing extended-spectrum β -lactamases.
- **327** J Microbiol Immunol Infect. 2015;48:699-702.
- 328 [5] Suay-García B, Pérez-Gracia MT. Present and Future of Carbapenem-
- 329 resistant Enterobacteriaceae (CRE) Infections. Antibiotics (Basel). 2019;8.

330	[6] Parchuri S, Mohan S, Cunha BA. Extended spectrum beta-lactamase-
331	producing Klebsiella pneumoniae chronic ambulatory peritoneal dialysis
332	peritonitis treated successfully with polymyxin B. Heart Lung. 2005;34:360-3.
333	[7] Mlynarcik P, Kolar M. Molecular mechanisms of polymyxin resistance and
334	detection of mcr genes. Biomed Pap Med Fac Univ Palacky Olomouc Czech
335	Repub. 2019;163:28-38.
336	[8] Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance:
337	acquired and intrinsic resistance in bacteria. Frontiers in microbiology.
338	2014;5:643.
339	[9] Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, et al. Emergence
340	of plasmid-mediated colistin resistance mechanism MCR-1 in animals and
341	human beings in China: a microbiological and molecular biological study. The
342	Lancet Infectious Diseases. 2016;16:161-8.
343	[10] Sun J, Zhang H, Liu YH, Feng Y. Towards Understanding MCR-like

- **344** Colistin Resistance. Trends in microbiology. 2018;26:794-808.
- 345 [11] Kawanishi M, Abo H, Ozawa M, Uchiyama M, Shirakawa T, Suzuki S, et al.
- 346 Prevalence of Colistin Resistance Gene mcr-1 and Absence of mcr-2 in

- 347 Escherichia coli Isolated from Healthy Food-Producing Animals in Japan.
- 348 Antimicrobial Agents and Chemotherapy. 2017;61.
- **349** [12] Fukuda A, Sato T, Shinagawa M, Takahashi S, Asai T, Yokota SI, et al.
- 350 High prevalence of mcr-1, mcr-3 and mcr-5 in Escherichia coli derived from
- 351 diseased pigs in Japan. International journal of antimicrobial agents.
- **352** 2018;51:163-4.
- 353 [13] Ohsaki Y, Hayashi W, Saito S, Osaka S, Taniguchi Y, Koide S, et al. First
- 354 Detection of an Escherichia coli Strain Harboring the mcr-1 Gene in Retail
- 355 Domestic Chicken Meat in Japan. Japanese journal of infectious diseases.
- **356** 2017;70:590-2.
- **357** [14] Tada T, Uechi K, Nakasone I, Shimada K, Nakamatsu M, Kirikae T, et al.
- 358 Emergence of a colistin-resistant Escherichia coli clinical isolate harboring mcr-1
- 359 in Japan. Int J Infect Dis. 2017;63:21-2.
- **360** [15] CLSI. Performance standards for antimicrobial susceptibility testing. 25th
- 361 ed. CLSI guideline M100. Wayne, PA: Clinical and Laboratory Standards
- 362 Institute.

363 [16] The European Committee on Antimicrobial Susceptibility Testing.

- 364 Breakpoint tables for interpretation of MICs and zone diameters.version 9.0,
- **365** 2019.
- **366** [17] Rebelo AR, Bortolaia V, Kjeldgaard JS, Pedersen SK, Leekitcharoenphon P,
- 367 Hansen IM, et al. Multiplex PCR for detection of plasmid-mediated colistin
- 368 resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance
- 369 purposes. Euro surveillance : bulletin Europeen sur les maladies transmissibles =
- **370** European communicable disease bulletin. 2018;23.
- 371 [18] Borowiak M, Baumann B, Fischer J, Thomas K, Deneke C, Hammerl JA, et
- al. Development of a Novel mcr-6 to mcr-9 Multiplex PCR and Assessment of
- 373 mcr-1 to mcr-9 Occurrence in Colistin-Resistant Salmonella enterica Isolates
- **374** From Environment, Feed, Animals and Food (2011-2018) in Germany.
- 375 Frontiers in microbiology. 2020;11:80.
- 376 [19] Motoshima M, Yanagihara K, Morinaga Y, Matsuda J, Sugahara K, Yamada
- 377 Y, et al. Genetic diagnosis of community-acquired MRSA: a multiplex real-time
- 378 PCR method for Staphylococcal cassette chromosome mec typing and detecting
- **379** toxin genes. Tohoku J Exp Med. 2010;220:165-70.

380	[20] Lee YL, Lu MC, Shao PL, Lu PL, Chen YH, Cheng SH, et al. Nationwide
381	surveillance of antimicrobial resistance among clinically important Gram-
382	negative bacteria, with an emphasis on carbapenems and colistin: Results from
383	the Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART) in
384	2018. International journal of antimicrobial agents. 2019;54:318-28.
385	[21] Bradford PA, Kazmierczak KM, Biedenbach DJ, Wise MG, Hackel M,
386	Sahm DF. Correlation of beta-Lactamase Production and Colistin Resistance
387	among Enterobacteriaceae Isolates from a Global Surveillance Program.
388	Antimicrob Agents Chemother. 2015;60:1385-92.
389	[22] Mushtaq S, Reynolds R, Gilmore MC, Esho O, Adkin R, García-Romero I,
390	et al. Inherent colistin resistance in genogroups of the Enterobacter cloacae
391	complex: epidemiological, genetic and biochemical analysis from the BSAC
392	Resistance Surveillance Programme. J Antimicrob Chemother. 2020;75:2452-61.
393	[23] Telke AA, Olaitan AO, Morand S, Rolain JM. soxRS induces colistin
394	hetero-resistance in Enterobacter asburiae and Enterobacter cloacae by
394 395	hetero-resistance in Enterobacter asburiae and Enterobacter cloacae by regulating the acrAB-tolC efflux pump. J Antimicrob Chemother. 2017;72:2715-

397 [24] Otter JA, Doumith M, Davies F, Mookerjee S, Dyakova E, Gilchrist M, et

- 398 al. Emergence and clonal spread of colistin resistance due to multiple mutational
- 399 mechanisms in carbapenemase-producing Klebsiella pneumoniae in London. Sci
- 400 Rep. 2017;7:12711.
- 401 [25] Ohno Y, Nakamura A, Hashimoto E, Matsutani H, Abe N, Fukuda S, et al.
- 402 Molecular epidemiology of carbapenemase-producing Enterobacteriaceae in a
- 403 primary care hospital in Japan, 2010-2013. Journal of infection and
- 404 chemotherapy : official journal of the Japan Society of Chemotherapy.
- **405** 2017;23:224-9.
- 406 [26] Quan J, Li X, Chen Y, Jiang Y, Zhou Z, Zhang H, et al. Prevalence of mcr-1
- 407 in Escherichia coli and Klebsiella pneumoniae recovered from bloodstream
- 408 infections in China: a multicentre longitudinal study. Lancet Infect Dis.
- **409** 2017;17:400-10.
- 410 [27] Zheng B, Xu H, Yu X, Jiang X, Zhang J, Chen Y, et al. Low prevalence of
- 411 MCR-1-producing Klebsiella pneumoniae in bloodstream infections in China.
- 412 Clin Microbiol Infect. 2018;24:205-6.

413	[28] Chan WS, Au CH, Ho DN, Chan TL, Ma ES, Tang BS. Prospective study
414	on human fecal carriage of Enterobacteriaceae possessing mcr-1 and mcr-2
415	genes in a regional hospital in Hong Kong. BMC Infect Dis. 2018;18:81.
416	[29] Wise MG, Estabrook MA, Sahm DF, Stone GG, Kazmierczak KM.
417	Prevalence of mcr-type genes among colistin-resistant Enterobacteriaceae
418	collected in 2014-2016 as part of the INFORM global surveillance program.
419	PLoS One. 2018;13:e0195281.
420	[30] Hamada Y, Hirai J, Suematsu H, Yamagishi Y, Nicolau DP, Mikamo H.
421	Clinical experience with colistin in 9 Japanese patients with infection due to
422	multi-drug resistance pathogens. The Japanese journal of antibiotics.
423	2016;69:319-26.
424	[31] Catry B, Cavaleri M, Baptiste K, Grave K, Grein K, Holm A, et al. Use of
425	colistin-containing products within the European Union and European
426	Economic Area (EU/EEA): development of resistance in animals and possible
427	impact on human and animal health. International journal of antimicrobial
428	agents. 2015;46:297-306.

- 429 [32] Antimicrobial-resistant Bacteria Arising from the Use of Colistin Sulfate in
- 430 the Livestock (Antimicrobial-resistant Bacteria). Food Saf (Tokyo). 2017;5:24-
- **43**1 8.
- 432 [33] Ling Z, Yin W, Shen Z, Wang Y, Shen J, Walsh TR. Epidemiology of mobile
- 433 colistin resistance genes mcr-1 to mcr-9. J Antimicrob Chemother.
- **434** 2020;75:3087-95.
- 435 [34] Kananizadeh P, Oshiro S, Watanabe S, Iwata S, Kuwahara-Arai K,
- 436 Shimojima M, et al. Emergence of carbapenem-resistant and colistin-susceptible
- **437** Enterobacter cloacae complex co-harboring bla(IMP-1) and mcr-9 in Japan.
- **438** BMC Infect Dis. 2020;20:282.
- 439 [35] Wang Y, Tian GB, Zhang R, Shen Y, Tyrrell JM, Huang X, et al.
- 440 Prevalence, risk factors, outcomes, and molecular epidemiology of mcr-1-
- 441 positive Enterobacteriaceae in patients and healthy adults from China: an
- 442 epidemiological and clinical study. Lancet Infect Dis. 2017;17:390-9.
- 443 [36] Hassen B, Saloua B, Abbassi MS, Ruiz-Ripa L, Mama OM, Hassen A, et al.
- 444 mcr-1 encoding colistin resistance in CTX-M-1/CTX-M-15- producing
- 445 Escherichia coli isolates of bovine and caprine origins in Tunisia. First report of

- 446 CTX-M-15-ST394/D E. coli from goats. Comp Immunol Microbiol Infect Dis.
 447 2019;67:101366.
- 448 [37] Borowiak M, Fischer J, Hammerl JA, Hendriksen RS, Szabo I, Malorny B.
- 449 Identification of a novel transposon-associated phosphoethanolamine transferase
- 450 gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella
- 451 enterica subsp. enterica serovar Paratyphi B. J Antimicrob Chemother.
- **452** 2017;72:3317-24.
- 453 [38] Tyson GH, Li C, Hsu CH, Ayers S, Borenstein S, Mukherjee S, et al. The
- 454 mcr-9 Gene of Salmonella and Escherichia coli Is Not Associated with Colistin
- 455 Resistance in the United States. Antimicrob Agents Chemother. 2020;64.
- 456 [39] Shigemoto N, Kuwahara R, Kayama S, Shimizu W, Onodera M, Yokozaki
- 457 M, et al. Emergence in Japan of an imipenem-susceptible, meropenem-resistant
- 458 Klebsiella pneumoniae carrying blaIMP-6. Diagn Microbiol Infect Dis.
- **459** 2012;72:109-12.
- 460 [40] Sato T, Fukuda A, Usui M, Shinagawa M, Shiraishi T, Tamura Y, et al.
- 461 Isolation of a mcr-1-harbouring Escherichia coli isolate from a human clinical
- 462 setting in Sapporo, Japan. J Glob Antimicrob Resist. 2018;13:20-1.
- 463

Organisms		Colistin esistance	Carbapenemase genes (number)	<i>mcr</i> genes (number)
	n	(%)		
ESBL-producing strains (180)	2	(1.1%)		
Escherichia coli (147)	1	(0.68%)	N.D.	<i>mcr-5</i> (1)
Klebsiella pneumoniae (28)	1	(3.6%)	N.D.	N.D.
Klebsiella oxytoca (5)		(0.0%)	N.D.	N.D.
CRE strains (93)		(20.4%)		
Klebsiella aerogenes (42)	1	(2.4%)	IMP-1 group (1)	N.D.
Enterobacter cloacae complex (36)	18	(50.0%)	IMP-1 group (6)	<i>mcr-9</i> (3)
Klebsiella pneumoniae (11)	0	(0.0%)	IMP-1 group (7), NDM and OXA-48 (1)	N.D.
Escherichia coli (2)		(0.0%)	N.D.	N.D.
Citrobacter spp. (2) 0		(0.0%)	N.D.	N.D.
Total (273)	21	(7.7%)		

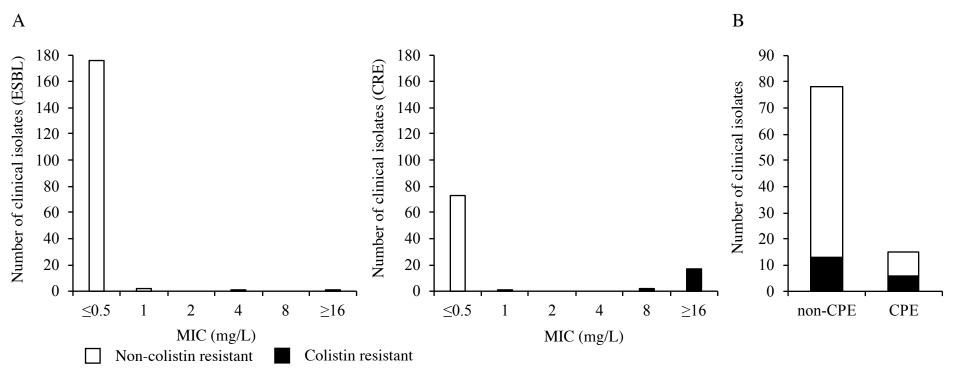
 Table 1. Colistin resistance in ESBL-producing and CRE strains

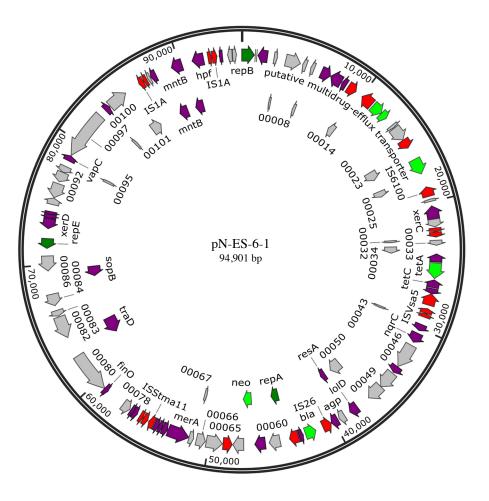
N.D., not detected

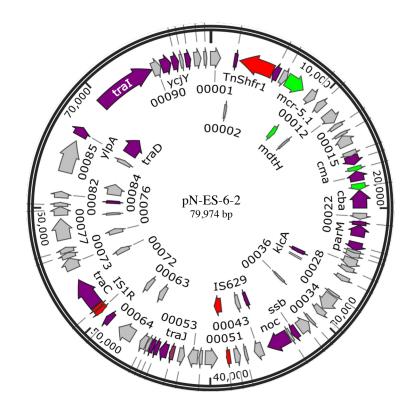
464

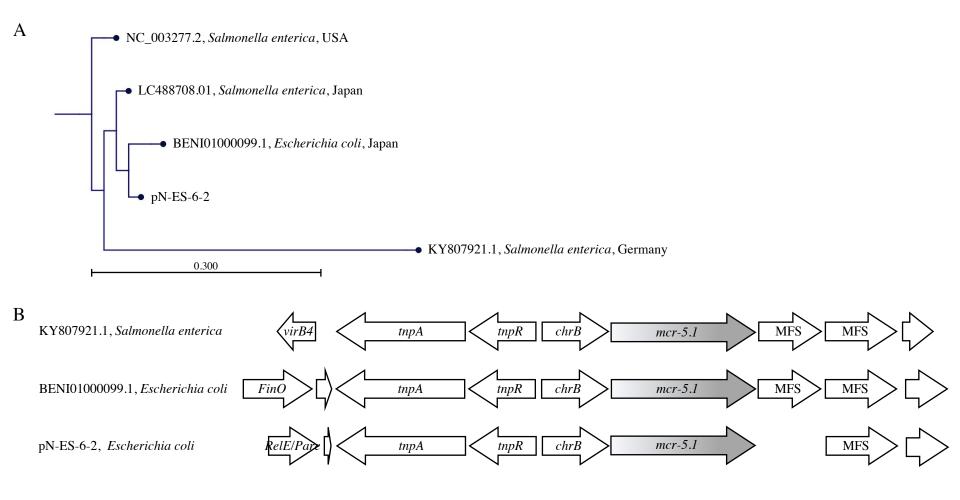
Table 2. Characteristics of constin-resistant strains					
Resistance of colistin					
1					
8/90 (8.9%)					
4/65 (6.2%)					
9/118 (7.6%)					
6/120 (5.0%)					
3/41 (7.3%)					
8/55 (14.5%)					
1/23 (4.3%)					
2/20 (10.0%)					
1/14 (7.1%)					

Table 2. Characteristics of colistin-resistant strains


	0 1			8		8	
Plasmid	Size(bp)	Inc	Resistance	Identity	Query /	Position in	Accession
		groups	gene	(%)	Template	contig	number
					length		
pN-ES-	94,901	IncFIA	mph(A)	100	906/906	1555916464	D16251
6-1							
		IncFIB	dfrA17	100	474/474	2148221955	FJ460238
		IncQ1	bla _{TEM-1B}	100	861/861	4155742417	AY458016
			sul2	100	816/816	4562146436	HQ840942
			<i>tet</i> (B)	100	1206/1206	2475825963	AF326777
			aac(3)-lld	99.88	860/861	1117912039	EU022314
			aac(3")-lb	100	804/804	4649747300	AF321551
			aph(6)-ld	100	837/837	4730048136	M28829
pN-ES-	79,974	IncFII	mcr-5.1	100	1644/1644	68378480	KY807921
6-2							


Table 3. Inc groups and antimicrobial resistance genes of mcr-5 gene positive strain


469	Figure	Legends


470	Figure 1. The Distribution of colistin minimum inhibitory concentration (MIC) in					
471	ESBL producing strains and CRE strains, Japan, August 2016- March 2017 (A). B) The					
472	comparison of colistin resistance rates between non-CPE and CPE. The MICs of					
473	colistin were measured using the microdilution method. White indicates non-colistin-					
474	resistant; Black, colistin-resistant.					
475						
476	Figure 2. Structure of plasmid pN-ES-6-1 and pN-ES-6-2 from <i>Escherichia coli</i> .					
477	Yellow-green indicates antimicrobial resistance; gray, hypothetical protein; red,					
478	insertion sequence; green, plasmid replication; purple, other protein.					
479						
480	Figure 3. Comparison of the mcr-5-carrying plasmid. A) Phylogenetic tree of mcr-5-					
481	carrying plasmid from Salmonella enterica (Gene accession no. NC_003277.2),					
482	Salmonella enterica (Gene accession no. LC488708.01), Escherichia coli (Gene					
483	accession no. BENI01000099.1), pN-ES-6-2 Escherichia coli, and Salmonella enterica					
484	(Gene accession no. KY807921.1). Arrow represents coding sequences (gray arrows,					
485	mcr-5) and indicated direction of transcription. B) The genetic environment of mcr-5					

- 486 from Salmonella enterica (Gene accession no. KY807921.1), Escherichia coli (Gene
- 487 accession no. BENI01000099.1), and pN-ES-6-2 *Escherichia coli*.

Supplementary data

	mcr-5 E. coli	mcr-9 Ent. cloacae	mcr-9 Ent. cloacae	mcr-9 Ent. cloacae
Antibiotics				
	ESBL	CRE	CRE	CRE
Piperacillin	>64	≤2	16	8
Ceftazidime	2	≤1	8	16
Ceftriaxone	≤0.5	≤0.5	2	2
Cefpodoxime	>4	≤4	>4	>4
Cefepime	≤0.5	≤1	≤1	≤1
Cefmetazole	32	>32	>32	>32
Aztreonam	4	2	8	>32
Piperacillin-	16	≤2	16	16
tazobactam				
Ampicillin-sulbactam	>16	≤2	16	16
Imipenem	≤0.5	2	2	2
Meropenem	≤0.5	≤0.5	≤0.5	≤0.5
Gentamicin	>8	≤0.5	≤0.5	≤0.5
Amikacin	≤4	≤2	≤2	≤2
Minocycline	>8	2	2	4
Ciprofloxacin	>4	≤0.5	2	≤0.5
Levofloxacin	>4	≤1	2	≤1
Sulfamethoxazole-	>4	.1	~1	-1
trimethoprim		≤1	≤1	≤1
Colistin	1	≤0.5	≤0.5	≤0.5

Table S1. Antibiotic susceptibility testing of mcr gene positive strains