
Citation: Jiang, Y.; Li, M.; Luan, H.;

Shi, Y.; Zhang, S.; Yan, P.; Li, B.

Discrete Element Simulation of the

Macro-Meso Mechanical Behaviors of

Gas-Hydrate-Bearing Sediments

under Dynamic Loading. J. Mar. Sci.

Eng. 2022, 10, 1042. https://doi.org/

10.3390/jmse10081042

Academic Editor: Timothy S. Collett

Received: 24 June 2022

Accepted: 26 July 2022

Published: 29 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Discrete Element Simulation of the Macro-Meso Mechanical
Behaviors of Gas-Hydrate-Bearing Sediments under
Dynamic Loading
Yujing Jiang 1,2,3 , Meng Li 1,2, Hengjie Luan 1,2,*, Yichen Shi 1, Sunhao Zhang 1,2, Peng Yan 1,2

and Baocheng Li 1,2

1 College of Energy and Mining Engineering, Shandong University of Science and Technology,
Qingdao 266590, China; jiang@nagasaki-u.ac.jp (Y.J.); 202082010012@sdust.edu.cn (M.L.);
202001010612@sdust.edu.cn (Y.S.); skzsh@sdust.edu.cn (S.Z.); 201882010009@sdust.edu.cn (P.Y.);
202082010008@sdust.edu.cn (B.L.)

2 State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the
Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China

3 Graduate School of Engineering, Nagasaki University, Nagasaki 852-8521, Japan
* Correspondence: luanjie0330@126.com; Tel.: +86-0532-86058052

Abstract: Under the action of dynamic loadings such as earthquakes and volcanic activities, the
mechanical properties of gas-hydrate-bearing sediments will deteriorate, leading to a decrease in the
stability of hydrate reservoirs and even inducing geological disasters such as submarine landslides.
In order to study the effect of dynamic loading on the mechanical properties of hydrate sediments,
triaxial compression tests of numerical specimens were carried out by using particle flow code
(PFC2D), and the macro-meso mechanical behaviors of specimens were investigated. The results
show that the loading frequency has a small effect on the stiffness of the hydrate sediment, while
it has a large effect on the peak strength. The peak strength increases and then decreases with the
increase in loading frequency. Under the same loading frequency, the peak strength of the hydrate
sediment increases with the increase in loading amplitude, and the stiffness of the specimen decreases
with the increase in loading amplitude. The maximum shear expansion of the specimen changes with
the movement of the phase change point and the rearrangement of the particles. The maximum shear
expansion of the specimen changes with the movement of the phase change point and the change of
the bearing capacity of the particles after the rearrangement, and the more forward the phase change
point is, the stronger the bearing capacity of the specimen in the plastic stage. The shear dilatancy
angle and the shear dilatancy amount both increase linearly with the increase in loading amplitude.
The influence of loading frequency and amplitude on the contact force chain, displacement, crack
expansion, and the number of cementation damage inside the sediment is mainly related to the
average axial stress to which the specimen is subjected, and the number of cracks and cementation
damage of the sediment specimen increases with the increase in the average axial stress to which
the sediment specimen is subjected. As the rate of cementation damage increases, the distribution of
shear zones becomes more obvious.

Keywords: gas-hydrate-bearing sediments; mechanical behavior; dynamic loading; discrete element
simulation; macro-meso

1. Introduction

Natural gas hydrate is a crystalline cage-shaped solid complex produced by methane
and water molecules under low temperature and high pressure, which is widely distributed
in deep-sea sediments or onshore permafrost areas and is considered to be one of the most
promising new clean alternative energy sources in the future [1]. The dynamic loads
caused by earthquakes, submarine landslides, and hydrate mining activities can lead to the
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decomposition of hydrates, resulting in the deterioration of the mechanical properties of
hydrate sediments, which can lead to a series of geotechnical disasters, such as wellbore
instability, submarine subsidence, submarine landslides, etc. [2,3]. Therefore, the study of
the dynamic properties of hydrate sediments is important for hydrate mining design and
hydrate reservoir stability evaluation, etc.

At present, many researchers have conducted many experimental studies on the me-
chanical properties of hydrate sediments. For example, Masui et al. [4] and Hyodo et al. [5]
studied the mechanical properties of hydrate sediments and showed that the increase in
saturation greatly increases the strength of the sediments. Song et al. [6] studied the me-
chanical response of methane hydrate sediments before and during natural gas production,
and the results indicated that the dissociation of hydrate due to thermal decomposition
led to the proportional loss of strength. Wu et al. [7] conducted triaxial compression ex-
periments on hydrate sediments and showed that the shear and deformation properties
of hydrate sediments are closely related to hydrate saturation and net peritectic pressure.
Kajiyama et al. [8] conducted triaxial shear tests on hydrate sediments with different fines
content and found that both shear strength and shear dilatancy of hydrate sediments
significantly increased with increasing fines content. Li et al. [9] investigated the effect
of hydrate distribution patterns on the mechanical parameters and damage mechanisms
of hydrate sediments. The above studies have provided a preliminary understanding of
the hydrostatic properties of hydrate sediments. However, due to the harsh conditions of
hydrate sediment in sandy soils, it is still difficult to conduct an in-depth and systematic
study on the dynamic properties of hydrate sediments due to the current development
level of relevant test equipment and technology.

With the development of computer technology, the discrete element numerical simula-
tion method has provided a new way to solve this problem [10–15]. As one of the discrete
element simulation methods, the calculation principle of the particle flow program (PFC) is
based on Newton’s second law of motion to establish the equation of motion of the cell, and
then use the explicit central difference method to solve the equation of motion, while the
deformation or rupture process of the material is described by the rigid cell and its mutual
position. It is based on the basic contact mechanics relationship between particles, which
can easily construct and observe the microstructure of natural gas hydrate sediments and
their evolution, and can also accurately evaluate the mechanical properties of geotechnical
bodies under dynamic loading [16]. Brugada et al. [17] conducted a series of triaxial com-
pression simulations by particle flow code (PFC) to study the effects of methane hydrate
saturation on stress–strain relationship, volume strain, and macroscopic geomechanical
properties (e.g., friction and expansion angle). Jiang et al. [18–22] developed a microscopic
cementation model for hydrate mechanical properties to reflect the contact mechanical
response of hydrate cementation between hydrate sediment grains, and a series of related
discrete element simulations were conducted. Jung et al. [23] also considered the cementa-
tion effect of hydrate and performed three-dimensional discrete element simulations for
sediments having two hydrate forms. Yang et al. [24] used the “radius expansion method”
to generate hydrate sediment specimens and compared the simulation results with the
existing indoor triaxial tests in terms of stress–strain relationship, bulk strain properties,
elastic modulus, and peak strength, and studied the effect of different cementation radii
and other microscopic cementation properties on the mechanical properties. He et al. [25]
used the discrete element method to simulate the effect of different intermediate principal
stresses on the mechanical behavior of methane-hydrate-filled sandy sediments. The above
studies investigated the mechanical properties of hydrate sediments from different perspec-
tives such as surrounding pressure and saturation. However, numerical simulations of the
mechanical behavior of hydrate under dynamic loading have rarely been studied.

In view of the above understanding, in order to study the mechanical properties of
natural gas hydrate sediments under dynamic loading, this paper firstly carried out triaxial
compression tests on discrete element specimens of hydrate sediments under static loading
and verified them by comparison, and determined reasonable simulation parameters;
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then, triaxial compression tests on hydrate sediment specimens under cyclic loading with
different frequencies and amplitudes were carried out to reveal the influence of dynamic
loading on their macro-meso mechanical properties. The research results of this paper are
useful for the understanding of the dynamics of hydrate sediments and the prevention and
control of submarine geohazards.

2. Discrete Element Simulation of Gas-Hydrate-Bearing Sediments
2.1. Model Building

In order to establish a realistic numerical model of hydrate sediment specimens, the
particle gradation selected in the model is similar to that of Toyoura sand [26], and the
diameter of soil particles is 0.1–0.4 mm. Hydrate particles are generated in the pores of the
sediment, and their particle radii are small, while too small a particle radius will inevitably
lead to an increase in the number of particles and thus slow down the calculation efficiency.
Combining the above factors, the radius of hydrate particles is taken as 0.06 mm. The
modeling process is carried out with reference to the modeling method of Cheng [27]. The
specific steps are as follows.

(1) Hydrate sediment specimen generation. Firstly, for generating the cylindrical
specimen and subsequent loading, three walls were established at the specimen boundary,
and then the initial sediment cylindrical specimen with soil particles of 2 mm in diameter
and 4 mm in height was generated according to the Toyoura sand grading curve shown in
Figure 1, at which time the internal pore ratio of the specimen was 0.42; then, according to
the set value range of hydrate particles and soil particles, saturation, and initial porosity,
the new porosity and particle size gradation curves were calculated. After that, the sedi-
ment cylindrical specimens containing soil particles and hydrate particles were generated
according to the particle size gradation curves meeting the requirements of saturation
and porosity.
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(2) A consolidation pressure Fc was applied to the specimens. A consolidation pressure
of 1.0 MPa was applied to the generated specimens so that the particles in the specimens
were in contact with each other under this consolidation pressure until the calculation
reached equilibrium.

(3) The saturation of specimens was made to reach the desired level. By “cmat”
command, a parallel bond model was added between hydrate particles and between
hydrate particles and sand particles, and a linear model was added between sand particles
to generate a discrete hydrate sediment with 30% saturation, as shown in Figure 2.
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(4) Apply loads to the model. The axial load Fn was applied to the model by updating
the velocity of the top and bottom walls to ensure that the confining stresses reached the
desired stress state [28]. The specimens were tested at a constant loading rate of 1 × 10−6 m/s
under an effective enclosing pressure of 1.0 MPa, and the test was stopped when the axial
strain ε reached 25%.

Among them, since the load cannot be applied directly to the wall in the PFC numerical
simulation software, servo loading was required according to the difference between the
given target load and the actual load applied to the specimen, as shown in Figure 3. The
PFC wall velocity conversion equation is [29]:

vw = G(σ
measured − σ

required
) = G∆σ, (1)

where ∆σ is the difference between the target stress σrequired and the actual monitored stress
σmeasured, and G is the servo parameter whose value is calculated using Equation (2) [29]:

G =
αA

k(w)
n Nc∆t

, (2)

where α is the stress release factor, taken as 0.5; A is the area of the boundary wall, k(w)
n is

the average contact stiffness, Nc is the number of contacts between the boundary wall and
the particles, and ∆t is the unit time step.
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The amount of contact force change caused by the boundary wall motion in the unit
time step is [29]:

∆Fw = kn
(w)Ncvw∆t, (3)

2.2. Contact Models and Parameters

The mechanical properties of hydrate sediments are governed by the hydrate distribu-
tion in addition to factors such as net confining pressure, saturation, and mid-major stress
coefficient [30]. Hydrate in hydrate sediments exists in three main forms [31], as shown in
Figure 3: (i) pore-filling (Figure 4a); (ii) acting as a sediment soil skeleton (Figure 4b), and
(iii) cemented between soil particles in the form of colloidal material (Figure 4c). Among
them, the results of Waite et al. [32] and Brugada et al. [17] both showed that the pore-filling
type has less influence on the mechanical properties of hydrate sediments, and the influence
of hydrate distribution factors on the simulation results can be excluded to the maximum
extent. Therefore, the pore-filling-type structure is used in the modeling in this paper.
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In this paper, the parallel bonding model is chosen to calculate the contact state be-
tween particles according to the model of cemented clustered hydrate sediment distribution
proposed by Li et al. [31], i.e., there is bonding not only between hydrate and hydrate par-
ticles, but also between hydrate and soil particles, as shown in Figure 5. Figure 6a shows
the forces and moments transmitted by the cementation. Fi and Mi denote the forces
and moments acting on the cementation, respectively, which decompose into normal
and tangential components along the contact surface [29] (see Equations (4) and (5)).
R is the radius of the short cylindrical cementation, and its value is calculated using
Equation (6) [33,34]. R(1), and R(2) are the radii of the two spheres at contact. λ is a dimen-
sionless parameter, and if λ is 1, the cemented material will fill the particles in contact with
each other as much as possible.

Fi = Fn
i + Fs

i , (4)

Mi = Mn
i + Ms

i , (5)

R = λmin(R(1), R(2)), (6)
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Figure 6. Schematic diagram of 3D parallel bonding model: (a) forces and moments transmitted
by the bond (Adapted with permission from Ref. [32]. 2009, the American Geophysical Union);
(b) failure criterion of classical parallel bonding model (Adapted with permission from Ref. [30]. 2022,
Wei, R.; Jia, C.; Liu, L).

The parallel bonding model is defined by five parameters: normal stiffness kn, tangen-
tial stiffness ks, normal strength tangential strength τc, and short cylindrical radius R of the
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cementation. The maximum normal σmax and tangential stresses τmax can be expressed
as [35]:

σ
max

=
−F

n

A
+

∣∣∣Ms
∣∣∣R

I
, (7)

τ
max

=

∣∣∣Fs
∣∣∣

A
+

∣∣∣Mn
∣∣∣R

I
, (8)

where A, I, and J are cross-sectional area, cross-sectional moments of inertia, and cross-
sectional polar moments of inertia, respectively, using the following calculation formulas:
A = πR2, I = 0.5πR4 and J = 0.25πR4.

As shown in Figure 6b, if the maximum normal stress exceeds its tensile strength limit
(σmax ≥ σc), or the maximum tangential stress exceeds the shear strength limit (τmax ≥ τc),
the parallel bonding model will be destroyed.

2.3. Model Validation

In order to determine the meso parameters of the numerical model in this paper, the
simulation results of Brugada et al. [17] were used as the basis for calibration, and the trial
and error method was used to continuously and dynamically adjust the meso parameters
until the curves in this paper basically matched with the curve of Brugada et al. The
final calibration results are shown in Figure 7, and the meso parameters determined after
calibration are shown in Table 1. It can be seen that the trends of the two sets of curves
are generally consistent and can be roughly divided into three stages. The first stage is the
linear elastic stage, where the bias stress of the sediment specimen increases approximately
linearly with the increase in axial strain; the second stage is the yield stage, where the
bias stress reaches its peak. The peak strength of the bias stress simulated in this paper is
1.52 MPa, and that of Brugada et al. is 1.54 MPa, with an error of only 1.3% between them;
the third stage is the residual stage, where both sets of simulations show strain softening
and the bias stress rapidly decreases and tends to a stable value, and the specimen is
damaged. The second half of the curve derived in this paper has a certain degree of jitter,
which is because, in the compression process, a small displacement or misalignment of the
particles will cause a relatively obvious change in the stress monitored on the monitoring
wall with the increase in particle density. In general, the numerical simulation curve results
in this paper have good accuracy.
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Table 1. Material parameters in discrete element simulation.

Type Density/(g/cm3)
Friction

Coefficient

Linear Model Gluing Model

Effective
Modulus/(MPa) Stiffness Ratio Effective

Modulus/(MPa) Stiffness Ratio Tensile
Strength/(MPa)

Bond
Strength/(MPa)

Friction
Angle/(◦ )

Soil particles
Hydrate particles 2.3 0.75 286 1.43

Between hydrate
particles 0.9 0.75 28.6 1.43 24 1.5 5 5 40

Between hydrate
particles and soil

particles
24.6 1.5 5 5 40

2.4. Simulation Scheme

At present, displacement-controlled loading is commonly used in tests or simulations
to equate the vibrational loading of earthquakes, i.e., the velocity magnitude is kept constant
during the loading process, and the loading and unloading are added and removed back
and forth within a certain displacement range [35–37], but this is not consistent with reality,
and the velocity of real seismic waves changes continuously with time. Therefore, in order
to reveal the macro-meso structural evolution of hydrate sediments under dynamic loading
and its mechanical properties, this paper simulates dynamic loading by varying the axial
loading velocity. In general, a seismic wave is a kind of random wave, and the random
wave can be described by its amplitude, period, and phase. Although discrete elements
can simulate random waveforms, the interpretation of the dynamic response mechanism of
hydrate sediments under the action of random waveforms is very complicated. For this
reason, the regular sinusoidal wave loading velocity will be introduced for analysis in this
paper, and its expression is

vw = A sin(2π f ∗ t), (9)

where A is the loading amplitude, f is the loading frequency, and t is the time.
Since the frequency of seismic waves is generally less than 10 Hz, four frequencies

of f = 1, 2, 3, and 4 Hz were selected in this paper. Three amplitudes of A = 1.2 × 10−1,
1.5 × 10−1, and 1.8 × 10−1 m·s−1 were selected based on the peak wave velocity recorded in
Hachinohe, Japan [38], according to which different cyclic loading schemes were composed,
as shown in Table 2. The adopted cyclic velocity curves are shown in Figure 8.

Table 2. Simulation scheme.

Title Frequency/Hz Peak/m·s−1

Sine wave 1, 2, 3, 4 1.2 × 10−1

Sine wave 1.0 1.2 × 10−1, 1.5 × 10−1, 1.8 × 10−1
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3. Results and Analysis
3.1. Stress–Strain Curves

Unlike quasi-static loading, the mechanical characteristics of hydrate sediments under
dynamic loading conditions change continuously with the cyclic change of loading velocity. To
analyze the mechanical characteristics of hydrate sediment under dynamic loading, the stress–
strain of hydrate sediment under dynamic loading of f = 2 Hz and A = 0.12 m s−1 as shown in
Figure 9 was analyzed as an example. It can be seen that the stress–strain curves of hydrate
sediment under dynamic loading can be roughly divided into four stages. The first stage is
the elastic stage, which obeys Hooke’s law and shows the elastic characteristics, and the
stress–strain curve is a straight line with a fixed slope. With the increase in axial strain, the
slope of the curve slowly decreases, and the specimen enters the second stage (yield stage),
in which the slope decreases continuously before the curve reaches the peak point, and the
stress increases nonlinearly with strain and increases slowly. During this stage, the sediment
specimen is compressed, the skeleton and cementation are destroyed, and the particles
are rearranged. At the same time, the pores within the sediment specimen are squeezed
under pressure, which makes the volume of the specimen decrease, at which time the
bearing capacity of the specimen decreases, and thus the elastic modulus of the specimen
gradually decreases. The third stage is the strain softening stage. After the peak point of
the stress–strain curve, the partial stress decreases with the increase in the axial strain. The
strength of the hydrate sediment specimen starts to decline slowly, and the stress–strain
curve shows a strain softening trend. The fourth stage is the strain strengthening stage. In
this stage, the partial stress increases with the increase in axial strain, which is because the
hydrate particles in the sediment specimen still have a certain cementing effect on them,
which can resist part of the stress. At the same time, the interaction between the particles
caused by the presence of the surrounding pressure increases the contact area and frictional
resistance, which inhibits the increase in cracks and prevents the slip or rearrangement
between the particles, making the specimen more resistant to the damage caused by the
axial load. As the loading proceeds, the particles inside the specimen are rearranged, the
specimen is slowly and fully stressed, and its load-bearing capacity is gradually stabilized
so that the sample also maintains a certain strength.
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Figure 9. Stress–strain curve of hydrate sediments under dynamic loading (f = 2 Hz, A = 0.12 m·s−1).

The stress–strain curves of hydrate sediment under different loading frequencies and
different loading amplitudes are shown in Figure 10. As can be seen from the figure, the
stress–strain curve of the velocity cyclic loading mode is different from the force cyclic
loading mode, and its stress–strain curve does not form a closed hysteresis loop curve,
which is because even though the loading speed decreases, the axial displacement in the
simulation keeps increasing downward, i.e., the hydrate sediment specimen keeps loading
state without the process of unloading in the force cyclic loading mode.
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Figure 10. Stress–strain curves of sediment under different dynamic loads: (a) different loading
frequencies; (b) different loading amplitudes.

It can also be seen from the figure that the change in the frequency and amplitude of
the loading rate will have some effect on the characteristics of the stress–strain curve of the
hydrate sediment. For this reason, the relationship between the axial strain interval L of the
sediment and the loading conditions (Stages I and II) was counted, as shown in Figure 11.
As can be seen from the figure, the axial strain corresponding to Stage I under all loading
frequency conditions is 3.2%, which means that the loading frequency does not affect the
distribution range of hydrate sediment specimens in Stage I. However, with the increase
in the loading amplitude, the L corresponding to the first stage also increases, and when
the loading amplitude increases from 0.12 m s−1 to 0.18 m s−1, the L corresponding to the
first stage is, respectively, 3.2%, 4.7%, and 5.6%. It shows that as the loading amplitude
increases, the L corresponding to the elastic phase of the specimen becomes shorter, which
is since the strength limit of the specimen is certain, and the greater the dynamic loading
action, the faster it reaches its elastic limit.
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Figure 11. Relationship between sediment strain interval L and loading conditions (Stage I, Stage II):
(a) different loading frequencies; (b) different loading amplitudes.

In Stage II, as the loading frequency increases, the L corresponding to the yielding stage
of the specimen first increases and then decreases; when the loading frequency increases
from 1 Hz to 2 Hz, the L corresponding to Stage II are, respectively, 6.4% and 9.1%. This is
because the higher the loading frequency, the shorter the loading cycle, i.e., the shorter the
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action time of each cycle, the less the cementation damage inside the specimen. However, as
the loading frequency continues to increase from 2 Hz to 4 Hz, the L corresponding to phase
II is 9.1%, 7.3%, and 6.4%, respectively. This is due to the fact that the more the number
of cycles of cyclic loading at the same time, the collodion damage inside the specimen
increases, making the time experienced in the yielding phase of the specimen decrease
with the change in frequency. As the loading amplitude increases, the L corresponding to
the yielding stage of the specimen also increases. When the loading amplitude increases
from 0.12 m·s−1 to 0.18 m·s−1, the L corresponding to the second stage is, respectively,
6.4%, 10.3%, and 13.1%. This is because the larger loading amplitude indicates that the
specimen is loaded at a larger rate in the same cycle, i.e., the larger the axial force on the
specimen in each cycle, the larger the load carrying capacity of the specimen, which is also
in accordance with the characteristics of the hydrate sediment as a frictional material.

Figure 12 shows the strain–time curves of hydrate sediments under different dynamic
loads. It can be seen that the strain–time curves vary basically the same for different loading
frequencies, but the strain rate increases with the increase in loading amplitude. It shows
that the loading amplitude has a greater effect on the strain of hydrate specimens. This
is due to the fact that the larger the loading amplitude is at the same loading frequency,
the greater the stress on the specimen in each cycle, the greater the number of cementation
damage, the easier the specimen is to deform and destroy, and the greater the strain rate.
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3.2. Strength Characteristics
3.2.1. The Effect of Loading Frequency

Figure 13 shows the relationship between the peak sediment strength, the sediment
E50, and the loading frequency. From the figure, it can be seen that the peak sediment
strength increases and then decreases as the loading frequency increases. When the loading
frequency increases from 1 Hz to 2 Hz, the peak sediment strength increases from 1.62 MPa
to 1.68 MPa, and its peak strength increases by 3.7% compared to 1 Hz. When the loading
frequency continues to increase to 3 Hz and 4 Hz, the peak sediment strength decreases
to 1.6 MPa and 1.59 MPa, respectively, and decreases by 5% and 5.2% compared to 2 Hz,
respectively. It shows that the effect of loading frequency on the peak strength is not
monotonic, and there exists a critical value, less than which the peak strength increases
with increasing loading frequency, and greater than which the peak strength decreases
with increasing loading frequency. This is due to the loading frequency being small, as the
loading cycle becomes shorter with the increase in loading frequency. That is, the shorter
the time of the action of each cycle with the same number of cycles, the specimen’s internal
cementation damage is less, and the bearing capacity of the specimen is greater. However,
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as the loading frequency continues to increase beyond its critical value, the number of
cyclic loading at the same time increases, and the cementation damage inside the specimen
increases. Comparing the length of the action time of each cycle, the influence of the
number of cyclic loading within the same time on the cementation damage dominates,
which makes the bearing capacity of the specimen decrease. At the same time, when the
loading frequency exceeds the critical value, the particles inside the sediment specimen
frequently adjust the arrangement, which leads to the instability of the internal mechanical
structure of the sediment and makes the internal force uneven, and even generates the
stress concentration phenomenon, and finally leads to a certain degree of reduction in the
yield strength of the sediment specimen.
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Hydrate sediments are inelastic materials, so it is difficult to obtain the initial 
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Hydrate sediments are inelastic materials, so it is difficult to obtain the initial modulus
E0. In this test, the cut-line modulus E50 was used to describe the stiffness of the specimen.
E50 is defined as the slope of the line connecting the point half the value of the breaking
strength in the stress–strain curve to the origin. From the relationship between the sediment
E50 and the loading frequency in Figure 13, it can be seen that the E50 of the sediment
specimen is 0.58 MPa at a loading frequency of 1 Hz, 0.57 MPa when the loading frequency
increases to 2 Hz, 0.56 MPa when the loading frequency continues to increase to 3 Hz, and
0.57 MPa when the loading frequency continues to increase to 4 Hz. With the increase in
loading frequency, the E50 of hydrate specimens changed less, only 0.01 MPa, which means
that the effect of loading frequency on the stiffness of hydrate specimens is small.

3.2.2. The Effect of Loading Amplitude

Figure 14 shows the curve of peak sediment strength, sediment E50, and loading
amplitude. When the loading amplitude was increased from 0.12 m s−1 to 0.18 m s−1, the
peak sediment strengths were 1.62 MPa, 1.66 MPa, and 1.73 MPa, respectively, which were
2.4% and 6.7% higher compared to the peak strengths at loading frequencies of 0.15 m·s−1

and 0.18 m·s−1 for a loading amplitude of 0.12 m·s−1, respectively. Under the action
of loading, the particles in the sediment specimen will first overcome the interparticle
interaction forces before the relative misalignment occurs, mainly including interparticle
friction and cohesion. When the amplitude of the loading rate increases, due to the inertia
of the sediment particles, particle-to-particle squeezing begins to occur, resulting in an
increase in the positive stress between the sediment particles, which in turn increases the
inter-particle friction and the strength of the sediment. Combined with Figure 12b, the
strain rate of the specimen increases with the increase in loading amplitude under dynamic
loading, and the time required for the specimen to respond to strain decreases with the
increase in strain rate. This makes the strain more localized, and then makes the specimen
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all strained and will require more stress so the peak strength of the specimen will increase
as the cyclic loading amplitude increases.
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The relationship between the E50 loading amplitude of the sediment in Figure 14 shows
that the E50 of the hydrate specimen decreases with the increase in the loading amplitude. The
E50 of the sediment specimen was 0.58 MPa at a loading amplitude of 0.12 m s−1; when the
loading amplitude increased to 0.15 m s−1, the E50 decreased to 0.52 MPa with a decrease of
10.3%; when the loading amplitude continued to increase to 0.18 m s−1, the E50 decreased
again to 0.47 MPa with a decrease of 9.6%. This is due to the fact that the cementation
between soil and hydrate particles in the sediment specimen will be destroyed under the
action of loading, and the rearrangement between the particles will occur; the greater the
loading amplitude, the greater the stress on the specimen in each cycle, and the greater
the number of cementation failures, which makes the sediment specimen less able to resist
deformation and reduces the stiffness of the specimen.

3.3. Volumetric Strain Characteristics
3.3.1. Comparison of Volume Strain Curves

Dilatancy is one of the most important properties of sandy soils. This is because most
of the accidents under load are due to shear swell or shear shrinkage damage of the soil,
which leads to the loss of bearing capacity. Hydrate sediments have a similar structure
to sandy soils, so their dilatancy is important to study [39]. The results of volume strain
simulations of hydrate sediments under different dynamic loads are shown in Figure 15.
It can be seen that the simulation results of each group show the bulk strain law of shear
shrinkage followed by shear dilatancy. Firstly, as the loading proceeds, the pore ratio
between the specimen particles decreases with the increase in consolidation pressure,
which makes the specimen appear to have obvious shear shrinkage. Then, as the loading
continues, the cementation in the specimen gradually breaks down, and because the soil
particles are closely arranged, the soil particles at the shear zone must rotate around
the adjacent particles in order to produce larger movement, which causes the expansion
of the specimen. It can also be seen from the figure that the correlation between the
shear shrinkage of hydrate sediment and the loading frequency and amplitude is small.
However, the maximum shear dilatancy is influenced by the loading frequency and loading
amplitude.
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3.3.2. Frequency, Amplitude–Dilation Relationship

To quantify the effects of loading frequency and loading amplitude on shear dilatancy,
the maximum shear dilatancy under different loading frequencies and loading amplitude
conditions were counted separately, as shown in Figure 16. It is obvious from the figure
that the maximum shear expansion of sediment specimens at loading frequencies of 1,
2, 3, and 4 Hz are 2.793%, 2.17%, 2.780%, and 2.52%, respectively, which means that the
shear dilatancy decreases and then increases and finally decreases again with the increase
in frequency. At the loading amplitudes of 0.12, 0.15, and 0.18 m s−1, the maximum
shear dilatancy was 2.79%, 2.858%, and 2.52%, respectively, which also increased and then
decreased with increasing amplitude. As Figure 15 shows, it can be seen that there is a
critical point between shear shrinkage and shear dilatancy of the specimen, called the phase
change point. The more forward the phase change point is, the shorter the shear shrinkage
process is and the more obvious the shear expansion of the specimen is. At a frequency of
2 Hz, the phase change point is the most forward compared to the other three groups, and
the maximum shear dilatancy of the specimen is the smallest at 2.17%. This is because the
specimen with an axial strain of about 25% at a frequency of 2 Hz is exactly in the process
of a certain increase in the load-bearing capacity after the rearrangement of the particles,
resulting in a consequent decrease in its maximum shear expansion.
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As can be seen from Figure 16, the effect of loading amplitude on shear dilatancy
amount is not monotonic as the loading amplitude increases. The maximum shear dilatancy
of the sediment specimens increased with increasing amplitude at the loading amplitude
of 0.12, 0.15 m s−1, 2.79%, and 2.858%, respectively. At the amplitude of 0.18 m s−1, the
phase change point was the most forward compared to the other three groups, while the
maximum shear dilatancy of the specimens was the smallest at 2.52% for the same reason
as described in the previous paper.

The variation of the shear dilatancy angle with different loading frequencies and
amplitudes are given in Figure 17. The formula for the shear dilatancy angle ψ proposed
by Roscoe [40] is as follows.

ψ = arcsin − ε1 + ε2

ε1 − ε2

, (10)

where ε1 and ε2 are the axial and lateral strain increments, respectively.
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As can be seen from Figure 17, the variation law of shear dilatancy angle of sediment
specimens with loading frequency under the action of the same loading amplitude is
similar to the variation law of shear dilatancy amount with loading frequency, and the
shear dilatancy angle of specimens under the action of the same loading frequency tends
to increase linearly with the increase in loading amplitude. It was shown [41] that when
the shear dilatancy angle was higher, the sediment specimens obtained larger lateral
deformation, and the precursors of instability damage of the specimens were more obvious.
That means that the higher the loading frequency of the test conditions, the more likely the
sediment specimens are to have destabilization damage.

3.4. Volumetric Strain Characteristics

Under a triaxial stress state, hydrate sediments exhibit their deformation damage
process in terms of stress–strain and bulk strain development changes at the macroscopic
level and shear zone generation and development at the fine level [42]. The effect of loading
frequency and amplitude on the deformation damage of hydrate sediment specimens
can be studied by particle displacement, contact force chain distribution, and microcrack
extension evolution law.
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3.4.1. Evolution of Deformation and Failure Characteristics

Taking the deformation damage law of hydrate sediment under f = 1.0 Hz, A = 0.12 m·s−1

dynamic load as an example, the particle displacement, contact force chain distribution,
and microcrack expansion simulation results are shown in Figure 18. From the particle
displacement cloud shown in Figure 18a, it can be seen that with the increase in axial strain,
the particles in the upper and lower parts of the model are compressed and move toward
the middle, and the pores inside the model are gradually compressed and form a shear
zone, as shown in the area marked by the black wire frame in the figure. From the contact
force chain cloud shown in Figure 18b, it can be seen that a weak force chain (green part) is
formed at the center of the shear zone, the strong force chain (red part) gradually expands
toward the ends of the shear zone of the specimen, and the contact force near the shear
zone is roughly perpendicular to the particle displacement direction, which corresponds to
the displacement cloud atlas of the particles. This is due to the frictional forces generated
by the misalignment of the particles in the specimen, which are composed of unbalanced
forces between the particles when relative sliding is generated by the particles inside the
specimen [43].
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Figure 18. Typical failure law of hydrate sediments under the dynamic load of f = 1.0 Hz and
A = 0.12 m·s−1: (a) cloud diagram of sample particle displacement, (b) contact force chain diagram,
and (c) microcrack expansion diagram.
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From the microcrack expansion diagram shown in Figure 18c, it can be seen that
the number of cracks at 5% of axial strain (before the peak strength) is small and mainly
concentrated at the two ends of the specimen, and there is no obvious cementation damage
in the hydrate sediment specimen. The number of cracks increases significantly at 10% and
15% of the axial strain (after the peak strength). At this time, the cementation between the
hydrate particles and the cementation between the hydrate particles and the soil particles
are destroyed in large quantities, but the cracks are randomly distributed in an irregular
manner. The number of cracks in the specimen tends to be stable at 20% and 25% of the
axial strain (after shear expansion), so it can be seen that the change law of the number of
cracks in the specimen with the axial strain is similar to the change law of the stress–strain
relationship. The number of cracks in the middle of the specimen is significantly larger
than the number of cracks at the two ends of the specimen, which indicates that the number
of collodion damage near the shear zone continues to increase with the further increase in
the axial strain and is concentrated near the shear zone.

A similar conclusion can be drawn from the damage–strain relationship curve of
stress–cementation in Figure 19. The degree of stress is low in the initial stage of specimen
loading, the cementation damage is less, and the rate of cementation damage is slow. With
the development of strain reaching the peak strength, the rate of cementation damage
increases significantly, and the cementation damage increases by a large amount; thus, the
development of cementation damage can explain to some extent the process of change in
the macroscopic mechanical behavior of the specimen during the test.
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Figure 19. The stress–cementation failure–strain curve of hydrate sediments under dynamic load of
f = 1.0 Hz and A = 0.12 m·s−1.

3.4.2. Effect of Loading Frequency

The simulation results under different frequency loading conditions at an amplitude of
0.12 m·s−1 and an axial strain of 25% are shown in Figure 20. From the displacement cloud
atlas in Figure 20a, it can be seen that when the loading frequency is less than γ (2 Hz < γ < 3 Hz),
with the increase in loading frequency, the displacement of the middle particles within
the model increases, and the distribution of the shear zone becomes less and less obvious.
When the loading frequency is greater than γ, with the increase in loading frequency, the
displacement of the middle particles within the model decreases, and the distribution of
the shear zone becomes more and more obvious. By calculation, it can be obtained that the
average stresses of the specimen are 1.334, 1.319, 1.323, and 1.344 MPa when f is 1, 2, 3, and
4 Hz, respectively. The lateral pressure and constraint provided by the wall on the particles
are all the same under the same circumferential pressure, so with the axial stress getting
smaller, the distribution of the shear zone is also becoming less and less obvious. On the
contrary, the distribution of the shear zone is becoming more and more obvious. As shown
in the Figure 20c microcrack expansion diagram, the less obvious the shear zone is, the less
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the number of cracks near the shear zone of the corresponding specimen. At the same time,
in Figure 21, the curves of cementation damage–time step curves show the same trend for
each loading frequency condition, and the number of cementation damage with time step
for loading frequency conditions with similar average axial stresses has approximately
the same law. The smaller the average axial stress is, the smaller the rate of cementation
damage is. It can be seen that the damage to the cementation of specimens is closely related
to the average axial stress to which they are subjected. As shown in the contact force chain
cloud atlas in Figure 20b, when the loading frequency is less than β (2 Hz < β < 3 Hz), the
color of the contact force chain between the particles in the shear zone becomes lighter,
and the contact force decreases significantly with the increase in the loading frequency;
when the loading frequency is greater than β, the contact force chain between the particles
near the shear zone becomes more obvious, and the contact force increases significantly
with the increase in the loading frequency. In the displacement cloud atlas, the greater the
displacement of the particles, the more obvious the contact force chain, i.e., the greater the
frictional resistance caused by particle dislocation, and on the contrary, the contact force
chain is obviously reduced.
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3.4.3. Effect of Loading Amplitude

The simulation results for different amplitude loading conditions at a frequency of
1 Hz and an axial strain of 25% are shown in Figure 22. The average stresses in the
specimens were calculated to be 1.334, 1.387, and 1.394 MPa for loading amplitudes of
0.12, 0.15, and 0.18 m·s−1, respectively. Combined with the displacement cloud in Figure 22a
and the microcrack extension in Figure 22c, it can be seen that the average axial stress
on the specimen increases with the increase in the loading amplitude. At this time, the
displacement of the middle particles within the model decreases, the number of cracks
increases, and the distribution of shear zones becomes more and more obvious. The reason
is the same as the mechanism described in the previous section, so the larger the loading
amplitude, the greater the axial stress, and the more obvious the distribution of the shear
zone. As seen from the cementation damage–time step curve in Figure 23, with the increase
in loading amplitude, both the number of cementation damage of the specimen and the
damage rate increase. From the contact force chain atlas in Figure 22b, it can be seen that
the contact force chain near the shear zone increases significantly with the increase in the
loading amplitude, and the contact force chain between the particles is more obvious and
increases significantly. Corresponding to the displacement cloud atlas, the greater the
displacement of the particles, the more obvious the contact force chain, which means the
greater the frictional resistance caused by the misalignment of the particles.
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properties of hydrate sediments under dynamic loading, revealing the effects of loading
frequency and loading amplitude. The following main conclusions were obtained.

(1) The effect of loading frequency on the stiffness of hydrate sediment is small, but
the effect on the peak strength is large and not monotonic. There is a critical value. When it
is less than this value, the peak strength increases with the increase in loading rate, and
when it is greater than this value, the peak strength decreases to a certain extent.

(2) The effect of loading amplitude on the peak strength and stiffness of hydrate
sediments is monotonic. As the loading amplitude increases, the strength of the hydrate
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(3) The loading frequency and amplitude have a large effect on the maximum shear
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the specimens because of the phase change point and particle rearrangement.
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(5) The effect of loading frequency and amplitude on the contact force chain, displace-
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