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Abstract: Ubiquinone (UQ) is considered one of the important biologically active molecules in the
human body. Ubiquinone determination in human plasma is important for the investigation of
its bioavailability, and also its plasma level is considered an indicator of many illnesses. We have
previously developed sensitive and selective chemiluminescence (CL) method for the determination
of UQ in human plasma based on its redox cycle with dithiothreitol (DTT) and luminol. However, this
method requires an additional pump to deliver DTT as a post-column reagent and has the problems
of high DTT consumption and broadening of the UQ peak due to online mixing with DTT. Herein,
an HPLC (high-performance liquid chromatography) system equipped with two types of online
reduction systems (electrolytic flow cell or platinum catalyst-packed reduction column) that play the
role of DTT was constructed to reduce reagent consumption and simplify the system. The newly
proposed two methods were carefully optimized and validated, and the analytical performance for
UQ determination was compared with that of the conventional DTT method. Among the tested
systems, the electrolytic reduction system showed ten times higher sensitivity than the DTT method,
with a limit of detection of 3.1 nM. In addition, it showed a better chromatographic performance and
the best peak shape with a number of theoretical plates exceeding 6500. Consequently, it was applied
to the determination of UQ in healthy human plasma, and it showed good recovery (≥97.9%) and
reliable precision (≤6.8%) without any interference from plasma components.

Keywords: ubiquinone; redox cycle; electrolytic reduction; reduction column; human
plasma; chemiluminescence

1. Introduction

Ubiquinone (UQ, CoQ10) is a fat-soluble molecule that is a component of the mitochon-
drial electron transfer system. UQ is mainly found in the inner mitochondrial membrane of
cells and plays a role in stimulating the biosynthesis of ATP by activating the electron transfer
system through the redox cycle [1]. UQ exists in both oxidized (ubiquinone) and reduced
(ubiquinol) forms, and the reduced form mainly exhibits antioxidative activities. It has been
reported that most of the UQ in blood and tissues exists in the reduced form [2–6]. Reduced
UQ binds to lipoproteins and circulates in the body, protecting it from various oxidative stresses
such as lipid peroxidation of biomembrane and DNA damage [7,8]. In addition, the amount of
UQ in the body decreases with age [9], and also it has been found that the plasma concentration
of UQ is significantly decreased in patients with hyperthyroidism [10], melanoma [11], and
mevalonic aciduria [12] compared to healthy subjects. It is also known that the ratio of reduced
UQ/oxidized UQ is decreased in diabetic patients compared with healthy controls [13]. These
changes are considered to be from the decrease in the biosynthesis of UQ and the conversion
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efficiency to reduced UQ. Since UQ has a wide range of physiological roles and is also useful
as a biomarker for understanding human health conditions [14], it would be useful to measure
the concentration of UQ in biological samples.

Several methods have been developed to measure UQ, including absorption spec-
trophotometry [15], microplate-based colorimetric assay [14], photoelectrochemical as-
say [16], nuclear magnetic resonance spectroscopy (1H-NMR) [17], high-performance liquid
chromatography-absorption spectrophotometry (HPLC-UV) [18], HPLC-electrochemical
detection (ECD) [2,3,19] and tandem mass spectrometry (MS/MS) [6]. However, in general,
1H-NMR is not sufficiently sensitive, and absorption spectrophotometry and HPLC-UV are
not sufficiently selective in addition to their poor sensitivity. Additionally, the microplate-
based colorimetric assay and photoelectrochemical assay suffered from their low selectivity
and their non-applicability to analysis of complex matrices such as plasma. The HPLC-ECD
method is commonly used for the determination of UQ due to its high sensitivity and
selectivity, but it requires a special device called a multi-electrode ECD because UQ needs
to be reduced by chemical or electrochemical methods immediately before the measure-
ment. The LC-MS/MS method is highly sensitive and selective but has the disadvantage
of requiring complicated, expensive equipment and matrix effects [20]. Fluorimetric (FL)
and HPLC-FL methods are usually a good choice for the analysis of xenobiotics [21,22]
due to their simplicity, selectivity, and high sensitivity; however, UQ has very low native
fluorescence and only in its reduced form [23].

In order to overcome these disadvantages, we previously developed sensitive and
selective chemiluminescence (CL) method for the determination of various quinones,
including UQ, using the redox cycle of quinones [24–28]. Quinone is reduced to unstable
semiquinone radicals by reacting with reducing agents such as dithiothreitol (DTT), which
react with dissolved oxygen to produce reactive oxygen species (ROS) in the process of
re-oxidation. The reaction of these reactive oxygen species with luminol, a CL reagent,
yields a CL proportional to the concentration of quinone (Figure 1a). We have established
an HPLC-CL method based on this CL reaction system for the determination of UQ
contained in plasma samples. While this HPLC-CL method is capable of highly sensitive
and selective determination of UQ, it requires an additional pump to deliver DTT as a
post-column reagent and has the problems of high DTT consumption and broadening of
the UQ peak due to mixing with DTT. In the present study, an HPLC system equipped
with two types of online reduction systems (electrolytic flow cell or platinum catalyst-
packed reduction column) that play the role of DTT (Figure 1b) was constructed to reduce
reagent consumption and simplify the system, and the analytical performance for UQ was
compared. Furthermore, the electrolytic reduction system, which showed better sensitivity,
was applied for the determination of UQ in human plasma.
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obtained by injecting 1.0 μM (5.0 pmol/injection) of UQ standard solution into the HPLC 

system shown in Figure 2, and the chromatogram is shown in Figure 3. The peak of UQ 

was detected at the retention time of 28.1 min in the case of electrolytic reduction. On the 

other hand, no UQ peak was detected in the absence of electrolytic reduction. Therefore, 

it is considered that UQ is converted to the semiquinone radical by electrolytic reduction 

and that CL is generated by the reaction of reactive oxygen species generated in the 

process of re-oxidation to UQ with luminol mixed online. 

Figure 1. The CL (chemiluminescence) platforms for quinone determination, where (a) the mecha-
nism of CL reaction for quinone based on the generation of superoxide anion radical through their
redox cycle with DTT (dithiothreitol), and (b) HPLC−CL (high-performance liquid chromatogra-
phy chemiluminescence) system of the proposed methods, including the classical chemical-based
reduction using DTT and its replacement with the online electrolytic reduction and reduction column.

2. Result and Discussion
2.1. Electrolytic Reduction in Ubiquinone

The chromatogram of UQ in the HPLC-electrolytic reduction-CL system was obtained
by injecting 1.0 µM (5.0 pmol/injection) of UQ standard solution into the HPLC system
shown in Figure 2, and the chromatogram is shown in Figure 3. The peak of UQ was
detected at the retention time of 28.1 min in the case of electrolytic reduction. On the other
hand, no UQ peak was detected in the absence of electrolytic reduction. Therefore, it is
considered that UQ is converted to the semiquinone radical by electrolytic reduction and
that CL is generated by the reaction of reactive oxygen species generated in the process of
re-oxidation to UQ with luminol mixed online.
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Figure 3. Chromatograms of 1.0 µM UQ standard obtained (a) with electrolytic reduction and
(b) without electrolytic reduction by HPLC-CL detection.

In order to obtain higher sensitivity, electrolytic reduction and CL conditions were
optimized using the standard solution of UQ. According to Wang et al., the commonly
used supporting electrolytes for the reduction in quinones are either tetrabutylammonium
(TBA)+, Li+, or H+-based electrolytes. Li+-based electrolytes are the best as it results in
intermediate redox potential, while TBA+ and H+ result in extremely low and high redox
potential, respectively. In addition, bulky TBA+, as the cycling ion, makes the stabilization
of quinone-reduced stat not possible, and the reduction potential was largely decreased. In
addition, in H+-based electrolytes, the interaction between the charges is largely affected
by the stabilization of the counterion, resulting in a disproportionation of the semiquinone
radical intermediate state. From all this, LiClO4 is the electrolyte of choice for the electrore-
duction in quinone. Therefore, it was used in our developed method [29]. For efficient
electrolytic reduction, the concentration of the supporting electrolyte is important to in-
crease the electrical conductivity. In the proposed method, the concentration of lithium
perchlorate (LiClO4) was added to the mobile phase as a supporting electrolyte and was
examined in the range of 10.0–100.0 mM (Figure 4a). Both peak height and S/N ratio in-
creased with increasing LiClO4 concentration, and the maximum and constant peak height
and S/N ratio were obtained between 50.0–80.0 mM. Therefore, 60.0 mM was selected
as the optimum condition because it gave the largest S/N ratio. The applied voltage for
electrolytic reduction was investigated in the range from −300 to 900 mV. As shown in
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Figure 4b, both peak height and S/N ratio were maximum at −700 mV. Therefore, −700 mV
was selected as the optimum applied voltage. From the literature, increasing tempera-
ture leads to a decrease in the electrochemical reduction efficiency [30], and the optimum
temperature for the electroreduction in UQ was reported to be room temperature [31].
Hence, the experiment was conducted at room temperature. The luminol concentration
was examined in the range of 0.5–4.0 mM. The peak height increased as the luminol con-
centration increased, and the maximum peak height was obtained at 3.0 mM or higher.
Therefore, 3.0 mM was selected as the optimum luminol concentration, which gave the
highest S/N ratio (Figure 4c). The concentration of sodium hydroxide (NaOH) used as the
solvent of luminol was investigated in the range of 50–350 mM. As shown in Figure 4d,
both the peak height and S/N ratio were maximum at 300 mM. Therefore, the optimum
concentration of NaOH was set to 300 mM. The flow rate of the luminol solution was
examined in the range of 0.15–0.50 mL/min. As shown in Figure 4e, the peak height was
almost the highest at a flow rate of 0.40 mL/min or higher, while the S/N ratio was the
highest at 0.45 mL/min. Based on these results, the optimum flow rate of the luminol
solution was set to 0.45 mL/min, taking the reagent consumption into consideration.
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Figure 4. The effects of different factors affecting the online electrolytic reduction—luminol CL
system for UQ, including (a) LiClO4 concentration, (b) applied voltage, (c) luminol concentration,
(d) luminol solvent (NaOHaq. concentration), and (e) luminol flow rate, on relative chemilumines-
cence intensity (RCI) and signal to noise (S/N) ratio. The arrows indicate S/N ratio maximum.
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Under the optimum conditions, calibration curves were constructed using the standard
solutions of UQ. UQ gave a good linear relationship between concentration and peak height
in the range of 0.010–10 µM with a correlation coefficient r = 0.995, and the corresponding
regression equation was as follows: Y = 7.00 × 104 X + 8.14 × 103, where Y = peak
height (µV) and X = concentration of ubiquinone (µM). When the concentration of UQ
that gives a peak height three times higher than the noise (S/N = 3) is defined as the
lower limit of detection, the value is 3.13 nM (15.7 fmol/injection). The precision of
repeated measurements (n = 5) within a day and between days was calculated using
the concentrations at three points within the calibration curve, and the relative standard
deviation (RSD) of the precision within a day was ≤3.4%, and that between days was
≤3.5%, which indicates the good precision of the developed method (Table 1).

Table 1. The results of the reproducibility study of the HPLC-CL with electrolytic reduction.

UQ (µM)
Precision (RSD, %)

Intra-Day (n = 5) Inter-Day (n = 5)

0.10 2.8 2.5
1.0 3.4 3.1
8.0 3.2 3.5

2.2. Catalytic Reduction in Ubiquinone by Reduction Column

The chromatogram of UQ in the HPLC-reduction column-CL system was obtained
by injecting 1.0 µM (5.0 pmol/injection) of UQ standard solution into the HPLC system
shown in Figure 5, and the chromatogram is shown in Figure 6.

Molecules 2023, 28, 96 6 of 13 
 

 

Under the optimum conditions, calibration curves were constructed using the 

standard solutions of UQ. UQ gave a good linear relationship between concentration and 

peak height in the range of 0.010–10 μM with a correlation coefficient r = 0.995, and the 

corresponding regression equation was as follows: Y = 7.00 × 104 X + 8.14 × 103, where Y = 

peak height (μV) and X = concentration of ubiquinone (μM). When the concentration of 

UQ that gives a peak height three times higher than the noise (S/N = 3) is defined as the 

lower limit of detection, the value is 3.13 nM (15.7 fmol/injection). The precision of 

repeated measurements (n = 5) within a day and between days was calculated using the 

concentrations at three points within the calibration curve, and the relative standard 

deviation (RSD) of the precision within a day was ≤3.4%, and that between days was 

≤3.5%, which indicates the good precision of the developed method (Table 1). 

Table 1. The results of the reproducibility study of the HPLC-CL with electrolytic reduction. 

UQ (μM) 
Precision (RSD, %) 

Intra-Day (n = 5) Inter-Day (n = 5) 

0.10 2.8 2.5 

1.0 3.4 3.1 

8.0 3.2 3.5 

2.2. Catalytic Reduction in Ubiquinone by Reduction Column 

The chromatogram of UQ in the HPLC-reduction column-CL system was obtained 

by injecting 1.0 μM (5.0 pmol/injection) of UQ standard solution into the HPLC system 

shown in Figure 5, and the chromatogram is shown in Figure 6.  

 

Figure 5. HPLC-CL system employing the reduction column. 

  

Figure 5. HPLC-CL system employing the reduction column.

Molecules 2023, 28, 96 4 of 13 
 

 

 

Figure 2. HPLC−CL system employing the electrolytic reduction. 

 

Figure 3. Chromatograms of 1.0 μM UQ standard obtained (a) with electrolytic reduction and (b) 

without electrolytic reduction by HPLC-CL detection. 

In order to obtain higher sensitivity, electrolytic reduction and CL conditions were 

optimized using the standard solution of UQ. According to Wang et al., the commonly 

used supporting electrolytes for the reduction in quinones are either tetrabutylammonium 

(TBA)+, Li+, or H+-based electrolytes. Li+-based electrolytes are the best as it results in in-

termediate redox potential, while TBA+ and H+ result in extremely low and high redox 

potential, respectively. In addition, bulky TBA+, as the cycling ion, makes the stabilization 

of quinone-reduced stat not possible, and the reduction potential was largely decreased. 

In addition, in H+-based electrolytes, the interaction between the charges is largely af-

fected by the stabilization of the counterion, resulting in a disproportionation of the sem-

iquinone radical intermediate state. From all this, LiClO4 is the electrolyte of choice for the 

electroreduction in quinone. Therefore, it was used in our developed method [29]. For 

efficient electrolytic reduction, the concentration of the supporting electrolyte is important 

to increase the electrical conductivity. In the proposed method, the concentration of lith-

ium perchlorate (LiClO4) was added to the mobile phase as a supporting electrolyte and 

was examined in the range of 10.0–100.0 mM (Figure 4a). Both peak height and S/N ratio 

increased with increasing LiClO4 concentration, and the maximum and constant peak 

height and S/N ratio were obtained between 50.0–80.0 mM. Therefore, 60.0 mM was se-

lected as the optimum condition because it gave the largest S/N ratio. The applied voltage 

for electrolytic reduction was investigated in the range from −300 to 900 mV. As shown in 

Figure 4b, both peak height and S/N ratio were maximum at −700 mV. Therefore, −700 mV 

Figure 6. Chromatograms of 1.0 µM UQ standard obtained (a) with reduction column and (b) without
reduction column by HPLC-CL detection.



Molecules 2023, 28, 96 7 of 13

The peak of UQ, which was not detected when the reduction column was not con-
nected, was detected at the retention time of 25.8 min when the reduction column was
added online. Therefore, it is considered that UQ is reduced to semiquinone radicals during
the passage through the reduction column, resulting in CL.

CL reaction conditions were optimized using the standard solution of UQ. The con-
centration of luminol was examined in the range of 0.5–4.0 mM. As shown in Figure 7a, the
peak height reached its maximum at 3.5 mM, while the S/N ratio reached its maximum at
3.0 mM. Based on these results, the optimum luminol concentration was determined to be
3.0 mM. The concentration of NaOH solution was examined in the range of 25–300 mM.
As shown in Figure 7b, the peak height reached a maximum at 300 mM, while the S/N
ratio reached a maximum at 200 mM. Based on these results, the optimum concentration of
NaOH was determined to be 200 mM. The flow rate of the luminol solution was investi-
gated in the range of 0.15–0.50 mL/min. As shown in Figure 7c, both peak height and S/N
ratio tended to increase with increasing flow rate. However, the optimum flow rate of the
luminol solution was set to 0.50 mL/min because the consumption of reagents increases at
higher flow rates.
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Under the optimum conditions, calibration curves were constructed using the standard
solutions of UQ. UQ gave a good linear relationship between concentration and peak height
in the range of 0.015–10 µM with a correlation coefficient r = 0.997, and the corresponding
regression equation was as follows: Y = 4.93 × 104 X − 2.59 × 103, where Y = peak height
(µV) and X = concentration of ubiquinone (µM). The lower limit of detection was found to
be 4.53 nM (22.7 fmol/injection). The precision of repeated measurements (n = 5) within a
day and between days was ≤2.9% and ≤4.4%, respectively (Table 2), which indicates the
acceptable precision of the proposed method
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Table 2. The results of the reproducibility study of the HPLC-CL with reduction column.

UQ (µM)
Precision (RSD, %)

Intra-Day (n = 5) Inter-Day (n = 5)

0.10 2.8 4.4
1.0 2.9 3.1
8.0 2.9 1.9

2.3. Comparison of the Reduction Modes on the CL of Ubiquinone

Table 3 compares the performance of the electrolytic reduction method and the re-
duction column method with that of the conventional DTT method [25]. Compared to
the conventional DTT method, the detection sensitivity of UQ was 10 times higher for the
electrolytic reduction method and 6.7 times higher for the reduction column method. This
is probably due to the known higher efficiency of column-based and electrochemical-based
reduction than chemical reduction [32,33], and also, reducing agents such as dithiothreitol
are usually not highly stable. Additionally, the number of pumps required for the DTT
method is three, while that for the electrolytic reduction and reduction column methods is
two, thus improving the disadvantages of reagent consumption and the need for additional
equipment. Comparing the theoretical number of plates, the theoretical number of plates
of the two reduction methods examined in this study was larger than that of the DTT
method, suggesting that the problem of diffusion of peak fractions due to mixing and
dilution with the reductant solution was overcome. In comparison between the electrolytic
reduction method and the reduction column method, the electrolytic reduction method can
control the reduction power by changing the voltage applied to the compound, while the
reduction column method does not require a supporting electrolyte. From these results, it
was demonstrated that the proposed electrolytic and column reduction methods showed
better analytical performance than the conventional DTT method. In addition, it was
demonstrated that the electrolytic reduction method showed the best sensitivity. Therefore,
it was applied in the next experiments for the determination of UQ in human plasma.

Table 3. The comparison between the proposed methods and the previous DTT method.

Electrolytic Reduction Reduction Column DTT Method [25]

* LOD (µM) 0.0031 0.0045 0.030
** N 6618 3975 2405

Pump 2 pumps 2 pumps 3 pumps
* Limit of detection. ** Number of theoretical plates.

2.4. Application and Validation of the Proposed Electrolytic Reduction-CL Method for
Determination of UQ in Human Serum

The HPLC-CL system based on the electrolytic reduction method for UQ was used
for the determination of UQ in human plasma. The HPLC-CL system enables selective
determination of UQ in human plasma without the influence of foreign substances co-
existing in the plasma. Plasma samples were extracted with hexane as described in the
experimental section and then determined by the proposed method. A calibration curve
was constructed using human plasma samples supplemented with UQ, and a good lin-
ear relationship between concentration and peak height was obtained in the range of
0.010–2.0 µM, with a detection sensitivity of 3.37 nM (16.9 fmol/injection). The calibration
regression equation was as follows: Y = 3.05 × 104 X − 1.56 × 103, where Y = peak height
(µV) and X = concentration of UQ (µM). Figure 8 shows the chromatograms of human
plasma pretreated according to the procedure in the experimental section. As shown in
Figure 8, UQ in non-spiked human plasma could be selectively detected with a retention
time of 28.1 min without the influence of coexisting components. The concentration of UQ
in the human plasma of five healthy volunteers was determined by the proposed method
and was found to be as follows: 0.29, 0.33, 0.36, 0.62, and 0.44 µM, with an average value of
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0.41 ± 0.12 µM, which is almost equivalent to the quantitative value determined by the
DTT method [25] and previous literature values [2,3,6,18]. The recovery rate of UQ from
human plasma was more than 97.9%, and the accuracy of repeated measurements was
good (≤6.8%), as shown in Table 4, indicating that this method is useful and reliable for the
determination of UQ in biological samples.
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Table 4. The recovery and precision of UQ determination in spiked human plasma employing the
proposed electrolytic reduction method.

UQ (µM) Recovery (%) Precision (RSD, %)

0.10 111 4.0
0.50 97.9 6.8
2.0 108 4.3

The sensitivity of the developed electrolytic reduction-CL method for UQ determina-
tion was compared with those of the UQ quantification methods reported so far (Table 5).
The sensitivity of the electrolytic reduction-CL method was more than 60 times higher than
that of the absorption spectrophotometry [15] and more than 2000 times higher than that of
1H-NMR [17]. When the sensitivity per injection volume was compared with that of the
HPLC-UV [18], HPLC-ECD [2,3,19], HPLC-DTT-CL [25], and LC-MS/MS [6] methods, all
of them were 2.5–21 times higher than that of the sensitivity the developed method. These
data demonstrate the superiority of the analytical performance of the developed method
over all other reported methods in the literature.
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Table 5. The comparison of the sensitivity of the proposed methods with the previously reported
methods in the literature.

Method * LOD (nM) LOD (pmol/
Injection) Application Ref.

Spectrophotometry 286 — Pharmaceutics/plasma [15]
1H-NMR 9030 — Food supplements [17]

HPLC-UV 20 0.040 Human plasma [18]
HPLC-ECD 5.8 0.11 Human plasma [2]
HPLC-ECD 2.5 0.050 Human plasma [3]

HPLC-ECD 17 0.34 Mouse tissues
(liver, heart, muscle, brain) [19]

LC-MS/MS 6.4 0.30 Human serum [6]
HPLC-DTT-CL 30 0.16 [25]

HPLC-Electrolytic
reduction-CL 3.1 0.016 Human plasma This method

* Limit of detection.

3. Experimental
3.1. Material and Reagents

UQ, luminol, and NaOH were sourced from Sigma (St. Louis, MO, USA), Merck
(Tokyo, Japan), and Kanto Chemical (Tokyo, Japan). DTT, ethanol, and methanol were
purchased from Nacalai Tesque (Kyoto, Japan). A Simpli Lab UV (Millipore, Bedford, MA,
USA) water device was used to supply purified water. Other chemicals were of extra pure
grade. Ethanolic Stock solutions of UQ were prepared and further diluted with ethanol to
prepare the working solutions. Solutions of DTT and luminol were prepared in methanol
and NaOH aqueous solutions, respectively, just before analysis.

3.2. HPLC System with Electrolytic Reduction

The HPLC system (Figure 2) was comprised of two pumps (LC-10AS, Shimadzu,
Kyoto, Japan), an injector (Rheodyne 7125, Cotati, CA, USA) with a 5-µL sample loop, a
chemiluminescence detector (CLD-10A, Shimadzu, Kyoto, Japan), a noise filter (UNI-1,
Union, Gunma, Japan), and a chromatorecorder (SIC, Tokyo, Japan). A Cosmosil 5C8-MS
(150 × 4.6 mm, i.d., 5 µm, Nacalai Tesque, Kyoto, Japan) and 60.0 mM LiClO4 in methanol
were used as stationary and mobile phase, respectively. UQ eluted from the column was
introduced into the electrolytic reduction flow cell PEC-510C (Eicom, Tokyo, Japan) and
reduced by applying a voltage of −700 mV, then mixed with 300 mM NaOH solution of
3.0 mM luminol and introduced into the CL detector. The flow rates of the mobile phase
and luminol solution were set at 0.50 and 0.45 mL/min, respectively.

3.3. HPLC with Reduction Column

The HPLC system (Figure 5) was comprised of two pumps (LC-10AS, Shimadzu,
Kyoto, Japan), an injector (Rheodyne 7125, Cotati, CA, USA) with a 5-µL sample loop, a
chemiluminescence detector (CLD-10A, Shimadzu, Kyoto, Japan), a noise filter (UNI-1,
Union, Gunma, Japan), and a chromatorecorder (SIC, Tokyo, Japan). A Cosmosil 5C8-
MS (150 × 4.6 mm, i.d., 5 µm, Nacalai Tesque, Kyoto, Japan) and methanol were used as
stationary and mobile phases, respectively. UQ eluted from the column was introduced into
a platinum-packed reduction column Daiso RC-10 (15 mm × 4.0 mm, i.d.) for reduction,
mixed with a 200 mM NaOH solution of 3.0 mM luminol, and introduced into a CL detector
for measurement. The flow rates of the mobile phase and luminol solution were set at 0.50
and 0.50 mL/min, respectively.

3.4. Assay Procedure for Ubiquinone in Human Serum

Plasma samples with a volume of 50 µL were mixed with 10 µL 0.3% hydrogen
peroxide (for oxidation of ubiquinol to UQ). Next, 100 µL of ethanol was added (for protein
denaturation) followed by 1 min vortex. To this extraction mixture, n-hexane (600 µL)
was added. Next, the organic layer was separated and then evaporated under reduced
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pressure. Afterward, the residue was reconstituted with 50 µL of methanol and then
injected (5 µL) into the HPLC system. It is important to mention that The Ethics Committee
of the School of Pharmaceutical Sciences, Nagasaki University, has approved the present
study (approval number 22) and that the experiment was performed in accordance with
established guidelines.

4. Conclusions

In this study, we investigated the development of an HPLC-CL quantification system
for UQ based on the principle of inducing the redox cycle of quinone by the electrolytic
reduction method and the reduction column method, which are alternative techniques to
the conventional chemical reduction that uses DTT. After optimizing the reaction condi-
tions for each reduction method, the analytical performance, including sensitivity, was
compared with that of the DTT method. The HPLC-CL system based on the electrolytic
reduction method showed the highest sensitivity and the best peak shape. Thus, it is the
recommended one for the sensitive analysis of UQ. Consequently, it was applied to the
determination of UQ in human plasma, and it showed good recovery and reliable accuracy
and precision.
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