高周期 15 族元素(Sb, Bi)-EDTA キレートの構造ならびに他の 主要族金属-および第一系列遷移金属-EDTA との比較

野口大介*

Structures of heavier pnictogens (Sb, Bi)-EDTA chelates compared with other main-group metals- and first-row transition metals-EDTA

by

Daisuke NOGUCHI*

It is summarized that the crystal structures of ethylenediaminetetraacetic acid (EDTA) chelates of antimony(III) and bismuth(III) of heavier group 15 elements. 22 kinds of Sb-EDTA complexes have mostly coordination number (CN) 6 with hexadentate of denticity; 47 kinds of Bi-EDTA complexes have CN ranging from 6 to 9, most have CN 8, and all the denticity of Bi-EDTA complexes is hexadentate. In appendix, calcium- and barium-EDTA anions coordinated by water molecules with CN 8, other main group metals (Li, Na, Mg, Al, K, Ca, Ga, Ge, Rb, Sr, In, Sn, Ba, Tl, Pb)-EDTA, and first-row transition metals-EDTA all in the crystalline states are also overviewed, following up on the previous report.

Key words: Antimony, Bismuth, Coordinate bond, Crystallography, Denticity, Group 15 elements.

1. はじめに

代表的なキレート試薬であるエチレンジアミン四酢酸(EDTA)から4つの水素イオンが脱離したEDTA アニオンは多くの金属イオンと六座配位子として配位数6で1:1型の錯イオンを形成することが、キレート 滴定法などの分析化学実験などで学ばれている(図1).

筆者は EDTA と主要族金属(main-group metals)と のキレート錯体の結晶構造解析データをケンブリッジ 結晶学データセンター(CCDC)から蒐集し、アルカ リ金属-EDTA 錯体ではリチウム-EDTA が1つ, ナトリ ウム-EDTA が6つ、カリウム-EDTA が3つ、ルビジウ ム-EDTA が1つ(野口 2022a) [3], アルカリ土類金属 -EDTA 土類錯体ではマグネシウム-EDTA が4つ,カル シウム-EDTA が3つ,ストロンチウム-EDTA が3つ, バリウム-EDTAが2つ(野口 2022b)[4](後に, Ca-EDTA と Ba-EDTA ではそれぞれ異なる結晶構造解析の報告 がさらにもう1つずつあることを確認したため、付録 にて後述する)、土類金属-EDTA 錯体ではアルミニウ ム-EDTA が7つ, ガリウム-EDTA が15種類, インジ ウム-EDTA が6つ, タリウム-EDTA が2つ(野口 2022c) [5], 高周期 14 族半金属元素-EDTA 錯体ではゲルマニ ウム-EDTA が 3 つ, スズ-EDTA が 9 つ, 鉛-EDTA が 21 種類(野口 2023a) あることを,これまでに報告し た. その結果, 主要族元素の金属-EDTA 錯体に関し,

令和4年12月19日受理(Accepted 19 December 2022)

^{*}長崎大学大学院工学研究科教育研究支援部(Div. Educ. Res. Supp., Grad. Sch. Engrg., Nagasaki University, Japan)

配位数6で,EDTAアニオンの配位座数が六座である もののほかに,配位数が6でなかったり,カルボキシ 基の一部が非配位であったりして配位座数が六座より も小さい錯体も存在していることが明らかとなった.

そこで,同じく主要族元素である高周期 15 族元素の アンチモンおよびビスマス-EDTA の結晶構造データ を CCDC から集めてまとめた結果を,本稿で引き続き 報告する.

2. 結果と考察

表1にアンチモン(III)イオンに EDTA アニオンがキ レート配位した 22 種類の Sb-EDTA 錯体について,化 学式,配位数,配位座数を示す.*を付した2つは同じ 組成であるが,配位数・配位座数が異なるものとして 報告されている.Sb-EDTA 錯体に関しては,既知のほ とんどの錯イオンで配位数は6で,EDTA アニオンは 六座配位していることがわかる.

なお, Shen et al. (2007) [55]は,総説『Synthesis and stereochemistry of antimony(III) complexes アンチモン (III)錯体の合成と立体化学的性質』のなかで,結晶構造解析が報告されている種々のアンチモン(III)錯体を取り上げている.しかし,Sb-EDTA 錯体はわずか1つにとどまっている.他の論文もいくつか参照したものの,Sb-EDTA 錯体の結晶構造を網羅した文献は管見の

限りでは見当たらなかったことを申し添えておきたい. 表2にはビスマス(III)イオンに EDTA アニオンがキ レート配位した 47 種類の Bi-EDTA 錯体について,化 学式,配位数,配位座数を示す.Bi-EDTA 錯体の結晶 構造からは,配位数8のものが多く,配位数6,7およ び9のものもいくつか知られていること,そして EDTA アニオンの配位座数は全て六座であることがわかる.

Bi-EDTA 錯体に関しては, Stavila et al. (2006) [56] が, 総説『Bismuth(III) complexes with aminopolycarboxylate and polyaminopolycarboxylate ligands: Chemistry and structure アミノポリカルボン酸およびポリア ミノポリカルボン酸配位子を有するビスマス(III)錯体. 化学と構造』にて詳細に扱っているほか、先行研究を 参照しながら Bi-EDTA 錯体の結晶構造を議論した論 文もある. それらによれば, CCDC に結晶構造データ が登録されていなかったりデータが結晶構造ビュワー ソフトで正しく開けなかったりするものがある. 例え ば、 (NH₂)₂C=NH₂[Bi(EDTA-4H)(H₂O)]と(NH₂)₂C=N- $H_2[Bi(EDTA-4H)] \cdot 2H_2O(Shchelokov et al. 1987)[57]$, CuBi(EDTA-4H)]2·9H2O (Sobanska et al. 1996) [58]であ る. また, NaBi(EDTA-4H)]·3H₂O (Shchelokov et al. 1991 [59]) は CCDC にデータがなく, Jaud et al. (1997) [27] は、同じ組成の[NaBi(EDTA-4H)(H₂O)₃]nの結晶構造の 報告を[59]を引用することなく後になって行っている.

化学式	配位数	配位	文献	化学式	配位数	配位	文献
[Sb(EDTA-3H)]·2H ₂ O*	6	<u></u> 全	[7]	K[Sb(EDTA-4H)]·H2O	6	<u></u> 6	[13]
(NH ₂) ₂ C=NH ₂ [Sb(EDTA- 4H)]·2H ₂ O	6	6	[8]	Mn[Sb(EDTA-4H)]2·7H2O	6	6	[13]
Na[Sb(EDTA-4H)]·3H ₂ O	6	6	[9]	Cd[Sb(EDTA-4H)]2·8H2O	6	6	[13]
Li[Sb(EDTA-4H)]·H ₂ O	6	6	[10]	NH3CH2CH2COOH[Sb- (EDTA-4H)]2	6	6	[13]
[CaSb ₂ (EDTA-4H) ₂ (H ₂ O) ₈] _n	6	6	[11]	Ca[Sb(EDTA-4H)]2·8H2O	6	6	[14]
(NH ₂) ₂ C=NHNH ₂ [Sb- (EDTA-4H)]·H ₂ O	6	6	[12]	[Pr(H2O)₅][Sb(EDTA- 4H)]2NO3·4H2O	6	6	[15]
Cs[Sb(EDTA-4H)]·H ₂ O	6	6	[13]	[Sb ₂ -µ4-(EDTA-4H) ₂ Co- (H ₂ O) ₂]·5.15H ₂ O	6	6	[16]
(CH ₃) ₄ N[Sb(EDTA- 4H)]·2H ₂ O	6	6	[13]	[Sb ₂ (EDTA-4H) ₂ Ho- (H ₂ O) ₄]NO ₃ · 3.6H ₂ O	6	6	[17]
(CH2NH3)2[Sb(EDTA- 4H)]2·6H2O	6	6	[13]	[Sb ₂ (EDTA-4H) ₂ Sm- (H ₂ O) ₄]NO ₃ · 3.55H ₂ O	6	6	[18]
NH4[Sb(EDTA-4H)]·H2O	6	6	[13]	[Sb(EDTA-3H)]·2H ₂ O*	5	5	[19]
Tl[Sb(EDTA-4H)]	6	6	[13]	[Sb ₂ (EDTA-4H) ₂ Er- (H ₂ O) ₄]NO ₃ ·4H ₂ O	6	6	[20]

化学式	配位数	配位 座数	文献	化学式	配位 数	配位 座数	文献
[Bi(EDTA-3H)]	8	6	[21]	Cs[Bi(EDTA-4H)]·H ₂ O	8	6	[40]
NH4[Bi(EDTA-4H)]·H2O	8	6	[21]	Cs[Bi ₂ (EDTA-4H)(EDTA-3H)]·3H ₂ O	8	6	[41]
[Bi(EDTA-3H){(NH ₂) ₂ CS} ₂]	8	6	[22]	Rb[Bi(EDTA-4H)((NH ₂) ₂ CS) ₂]	8	6	[42]
[Ca(H ₂ O) ₇][Bi(EDTA- 4H)] ₂ ·2H ₂ O	6	6	[23]	Cs[Bi(EDTA-4H){(NH ₂) ₂ - CS} ₂]·3H ₂ O	8	6	[42]
β-[Bi(EDTA-3H)]·2H ₂ O	8	6	[24,25]	Rb[Bi(EDTA-4H)]·3H ₂ O	8	6	[43]
$[Co(H_2O)_6][Bi_2(EDTA-4H)_2]\cdot 3H_2O$	8	6	[26]	[Co(ON=(C(CH ₃)) ₂ =NOH) ₂ -	0		5443
[Ni(H ₂ O) ₆][Bi ₂ (EDTA- 4H) ₂]·3H ₂ O	8	6	[26]	(<i>o</i> -NH ₂ C ₆ H ₄ CH ₃) ₂] ₂ [B ₁₂ - (μ-EDTA-4H) ₂ (H ₂ O) ₂]·10H ₂ O	8	6	[44]
[NaBi(EDTA-4H)(H2O)3]n	8	6	[27]	(NH ₂) ₂ C=NHNH ₂ [Bi(EDTA- 4H){(NH ₂) ₂ CS} ₂]·2.5H ₂ O	8	6	[45]
α-[Bi(EDTA-3H)]·2H ₂ O	8	6	[28]	(NH ₂) ₂ C=NHNH ₂ [Bi(EDTA- 4H)(H ₂ O)(NH ₂) ₂ CS)]·2H ₂ O	8	6	[45]
(NH2)2C=NH2[Bi(EDTA-4H)]	8	6	[29]	NH4[Bi2(EDTA-3H)(EDTA-4H)]·2H2O	8	6	[46]
(NH ₂) ₂ C=NHNH ₂ [Bi(ED- TA-4H)]	8	6	[29]	[Co(NH ₃) ₅ NCS][Bi(EDT- A-4H)] ₂ .4H ₂ O	7	6	[47]
[Co(NH ₃) ₄ C ₂ O ₄]- [Bi(EDTA-4H)]·3H ₂ O	8	6	[30,31]	<i>trans</i> -[Co(NH ₃) ₄ (NO ₂) ₂]- [Bi(EDTA-4H)(H ₂ O)]·2H ₂ O	8	6	[47]
[Co(NH3)2(OOC(CH2)2NH2)2]- [Bi(EDTA-4H)(H2O)]·5H2O	8	6	[30]	[Co(NH ₃) ₄ (CO ₃)][Bi(EDT- A-4H)]·3H ₂ O	8	6	[47]
(NH ₂) ₂ C=NH ₂ [Bi(EDTA- 4H)(H ₂ O)]	8	6	[30]	{NdBi(EDTA-4H)(NO ₃) ₂ - (H ₂ O) _{7.22} }	9	6	[48]
Ba{[Bi(EDTA-4H)] ₂ H ₂ O} ·H ₂ O	7	6	[14]	[Co(ON=C(CH ₂) ₄ C=NO- H) ₂ (C ₆ H ₅ NH ₂) ₂] ₂ [Bi(EDT- A-4H)(H ₂ O)] ₂ ·7H ₂ O	8	6	[49]
[Co(NH ₃) ₅ NCS] ₂ [Bi ₂ (ED- TA-4H) ₂ (C ₂ O ₄)]·12H ₂ O	8	6	[32]	[Co(ON=C(CH ₂) ₄ C=NO- H) ₂ (<i>p</i> -CH ₃ C ₆ H ₅ NH ₂) ₂] ₂ - [Bi(EDTA-4H)]·4H ₂ O	8	6	[49]
NH ₃ CH ₂ CH ₂ COOH[Bi(E- DTA-4H)·H ₂ O]	8	6	[33]	[Pr(NO ₃)(H ₂ O) ₃][Bi(ED- TA-3H)(NO ₃) ₂]·2H ₂ O	7	6	[50]
(CH ₂ NH ₃) ₂ [Bi(EDTA- 4H)(H ₂ O)] ₂ ·4H ₂ O	8	6	[34]	[Sm(H ₂ O) ₅][Bi(EDTA- 4H)(NO ₃) ₂]·H ₂ O	9	6	[51]
K[Bi(EDTA-4H){(NH ₂) ₂ CS} ₂]	8	6	[35]	[Zn(H2O)6][Bi(EDTA-4H)]2·2H2O	8	6	[52]
Li(H ₂ O) ₄ [Bi(EDTA-4H)- ((NH ₂) ₂ CS) ₂ (H ₂ O) ₂] ₂ ·5.5H ₂ O	8	6	[36]	[{VO(H ₂ O) ₃ } ₂ {Bi(EDTA- 4H)} ₄]·17H ₂ O	8	6	[53]
((NH ₂) ₂ C=NHNH ₂) ₂ [Bi- (EDTA-4H)Cl]	8	6	[37]	[{VO(2,2'-bpy)(H ₂ O)} ₂ - {Bi(EDTA-4H)} ₄]·30H ₂ O	8	6	[53]
H ₃ NNH(H ₂ N)CS[Bi- (EDTA-4H)(H ₂ O)]	7	6	[38]	[Na{Bi(EDTA-3H)·2- H2O}3(PW12O40)]·2H3O	8	6	[54]
Li[Bi(EDTA-4H)]·4H2O	7	6	[39]	$[Na{Bi(EDTA-3H)\cdot 2H_2O}_3-(PMo_{12}O_{40})]\cdot 2H_3O\cdot 2H_2O$	8	6	[54]

表2Bi-EDTA 錯体の化学式,配位数,配位座数

おそらく Jaud et al. (1997) [27]は, Shchelokov et al. (1991) による報告[59]を見落とし,自分たちの成果 を誤って新規であると思い込んで報告してしまったの かもしれない. なお,この2つの論文[27,59]は, Stavila et al. (2006)の総説[56]では,同列に扱われている.

3. まとめ

ケンブリッジ結晶学データセンター (CCDC) に登録されているデータの検索に基づき,エチレンジアミン四酢酸 (EDTA) 錯体の結晶構造解析を報告した文献を調査した.本報告では,主要族金属のうち,高周期15族元素におけるアンチモン(III)イオンおよびビスマス(III)イオンの EDTA キレートの結晶構造をまとめた.Sb-EDTA (22種類) ではほとんどが配位数6で配位座数は六座,Bi-EDTA (47種類) では配位数は6から9まであり,多くは8で,配位座数は全て六座であることが明らかとなった.

付録

以前,アルカリ土類金属-EDTA 錯体の既報の結晶構 造より金属イオンの配位数と EDTA アニオンの配位座 数をまとめた(野口 2022b)[4]. このなかで、キレー ト滴定法においてよく扱われる Ca-EDTA キレート錯 体の Ca²⁺の配位数が8 であることを示す2 つの結晶構 造解析(Barnett et al. 1979; Arriortua et al. 1992)[60,61] を紹介した. これら2つの錯体 [Ca2(EDTA-4H)]·7H2O および[SrCa(EDTA-4H)]・5H₂Oでは、隣接する EDTA ア ニオンのカルボキシレート基の酸素原子が Ca²⁺に配位 していることから,水溶液中で取っていると思われる 構造と完全に同一であるとは考えにくかった. そこで その後も引き続き文献調査を継続したところ, Ca²⁺に EDTA アニオンおよび2つの水分子が配位した配位数 8 $\mathcal{O}[Ni(Phen)_3][Ca(EDTA-4H)(H_2O)_2] \cdot 10.5H_2O$ (Phen \exists 1,10-フェナントロリン)の結晶構造解析を報告した論 文 (Antsyshkina et al. 2002) [62]が見つかった. さらに それに引き続く論文で, Ba-EDTA 錯体の結晶構造を報 告したもの(Sadikov et al. 2002) [63]も確認した(表 S1).図 S1 に[Ca(EDTA-4H)(H₂O)₂]²部分の構造を示す.

表 S1 Ca および Ba-EDTA 錯体の配位数と配位座数

化学式	配位 数	配位 座数	文献
[Ni(Phen)3][Ca(EDTA- 4H)(H2O)2]·10.5H2O	8	6	[62]
[Ni(Phen)3][Ba(EDTA- 4H)(H2O)2]·12H2O	8	6	[63]

図 S1 [Ni(Phen)3][Ca-(EDTA-4H)(H2O)2]-・10.5H2O結晶におけ る[Ca(EDTA-4H)(H2-O)2]²⁻部分の構造.熱 楕円体は 50% (Antsyshkina et al. 2002) [62].

以上,結晶構造解析データが CCDC に登録されてい る主要族元素の金属-EDTA 錯体における配位数と配 位座数の件数を各金属イオンについてまとめておく (表 S2,3)(野口 2022a-c, 2023a)[3-6].ここで,配位 子の EDTA は 4 つの水素イオンがすべて解離した 4 価 のアニオン(EDTA-4H)のほか,水素イオンが一部解 離した 3 価のアニオン(EDTA-3H)や 2 価のアニオン (EDTA-2H)も含んでいる.なお,同一化合物中に EDTA アニオンに対して異なる配位数を有する金属イ オンが複数ある場合,別の配位数としてカウントした ため,配位数と配位座数の合計数は異なっている.

表 S2 主要族元素の金属-EDTA 錯体における配位数

			配位数	(CN)			⊒1.
	4	5	6	7	8	9	帀
Li	1	1					2
Na			3	2			5
Κ			1	2	1		4
Rb					1	1	2
Mg			1	2			3
Ca			1	1	3		5
Sr					1	2	3
Ba					1	2	3
Al			6				6
Ga			14				14
In				6			6
Tl				2			2
Ge			3				3
Sn		1	1	6			8
Pb		1	19	1	2		23
Sb		1	21				22
Bi			1	5	37	2	45
計	1	4	71	26	48	8	156
%	0.6	2.6	45.5	17.3	29.5	4.5	100

表 S3 主要族元素の金属-EDTA 錯体における配位座

数

	配位座数(κ)						計
<u> </u>	苓	– 単	<u> </u>	<u> </u>	血.	ハ	
Li				1			1
Na		1	1			2	4
Κ				2		1	3
Rb			1				1
Mg	1				1	2	4
Ca		1				3	4
Sr			2			1	3
Ba				1		2	3
Al					1	5	6
Ga					5	9	14
In						6	6
Tl						2	2
Ge					3		3
Sn					1	7	8
Pb					1	21	22
Sb					1	21	22
Bi		Ċ	÷	÷		45	45
計	1	2	4	4	13	127	151

配位数 6 および配位座数が六座である典型的な EDTA-錯体の割合が最も高いものの、中心金属イオン の種類や EDTA 配位子の解離性水素イオンの残存数な どによっては、幅広い配位数や配位座数を取っている ものもある.一方, EDTA のカルボキシ基-COOH がカ ルボキシレート基-COO-にならずカルボキシ基のまま でありながら、カルボニル酸素で金属に配位している ケースもある. ここまでに取り上げた典型元素の金属 -EDTA 錯体は合計で 150 種類であり、そのうち配位数 6 かつ配位座数が六座の, EDTA アニオン (EDTA-4H) を含む単核錯体は、合わせて 30 種類(20%) である. 内訳はAl-EDTAがK[Al(EDTA-4H)]・2H2Oなど4種類, Ga-EDTA が K[Ga(EDTA-4H)]·2H₂O など 9 種類, Sn-EDTA が Sn[Sn(EDTA-4H)(H₂O)]·H₂O の 1 種類, Sb-EDTA が Na[Sb(EDTA-4H)]・3H₂O など 15 種類, Bi-EDTA が[Ca(H2O)7][Bi(EDTA-4H)]2·2H2Oの1種類で ある. ただし、14 族および 15 族の金属イオンは非共 有電子対をもつため,典型的な6配位八面体形とは異 なることが多いことも考え合わせれば、配位数 6・六 座配位かつ八面体形の EDTA 錯体は更に限定的である.

加えて,遷移金属-EDTA キレートについても既報の 結晶構造データに基づき配位数と配位座数を調査して おり,第一系列遷移金属-EDTA 錯体における配位数と 配位座数の件数を各金属イオンについて表 S4 に示す (野口 2023b,c) [64,65].

なお,ここでの主要族元素の金属-EDTA キレートの
書誌情報は、 <u>https://note.com/dnoguchi/n/n5daa5c3d23b3</u>
で,同じく遷移金属-EDTA キレートの書誌情報は,
<u>https://note.com/dnoguchi/n/nbf6198147ed1</u> で公開した.

表 S4 第一系列遷移金属-EDTA 錯体における配位数 と配位座数

		配位	数(CN	1)	酉	已位座数	(κ)
	5	6	7	8	匹	五	六
Sc				1			1
Ti			6				6
V		5	5		4	3	3
Cr		3				1	2
Mn		1	7				8
Fe		5	18			4	19
Co		31	4		3	14	18
Ni		13				5	8
Cu	6	16				9	7(6)
Zn	1	5	1		1	2	4
計	7	79	41	1	8	38	76(6)
%	5.5	61.7	32.0	0.8	6.3	29.7	59.4

引用文献

- [1] 高木誠(編), ベーシック分析化学, 2006, 化学同人, 260 pp.
- [2] 村上雅彦, キレート滴定法―各種金属イオンへの適応のための基礎・条件・応用―, 化学と教育, 2015, Vol. 63, No. 5, pp. 246–251.
- [3] 野口大介, アルカリ金属-EDTA 錯体の配位数と配位 座数の多様性, 長崎大学大学院工学研究科研究報告, 2022a, Vol. 52, No. 99, pp. 22–29.
- [4] 野ロ大介,マグネシウムおよびカルシウムなどのア ルカリ土類金属-EDTA 錯体の配位数と配位座数,日 本科学教育学会研究会報告,2022b, Vol. 36, No. 6, pp. 59-64.
- [5] 野口大介,一部にユニークな結晶構造を有するアル ミニウムをはじめとする土類金属-EDTA 錯体(概 論),長崎大学大学院工学研究科研究報告,2022c, Vol. 52, No. 99, pp. 30–37.
- [6] 野口大介,高周期 14 族半金属元素-EDTA の結晶構 造一単核錯体から配位高分子まで一, Jxiv, Preprint, 2023a.

- M. Shimoi, Y. Orita, T. Uehiro, I. Kita, T. Iwamoto, A. Ouchi, Y. Yoshino, The structure of (hydrogen ethylene-diaminetetraacetato)antimony(III) dihydrate Sb(C₁₀H₁₃-N₂O₈)·2H₂O, *Bull. Chem. Soc. Jpn.*, 1980, Vol. 53, No. 11, pp. 3189–3194.
- [8] V. E. Mistryukov, A. V. Sergeev, Yu. N. Mikhailov, R. N. Shchelokov, Synthesis and crystal structure of (CN₃H₆)-[Sb(Edta)]·2H₂O, *Koord. Khim.*, 1987, Vol. 13, pp. 1129–1131.
- Z. Xie, S. Hu, Crystal structure of sodium ethylenediaminetetra-acetatoantimony(III) trihydrate Na[Sb(edta)].
 3H₂O, *Chin. J. Struct. Chem.*, 1991, Vol. 10, No. 2, pp. 129–131.
- B. Marrot, C. Brouca-Cabarrecq, A. Mosset, LiSb(ed-ta)(H₂O): A convenient precursor to LiSbS₂ and LiSbO₃, *J. Mater. Chem.*, 1996, Vol. 6, No. 5, pp. 789–793.
- [11] B. Marrot, C. Brouca-Cabarrecq, A. Mosset, [CaSb₂(ED-TA)₂(H₂O)₈]_n: Synthesis, crystal structure, and thermal behavior, *J. Chem. Crystallogr.*, 1998, Vol. 28, No. 6, pp. 447–452.
- [12] H. Fun, S. S. S. Raj, I. A. Razak, A. B. Ilyukhin, R. L. Davidovich, J. Huang, S. Hu, S. W. Ng, Aminoguanidinium (ethylenediamine-*N*,*N*,*N*,*N*'-tetraacetato)antimonate(III) monohydrate, *Acta Crystallogr. Sect. C*, 1999, Vol. 55, No. 6, pp. 905–907.
- [13] A. B. Ilyukhin, R. L. Davidovich, Effect of a cation on stereochemical activity of lone electron pair in structures of ethylenediaminetetraacetatoantimonates(III), Cat[Sb-(Edta)]·xH₂O [Cat⁺ = Cs, NMe₄, 1/2(H₂En), NH₄, Tl, K, 1/2Mn, 1/2Cd, or NH₃CH₂CH₂COOH], *Crystallogr. Rep.*, 1999, Vol. 44, No. 2, pp. 204–213.
- [14] A. B. Ilyukhin, A. L. Poznyak, Stereochemical activity of a lone electron pair in antimony(III) and bismuth(III) chelates: Crystal structures of Ca[Sb(Edta)]₂·8H₂O and Ba{[Bi(Edta)]₂H₂O}·H₂O, *Crystallogr. Rep.*, 2000, Vol. 45, No. 1, pp. 56–63.
- [15] J. Shen, Q. Jiang, G Zhong, Y. Jia, K. Yu, Synthesis, crystal structure and thermal decomposition of a novel 3D heterometallic Sb(III)-Pr(III) complex [Sb₂-µ₄-(EDT-A)₂Pr(H₂O)₅]NO₃·4H₂O, *Acta Chim. Sin.*, 2007, Vol. 65, No. 16, pp. 1588–1592.
- [16] G. Q. Zhong, J. Shen, Q. Y. Jiang, M. J. Chen, Z. P. Zhang, Synthesis, characterization and thermal decomposition of Sb^{III}–M–Sb^{III} type trinuclear complexes of ethylenediamine-*N*,*N*,*N*',*N*'-tetraacetate (M:Co(II), La(III), Nd(III), Dy(III)), *J. Therm. Anal. Calorim.*, 2008, Vol.

92, No. 2, pp. 607–616.

- [17] J. Shen, B. Jin, Q. Jiang, G. Zhong, Y. Hu, J. Huo, Synthesis, characterization, and magnetic properties of heterometallic trinuclear complex with Sb(III) and Ho(III), *Inorg. Chim. Acta*, 2012, Vol. 385, pp. 158–163.
- [18] J. Shen, B. Jin, Q. Jiang, G. Zhong, Y. Hu, J. Huo, Edta-linked 5p–4f trinuclear heterometallic complex: Syntheses, X-ray structure and luminescent properties, *J. Coord. Chem.*, 2012, Vol. 65, No. 17, pp. 3040–3049.
- [19] D. Li, G. Zhong, Synthesis and crystal structure of the bioinorganic complex [Sb(Hedta)]·2H₂O, *Bioinorg. Chem. Appl.*, 2014, p. 461605.
- [20] T. Liu, R. Yang, G Zhong, Synthesis, structural characterization, and antibacterial activity of novel erbium(III) complex containing antimony, *Bioinorg. Chem. Appl.*, 2018, p. 4313197.
- [21] L. M. Shkol'nikova, K. D. Suyarov, R. L. Davidovich, V. S. Fundamenskii, N. M. Dyatlova, Structure of bismuth(III) octacoordination comlexonates with ethylenediamine-*N*,*N*,*N*',*N*'-tetraacetic acid, *Koord. Khim.*, 1991, Vol. 17, No. 2, pp. 253–261.
- [22] L. M. Shkol'nikova, M. A. Porai-Koshits, R. L. Davidovich, G. G. Sadikov, Crystal and molecular structure of (ethylenediamine-*N*,*N*,*N*['],*N*[']-tetraacetato)(dithiourea)bismuth(III), *Koord. Khim.*, 1993, Vol. 19, No. 8, p. 731–735.
- [23] L. M. Shkol'nikova, M. A. Porai-Koshits, A. L. Poznyak, Crystal and molecular structures of heptaaquacalcium di[(ethylenediaminetetraacetato) bismuthate (1-)] dihydrate, [Ca(H₂O)₇][BiEDTA]₂·2H₂O, *Koord. Khim.*, 1993, Vol. 19, No. 9, pp. 634–640.
- [24] L. M. Shkol'nikova, M. A. Porai-Koshits, R. L. Davidovich, C. Hu, D. Ksi, Crystal structure of the monoclinic modification of ethylenediamine-*N*,*N*,*N'*,*N'*-tetraacetate(3-) bismuth(III) dihydrate, *Koord. Khim.*, 1994, Vol. 20, No. 8, p. 559–562.
- [25] S. P. Summers, K. A. Abboud, S. R. Farrah, G. J. Palenik, Syntheses and structures of bismuth(III) complexes with nitrilotriacetic acid, ethylenediaminetetraacetic acid, and diethylenetriaminepentaacetic acid, *Inorg. Chem.*, 1994, Vol. 33, No. 1, pp. 88–92.
- [26] M. A. Porai-Koshits, A. S. Antsyshkina, L. M. Shkol'nikova, G. G. Sadikov, R. L. Davidovich, Crystal and molecular structure of hexaaquacobalt(II) and hexaaquanickel(II) bis[(μ-ethylenediaminetetraacetate)bismuth(1-)] trihydrates of composition [M(H₂O)₆][Bi(μ-Edta)]₂·3H₂O,

Koord. Khim., 1995, Vol. 21, No. 4, pp. 295-302.

- [27] J. Jaud, B. Marrot, C. Brouca-Cabarrecq, A. Mosset, [NaBi(EDTA)(H₂O)₃]_n: Synthesis, crystal structure, and thermal behavior, *J. Chem. Crystallogr.*, 1997, Vol. 27, No. 2, pp. 109–117.
- [28] R. L. Davidovich, A. B. Ilyukhin, S. Hu, Crystal structure of the orthorhombic modification of [Bi(HEdta)]·2H₂O, *Crystallogr. Rep.*, 1998, Vol. 43, No. 4, pp. 605– 607.
- [29] A. B. Ilyukhin, R. L. Davidovich, V. B. Logvinova, H. Fun, S. S. S. Raj, I. A. Razak, S. Hu, S. W. Ng, Complexes of bismuth(III) with aminopolycarboxylic acids. Crystal structures of guanidinium aqua(ethylenediamine-tetraacetato)bismuthate(III) and aminoguanidinium ethylenediaminetetraacetatobismuthate(III), *Main Group Metal Chemistry*, 1999, Vol. 22, No. 5, pp. 275–282.
- [30] A. S. Antsyshkina, G. G. Sadikov, A. L. Poznyak, V. S. Sergienko, Yu. N. Mikhailov, Crystal structures of [Co(NH₃)₄(Ox)][Bi(Edta)]·3H₂O, [Co(NH₃)₂(Ala)₂]
 [Bi(Edta)(H₂O)]·5H₂O, and (CN₃H₆)[Bi(Edta)(H₂O)]: Some aspects of crystal chemistry of bismuth ethylenediaminetetraacetates, *Russ. J. Inorg. Chem.*, 1999, Vol. 44, No. 5, pp. 668–683.
- [31] A. L. Poznyak, A. B. Ilyukhin, Crystal structure of [Co-(Ox)(NH₃)₄][Bi(Edta)]·3H₂O, *Crystallogr. Rep.*, 2000, Vol. 45, No. 1, pp. 44–45.
- [32] V. Stavila, M. Gdanec, S. Shova, Yu. A. Simonov, A. Gulya, J.-P. Vignacourt, Synthesis and structure of {μ-oxalato-bis[ethylenediaminetetraacetatobismuthato(III)]} pentaamminethiocyanatocobalt(III) dodecahydrate, [Co-(NH₃)₅NCS]₂[(Edta)Bi(μ-C₂O₄)Bi(Edta)]·12H₂O, *Russ. J. Inorg. Chem.*, 2000, Vol. 26, No.10, pp. 741–747.
- [33] R. L. Davidovich, V. B. Logvinova, A. B. Ilyukhin, Synthesis and crystal structure of β-alaninium ethylenediaminetetraacetatobismuthate(III) monohydrate, *Russ. J. Inorg. Chem.*, 2000, Vol. 45, No. 12, pp. 1822–1826.
- [34] R. L. Davidovich, V. B. Logvinova, A. B. Ilyukhin, Ethylenediammonium ethylenediaminetetraacetatobismuthate(III) hexahydrate: Synthesis and crystal structure, *Russ. J. Inorg. Chem.*, 2001, Vol. 46, No. 1, pp. 65–68.
- [35] R. L. Davidovich, A. V. Gerasimenko, E. V. Kovaleva, Crystal structure of potassium ethylenediaminetetraacetato bis(thiourea) bismutate(III), *Russ. J. Inorg. Chem.*, 2001, Vol. 46, No. 4, pp. 546–551.
- [36] R. L. Davidovich, A. V. Gerasimenko, V. B. Logvinova, Crystal structure of lithium di(thiourea)ethylenediamine-

tetraacetatobismuthate(III) hydrate LiBi(Edta)(Tu)₂·5.5-H₂O, *Russ. J. Inorg. Chem.*, 2001, Vol. 46, No. 8, pp. 1164–1171.

- [37] R. L. Davidovich, A. V. Gerasimenko, V. B. Logvinova, S. Hu, Synthesis and crystal structure of aminoguanidinium chloro(ethylenediaminetetraacetato)bismuthate (III), *Russ. J. Inorg. Chem.*, 2001, Vol. 46, No. 8, pp. 1172–1177.
- [38] R. L. Davidovich, A. V. Gerasimenko, V. B. Logvinova, Discrete complex anion [Bi(Edta)(H₂O)]⁻ of seven-coordinate bismuth: Synthesis and crystal structure of thiosemicarbazidium ethylenediaminetetraacetatobismuthate-(III) monohydrate, *Russ. J. Inorg. Chem.*, 2001, Vol. 46, No. 7, pp. 967–972.
- [39] R. L. Davidovich, A. V. Gerasimenko, V. B. Logvinova, Synthesis and crystal structure of lithium ethylenediaminetetraacetatobismuthate(III) tetrahydrate, *Russ. J. In*org. Chem., 2001, Vol. 46, No. 9, pp. 1333–1338.
- [40] R. L. Davidovich, A. V. Gerasimenko, V. B. Logvinova, Synthesis and the crystal structure of cesium ethylenediaminetetraacetobismuthate(III) monohydrate, *Russ. J. Inorg. Chem.*, 2001, Vol. 46, No. 10, pp. 1518–1523.
- [41] R. L. Davidovich, A. V. Gerasimenko, V. B. Logvinova, Synthesis and crystal structure of monoprotonated cesium di(ethylenediaminetetraacetato)dibismuthate(III) trihydrate, *Russ. J. Inorg. Chem.*, 2001, Vol. 46, No. 12, pp. 1802–1806.
- [42] R. L. Davidovich, A. V. Gerasimenko, V. B. Logvinova, Crystal structures of rubidium and cesium di (thiourea) ethylenediaminetetraacetatobismuthates(III), *Russ. J. In*org. Chem., 2002, Vol. 47, No. 7, pp. 971–977.
- [43] R. L. Davidovich, A. V. Gerasimenko, V. B. Logvinova, Synthesis and crystal structure of rubidium ethylenediaminetetraacetatobismuthate(III) trihydrate, *Russ. J. Inorg. Chem.*, 2002, Vol. 47, No. 8, pp. 1152–1157.
- [44] V. Stavila, A. Gulya, S. Shova, M. Gdanec, Yu. A. Simonov, Synthesis and study of heterometallic Co–Bi compounds based on ethylenediaminetetraacetic acid. Crystal and molecular structures of [Co(DH)₂(*o*-NH₂-C₆H₄CH₃)₂]₂[Bi₂(μ-Edta)₂(H₂O)₂]·10H₂O (DH₂ is dimethylglyoxime), *Russ. J. Coord. Chem.*, 2002, Vol. 28, No. 8, pp. 565–572.
- [45] R. L. Davidovich, A. V. Gerasimenko, V. B. Logvinova, Synthesis and crystal structure of aminoguanidinium (thiourea)ethylenediaminetetraacetatobismuthates(III) (CH₇N₄)[Bi(Edta)(Tu)₂]·2.5H₂O and (CH₇N₄)[Bi(Ed-

ta)(Tu)(H₂O)]·2H₂O, *Russ. J. Inorg. Chem.*, 2003, Vol. 48, No. 1, pp. 55–61.

- [46] R. L. Davidovich, A. V. Gerasimenko, V. B. Logvinova, The crystal structure of ammonium hydrogenbis(ethylenediaminetetraacetato) dibismuthate(III) dihydrate, *Russ. J. Inorg. Chem.*, 2003, Vol. 48, No. 2, pp. 180–184.
- [47] V. Stavila, J. Wignacourt, E. M. Holt, P. Conflant, M. Drache, A. Gulea, Synthesis and structure of some Co(III)–Bi(III) heterometallic complexes: [Co(NH₃)₅NC-S][Bi(EDTA)]₂·4H₂O, *trans*-[Co(NH₃)₄(NO₂)₂][Bi(EDT-A)(H₂O)]·2H₂O, and [Co(NH₃)₄(CO₃)][Bi(EDTA)]·3H₂-O, *Inorg. Chim. Acta*, 2003, Vol. 353, pp. 43–50.
- [48] V. Stavila, A. Gulea, N. Popa, S. Shova, A. Merbach, Y. A. Simonov, J. Lipkowski, A novel 3D Nd(III)–Bi(III) coordination polymer generated from EDTA ligand, *Inorg. Chem. Commun.*, 2004, Vol. 7, No. 5, pp. 634–637.
- [49] V. Stavila, A. Gulea, S. Shova, Y. A. Simonov, A. Yurii, P. Petrenko, J. Lipkowski, F. Riblet, L. Helm, An unexpected influence of the nature of the amine on the crystal structure of some Co(III)–Bi(III) heterobimetallic complexes, *Inorg. Chim. Acta*, 2004, Vol. 357, No. 7, pp. 2060–2068.
- [50] Q. Jiang, H. Deng, G. Zhong, P. He, N. Hu, Synthesis, crystal structure and thermal stability of 3D heterometallic Bi(III)-Pr(III) polymer complex, *Chem. J. Chin. Univ.*, 2008, Vol. 29, No. 12, pp. 2521–2524.
- [51] Q. Jiang, H. Deng, P. He, G. Zhong, K. Yu, Sm(III)-Bi(III) heterometallic complexes with aminopolycarboxylate ligand: Structure, thermal stability and spectral property, *Chin. J. Chem.*, 2011, Vol. 29, No. 12, pp. 2637–2642.
- [52] H. Deng, Q. Jiang, J. Xu, Y. Hu, Synthesis, structure and thermal analysis of Zn(II)-Bi(III) heterometallic complex with ethylenediaminetetraacetate, *Adv. Mater. Res.*, 2012, Vols. 554-556, pp. 536–540.
- [53] I. Bulimestru, S. Shova, N. Popa, P. Roussel, F. Capet, R.-N. Vannier, N. Djelal, L. Burylo, J.-P. Wignacourt, A. Gulea, K. H. Whitmire, Aminopolycarboxylate bismuth(III)-based heterometallic compounds as singlesource molecular precursors for Bi4V₂O₁₁ and Bi₂Cu-O₄ mixed oxides, *Chem. Mater.*, 2014, Vol. 26, No. 21, pp. 6092–6103.
- [54] C. Teng, H. Xiao, Q. Cai, J. Tang, T. Cai, Q. Deng, Two multifunctional organic-inorganic hybrid complexes based on polyoxometalates, BiEDTA and sodium linker: Crystal structures, photochromic, and catalytic perfor-

mances, J. Coord. Chem., 2016, Vol. 69, No.14, pp. 2148–2163.

- [55] J. Shen, Q. Jiang, G. Zhong, Synthesis and stereo chemistry of antimony(III) complexes, *Prog. Chem.*, 2007, Vol. 19 No. 1, pp. 107–116.
- [56] V. Stavila, R. L. Davidovich, A. Gulea, K. H. Whitmire, Bismuth(III) complexes with aminopolycarboxylate and polyaminopolycarboxylate ligands: Chemistry and structure, *Coord. Chem. Rev.*, 2006, Vol. 250, pp. 2782–2810.
- [57] R. N. Shchelokov, Yu. N. Mikhailov, V. E. Mistryukov, A. V. Sergeev, Ethylenediaminetetraacetatoantimonites and aquaethylenediaminetetraacetatobismuthites: Synthesis and structure, *Dokl. Chem.*, 1987, Vol. 293, pp. 162–164.
- [58] S. Sobanska, J.-P. Wignacourt, P. Conflant, M. Drache, I. Bulimestru, A. Gulea, A new CuBi₂O₄ precursor: Synthesis, crystal structure and thermal behaviour of Cu(Bi-EDTA)₂, 9H₂O, *Eur. J. Solid State Inorg. Chem.*, 1996, Vol. 33, No. 8, pp. 701–712.
- [59] Z. A. Starikova, T. F. Sysoeva, S. S. Makarevich, S. D. Ershova, Crystal and molecular structure of sodium ethylenediamine-*N*,*N*,*N*',*N*'-tetraacetatobismuth trihydrate, *Koord. Khim.*, 1991, Vol. 17, No. 3, pp. 317–321.
- [60] B. L. Barnett, V. A. Uchtman, Structural investigations of calcium-binding molecules. 4. Calcium binding to aminocarboxylates. Crystal structures of Ca(CaEDTA)·7H₂O and Na(CaNTA), *Inorg. Chem.*, 1979, Vol. 18, No. 10, pp. 2674–2678.
- [61] M. I. Arriortua, M. Insausti, M. K. Urtiaga, J. Vía, T. Rojo, Synthesis and structure determination of SrCa(edta).5H₂O, *Acta Crystallogr. Sect. C*, 1992, Vol. 48, No. 5, pp. 779–782.
- [62] A. S. Antsyshkina, G G Sadikov, A. L. Poznyak, V. S. Sergienko, Crystal structure of the tris(1,10-Phenanthroline)nickel diaqua(ethylenediaminetetraacetato)calciate crystal hydrate [Ni(Phen)₃][Ca(Edta)(H₂O)₂]·10.5H₂O, *Russ. J. Inorg. Chem.*, 2002, Vol. 47, No. 1, pp. 39–48.
- [63] G. G. Sadikov, A. S. Antsyshkina, V. S. Sergienko, A. L. Poznyak, Crystal structure of the tris(1,10-phenanthroline)nickel diaqua(ethylenediaminetetraacetato)bariate crystal hydrate [Ni(Phen)₃][Ba(Edta)(H₂O)₂]·12H₂O, *Russ. J. Inorg. Chem.*, 2002, Vol. 47, No. 1, pp. 49–59.
- [64] 野口大介,後期第一系列遷移金属-EDTA キレートの 比較構造解析, *Jxiv*, Preprint, 2023b.
- [65] 野口大介,前期第一・第二・第三系列主遷移金属
 -EDTA キレートの構造比較:六座・6 配位は主要化
 学種か?, Jxiv, Preprint, 2023c.