1 Synthesis and structure-activity relationship study of aldose reductase inhibiting marine

2 alkaloid lukianol A and its derivatives

4 Fumito Ishibashi ${ }^{1,3^{*}}$, Shijiao Zha 4, Taiyo Kondo ${ }^{3}$, Mayu Sakamoto ${ }^{3}$, Mikinori Ueno ${ }^{1,3}$, 5 Tsutomu Fukuda ${ }^{2}$
$7{ }^{1}$ Graduate School of Fisheries and Environmental Sciences, ${ }^{2}$ Environmental Protection
8 Center, ${ }^{3}$ Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki, Japan
$9{ }^{4}$ School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China

Corresponding author:
13 Fumito Ishibashi
14 Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14
15 Bunkyo-Machi, Nagasaki 852-8521. JAPAN
16 fumito@nagasaki-u.ac.jp

Lukianol A (1a) and its six derivatives $\mathbf{1 b} \mathbf{- 1 g}$, in which each hydroxyl groups of $\mathbf{1 a}$ was individually modified, were synthesized via the common intermediate $7 \mathbf{a}$, which was obtained by condensation of the styryl carbazate $\mathbf{1 0}$ with p-hydroxyphenylpyruvic acid and subsequent [3,3]-sigmatropic rearrangement. The synthesized lukianol derivatives were evaluated for their ability to inhibit human aldose reductase. $4^{\prime}-O$-methyl (1b) and 4'-dehydroxy ($\mathbf{1 g}$) derivatives showed the same level of inhibitory activity as $\mathbf{1 a}\left(\mathrm{IC}_{50} 2.2\right.$ $\mu \mathrm{M})$, indicating that the $4^{\prime}-\mathrm{OH}$ is irrelevant for the activity. In contrast, methylation of the hydroxyl group at the $4^{\prime \prime \prime}$-position (1d) resulted in loss of activity at a concentration of $10 \mu \mathrm{M}$ and masking the hydroxyl group at the $4^{\prime \prime}$-position ($\mathbf{1 e}$) caused 9 -fold decrease in activity compared with that of $\mathbf{1 b}$, suggesting that the 4 "-OH is an essential group, and the $4^{\prime \prime \prime}-\mathrm{OH}$ is required for higher activity.

Keywords: marine alkaloid, lukianol, aldose reductase inhibitor, total synthesis, SAR

The polyol pathway consists of two enzymes, aldose reductase (ALR2, EC 1.1.1.21) and sorbitol dehydrogenase (SDH). The first enzyme ALR2 catalyzes the NADPH-dependent reduction of glucose to sorbitol, and the second enzyme SDH converts sorbitol to fructose using NAD^{+}as a co-factor. Under normoglycemic conditions, a small portion of glucose enters the polyol pathway because of the low substrate affinity of ALR2 for glucose. Instead, the majority of cellular glucose is converted to glucose 6-phosphate by hexokinase and metabolized through the glycolytic pathway. Under hyperglycemic conditions, especially in cells where glucose uptake is independent of insulin, such as nerves, lens, retina, and kidney, elevated intracellular glucose levels activate ALR2, resulting in the excess production of sorbitol. Since sorbitol has low membrane permeability, it accumulates in tissues, leading to diabetic complications such as neuropathy, nephropathy, and retinopathy (Yabe-Nishimura 1998; Niimi et al 2021). Therefore, many structurally diverse ALR2 inhibitors have been developed as potential drugs to prevent and treat diabetic complication (Kerru et al 2018; Kousaxidis et al 2020; Thakur et al 2021).

Lukianol A (1a) and B (2) are unique marine 3,4-diaryl pyrrole alkaloids isolated from a tunicate collected in the lagoon of a palmyra atoll by Scheuer and coworkers in 1992 (Yoshida et al 1992). Lukianol A was reported to have moderate cytotoxicity against KB cells (MIC $1 \mu \mathrm{~g} / \mathrm{mL}$), whereas lukianol B was virtually inactive (MIC $100 \mu \mathrm{~g} / \mathrm{mL}$). In 2006, Fruente and coworkers found that lukianol B displayed high ALR2 inhibitory activity, with an IC_{50} value of $0.6 \mu \mathrm{M}$, which was six-fold higher than that of the known ALR2 inhibitor sorbinil (Manzanaro et al 2006). Thus, lukianols could be considered promising lead compounds for the development of new types of ALR2 inhibitors; however, to the best of our knowledge, no structure-activity relationship study of lukianols has been reported.

Lukianols have a unique structure and interesting biological activities; therefore, these marine alkaloids have attracted considerable interest from synthetic chemists (Fürstner et al 1995; Banwell et al 1997; Boger et al 1999; Liu et al 2000; Kim et al 2001; Hinze et al 2007; Lu and Arndtsen 2009; Takamura et al 2013; Satyanarayama et al 2020; Morikawa et al 2020). Most syntheses utilize 3,4-diarylpyrrole-2-carboxylate (3) as the key intermediate, since it was used in the first total synthesis of lukianol A and lamellarin O by Fürstner's group. Accordingly, several convenient methods for preparing the Fürstner intermediate have been developed (Gupton et al 1999; Bullington et al 2002; Mathew and Asokan 2005). Recently, Zhou and Ma described a novel synthesis of 3,4,5trisubstituted pyrrole-2-carboxylic acid $\mathbf{6}$ via the coupling reaction of N -protected N alkenylhydrazine $\mathbf{4}$ with α-keto acid 5 and subsequent [3,3]-sigmatropic rearrangement
(Scheme 1) (Zhou et al 2014). Here, we describe a convergent synthesis of lukianol A utilizing this method for the preparation of MOM-protected 3,4-diarylpyrrole-2carboxylate (7a) as an alternative to the Fürstner intermediate. Moreover, to clarify the effect of the individual hydroxyl groups of $\mathbf{1 a}$ on the activity, six derivatives of $\mathbf{1 a}$ in which each hydroxyl group was individually modified were synthesized and evaluated for their ability to inhibit ALR2.

Results and Discussion

Synthesis

The N-styrenyl hydrazine $\mathbf{1 0}$ required for pyrrole synthesis was synthesized by a coppercatalyzed coupling reaction (Zhou et al 2014) between t-butylcarbazate and vinyl bromide 9, which was prepared by the bromodecarboxylation of O-benzyl coumaric acid (8, Ghafary et al 2018) using Oxone ${ }^{\circledR}$ and sodium bromide (You et al 2001). Acetic acidmediated condensation of $\mathbf{1 0}$ with 4-hydroxyphenylpyruvic acid (Billek 1963) following the protocol of Zhou and Ma (Zhou et al 2014) gave 3,4-diarylpyrrole-2-carboxylic acid 11 in 89% yield. After the hydroxyl and carboxylic groups were protected with methoxymethyl groups, pyrrole 7a was alkylated with 4'-methoxyphenacyl bromide. When 1.5 equivalent of cesium carbonate was used as the base in the reaction, alkylated product 12a was obtained in 95% yield, whereas the use of an increased amount of the base (2.0 equivalent) under elevated reaction temperatures directly afforded the cyclized product $\mathbf{1 3}$ in 57% yield. This concomitant transesterification proceeded only for the methoxymethyl ester: use of methyl ester 7b gave non-cyclized product $\mathbf{1 2 b}$ as the sole product (data not shown). Alternatively, enol-lactone $\mathbf{1 3}$ was obtained in 51% yield by a cesium carbonate-catalyzed transesterification reaction of $\mathbf{1 2 a}$. The complete deprotection of the hydroxyl protecting groups of $\mathbf{1 3}$ using boron tribromide afforded lukianol A (1a) in 98\% yield, whereas partial deprotection under a milder condition using boron trifluoride etherate and dimethyl sulfide (Fuji et al 1980) gave 4'-O-methyl lukianol A (1b) in 85% yield. The methylation of $\mathbf{1 b}$ under standard conditions afforded tri- O methyl lukianol A (1c).
$4^{\prime}, 4^{\prime \prime \prime}$-Bis- O-methyl lukianol A (1d) was synthesized via i) demethoxymethylation, ii) methylation, and iii) debenzylation of $\mathbf{1 3}$ (Scheme 3). The deprotection/methylation sequence in the reverse order gave $4^{\prime}, 4^{\prime \prime}$-bis- O-methyl lukianol A (1e). $4^{\prime \prime}, 4^{\prime \prime \prime}$-Bis- O-methyl lukianol A (1f) and 4^{\prime}-dehydroxy lukianol A (1g) were synthesized by the same strategy using 4'-mesyloxyphenacyl bromide and phenacyl bromide, respectively, instead of 4'-methoxyphenacyl bromide (Scheme 4).

Biological activity

The lukianol A derivatives $\mathbf{1 a} \mathbf{- 1 g}$ were evaluated in vitro for their ability to inhibit recombinant human aldose reductase (h-ALR2). The enzyme activity was measured spectrophotometrically by determining the decrease in NADPH concentration at 340 nm . Epalrestat was used as a positive control. The inhibitory activity at $10 \mu \mathrm{M}$ and IC_{50} values of the compounds tested are shown in Table 1. Both the $4^{\prime}-O$-methyl (1b) and 4^{\prime} dehydroxy ($\mathbf{1 g}$) derivatives of $\mathbf{1 a}$ maintained their inhibitory activity at the same level as $\mathbf{1 a}$, indicating that the $4^{\prime}-\mathrm{OH}$ is irrelevant for the activity. In contrast, compounds $\mathbf{1 c}, \mathbf{1 d}$, and $\mathbf{1 f}$, in which the hydroxyl groups at the $4{ }^{\prime \prime \prime}$-position were blocked as methyl ether, were almost inactive at a concentration of $10 \mu \mathrm{M}$, indicating that the $4^{\prime \prime \prime}-\mathrm{OH}$ is necessary for the activity. Masking the hydroxyl group at the $4^{\prime \prime}$-position of $\mathbf{1 b}$ as $\mathbf{1 e}$ caused 9 -fold decrease in activity, suggesting that, although not as significant as the $4^{\prime \prime \prime}-\mathrm{OH}$, the $4^{\prime \prime}-\mathrm{OH}$ is also required for higher activity. Many phenolic compounds of diverse structure having ALR2 inhibitory activity have been isolated from natural source (de la Fuente et al 2003), most of which have two hydroxyphenyl moieties at both sides of the molecules. Among them, lukianols have close structural similarity to the pyrrolo[2,3-c]carbazole-type alkaloids, 22a, 22b, and 23a (Fig. 2), isolated from the dark green sponge Dictyodendrilla sp (Sato et al 1993). These alkaloids strongly inhibited bovine lens ALR2 with IC_{50} values of 49 (22a), 125 (22b), and 112 (23a) nM, respectively. Their chemically desulfated compounds 22c retained the same level of the inhibitory activity ($\mathrm{IC}_{50} 120 \mathrm{nM}$), whereas the acetylated derivatives $\mathbf{2 2 d}$ was substantially inactive $\left(\mathrm{IC}_{50}>10 \mu \mathrm{M}\right)$, indicating the significance of the phenolic hydroxyl group(s) on the activity. Interestingly, sulfate group at 7 -position of $\mathbf{2 3 a}\left(\mathrm{IC}_{50} 112 \mathrm{nM}\right)$, potentiated the activity ($\mathbf{2 3 b}: \mathrm{IC}_{50} 567 \mathrm{nM}$). Thus, increase of the inhibitory activity of lukianols may be expected by introducing a sulfate group at the hydroxyl group at $4 "$ - or 4 "'-position.

Conclusion

In summary, we accomplished the total synthesis of lukianol A in six steps in 33\% overall yield using a pyrrole formation reaction by condensation of the styryl carbazate $\mathbf{1 0}$ and p-hydroxypyruvic acid and subsequent [3,3]-sigmatropic rearrangement as the key reaction. Less cytotoxic lukianol B (1b) could also be synthesized via regioselective iodination of 16 using N-iodosaccharin (Dolenc 2000; Takamura et al 2013). In a SAR study using seven lukianol A analogs, it was shown that the hydroxyl groups at $4^{\prime \prime}$ - and $4^{\prime \prime \prime}$-positions play an important role in the ALR2 inhibitory activity, whereas that at 4^{\prime} position is not involved in the activity.

Experimental

General procedures

NMR spectra were recorded on a Varian System 500PS SN spectrometer (500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$), a JEOL JNM-ECZ400R spectrometer (400 MHz for 1 H and 101 MHz for ${ }^{13} \mathrm{C}$) or a Varian Gemini 300 spectrometer (300 MHz for ${ }^{1} \mathrm{H}$ and 75 MHz for ${ }^{13} \mathrm{C}$) in CDCl_{3} unless otherwise noted. Chemical shifts for ${ }^{1} \mathrm{H}$ NMR were expressed in parts per million (ppm) relative to the following internal standards: CDCl_{3} (tetramethylsilane, $\delta 0.00 \mathrm{ppm}$), acetone- $\mathrm{d}_{6}\left(\right.$ acetone, $\delta 2.04 \mathrm{ppm}$), and DMSO-d ${ }_{6}(\mathrm{DMSO}$, $\delta 2.50 \mathrm{ppm}$). Chemical shifts for ${ }^{13} \mathrm{C}$ NMR are expressed in ppm relative to the following internal standards: $\mathrm{CDCl}_{3}\left(\mathrm{CDCl}_{3}, \delta 77.00 \mathrm{ppm}\right)$, acetone- d_{6} (acetone- $\mathrm{d}_{6}, \delta 29.92 \mathrm{ppm}$), and DMSO-d $_{6}\left(\right.$ DMSO-d $\left._{6}, \delta 39.50 \mathrm{ppm}\right)$. High-resolution mass spectra were recorded on a JEOL JMS-T100TD instrument (direct analysis in real-time (DART) or electron spray ionization (ESI) mode) or a JMS-700N instrument (FAB mode). IR spectra were recorded on a Thermo Nicolet Nexus 670 FT-IR spectrometer. Dry THF, DMF, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were purchased from commercial sources (Kanto Chemical or Wako Pure Chemical Industries).

1-Benzyloxy-4-[(1E)-3-bromoprop-1-en-1-yl]benzene (9)

To a stirred solution of 4-benzyloxycinnamic acid ($4.23 \mathrm{~g}, 16.6 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(170$ $\mathrm{mL})$, were added a solution of $\mathrm{NaBr}(1.80 \mathrm{~g}, 17.5 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(1.76 \mathrm{~g}, 16.6 \mathrm{mmol})$ in water $(110 \mathrm{~mL})$. After 10 min , an aqueous $(110 \mathrm{~mL})$ solution of oxone ${ }^{\circledR}(10.23 \mathrm{~g}, 16.64$ mmol) was added dropwise over 10 min . After 10 min , the reaction was quenched by $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and the $\mathrm{CH}_{3} \mathrm{CN}$ was evaporated. The mixture was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL} \times 2)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The crude product was chromatographed on silica gel eluted with hexane-EtOAc (9:1) to give $9(3.70 \mathrm{~g}, 12.8$ mmol, 77%) as white crystals, mp 91-92 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 5.07(2 \mathrm{H}, \mathrm{s}), 5.37$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}), 5.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}), 6.97(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.37-7.48(7 \mathrm{H}, \mathrm{m})$. ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 70.0,104.1,115.1,127.4,127.4,128.0,128.6,129.0,136.5,136.7$, 158.8. IR (KBr) 521, 533, 696, 735, 784, 834, 935, 956, 1026, 1036, 1192, 1265, 1285, 1514, $1609 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}: \mathrm{C}, 62.30 ; \mathrm{H}, 4.53$. Found: C, 62.22; H, 4.57.

1-(tert-Butoxycarbonyl)-1-[(E)-2-(4-benzyloxyphenyl)ethenyl]hydrazine (10)

A mixture of $9(1.46 \mathrm{~g}, 5.06 \mathrm{mmol})$, tert-butyl carbazate $(0.82 \mathrm{~g}, 6.2 \mathrm{mmol})$, $\mathrm{CuI}(0.19 \mathrm{~g}$, 1.0 mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (spray dried, $0.98 \mathrm{~g}, 7.1 \mathrm{mmol}$) in dry DMSO (15 mL) was stirred
at $80^{\circ} \mathrm{C}$ under Ar for 18 h . The mixture was cooled to room temperature, poured into water, and extracted 3 times with EtOAc. The combined organic layers were filtered through a pad of Celite, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The crude product was purified by silica gel column chromatography eluted with hexane-EtOAc (5:1 to 2:1) to give $\mathbf{1 0}(1.64 \mathrm{~g}, 4.82 \mathrm{mmol}, 95 \%)$ as pale yellow crystals, $\mathrm{mp} 116-117^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d ${ }_{6}$) $\delta 1.48(9 \mathrm{H}, \mathrm{s}), 4.78(2 \mathrm{H}, \mathrm{s}), 5.07(2 \mathrm{H}, \mathrm{s}), 6.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=14.0 \mathrm{~Hz}), 6.93(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.23(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.28-7.48(6 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 28.3,70.0,82.3,109.0,115.1,125.9,126.4,127.4,127.9,128.5,130.1$, 137.1, 153.3, 157.2. IR (KBr) 697, 750, 839, 941, 999, 1013, 1157, 1233, 1250, 1370,

1510, 1662, $1696 \mathrm{~cm}^{-1}$. HRESIMS m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$363.1685,
found 363.1666. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 70.57; H, 7.11; N, 8.23. Found: C, 70.54; H, 6.98; N, 8.10.

4-(4-Benzyloxyphenyl)-3-(4-hydroxyphenyl)-1H-pyrrole-2-carboxylic acid (11)

A solution of $\mathbf{1 0}(1.50 \mathrm{~g}, 4.41 \mathrm{mmol}), 4$-hydroxyphenylpyruvic acid (Billek 1963) (0.79 $\mathrm{g}, 4.4 \mathrm{mmol}), \mathrm{AcOH}(1.26 \mathrm{~mL})$ in $\mathrm{EtOH}(35 \mathrm{~mL})$ was heated at reflux for 4 h . The mixture was concentrated and the solid was recrystallized from 50% aqueous EtOH (40 mL) to give $11(0.97 \mathrm{~g}, 2.5 \mathrm{mmol}, 57 \%)$ as white crystals, $\mathrm{mp} 212-214{ }^{\circ} \mathrm{C}$. The mother liquid was concentrated and chromatographed on silica gel eluted with hexane-EtOAc (2:3 to $0: 1)$ to give another crop of $\mathbf{1 1}(0.55 \mathrm{~g}, 1.4 \mathrm{mmol}, 32 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 5.01(2 \mathrm{H}, \mathrm{s}), 6.66(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 6.81(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 6.95(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz})$, $6.97(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.7 \mathrm{~Hz}), 7.28-7.42(5 \mathrm{H}, \mathrm{m}), 9.27(1 \mathrm{H}, \mathrm{br}), 11.73$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.7 \mathrm{~Hz}), 12.01(1 \mathrm{H}, \mathrm{br}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d ${ }_{6}$) $\delta 69.6,114.89$, 114.91, 120.2, 121.0, 125.1, 126.1, 128.2, 128.3, 128.5, 128.9 (2C), 129.3, 132.2, 137.7, 156.4, 156.9, 162.6. IR (KBr) 742, 839, 1181, 1249, 1271, 1356, 1485, 1512, 1670, 3275 (br) cm^{-1}. HRESIMS m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 408.1212$, found 408.1236.

Methoxymethyl 4-(4-benzyloxyphenyl)-3-(4-(methoxymethoxy)phenyl)-1H-pyrrole-2-carboxylate (7a)

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ and stirred suspension of t-BuOK $(0.92 \mathrm{~g}, 8.2 \mathrm{mmol})$ in dry THF (20 $\mathrm{mL})$, was added dropwise a solution of $\mathbf{1 1}(1.54 \mathrm{~g}, 4.00 \mathrm{mmol})$ in THF (20 mL) under Ar atmosphere. After 15 min , chloromethyl methyl ether ($0.63 \mathrm{~mL}, 8.4 \mathrm{mmol}$) dissolved in THF (10 mL) was dropwise added. The cooling bath was removed and the whole was stirred for 1.5 h before being quenched with $2 \% \mathrm{NH}_{4} \mathrm{OH}$ solution. The mixture was
extracted twice with EtOAc, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residual solid was recrystallized from ether to give a first crop of $7 \mathrm{a}(0.53 \mathrm{~g}, 1.1 \mathrm{mmol}$, 28%) as white crystals, $\mathrm{mp} 111-112{ }^{\circ} \mathrm{C}$. The mother liquid was concentrated and chromatographed on silica gel eluted with hexane-EtOAc (3:2) to give a second crop of $7 \mathrm{a}(1.01 \mathrm{~g}, 2.14 \mathrm{mmol}, 54 \%) .{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 3.27(3 \mathrm{H}, \mathrm{s}), 3.48(3 \mathrm{H}, \mathrm{s}), 4.99(2 \mathrm{H}$, s), $5.17(2 \mathrm{H}, \mathrm{s}), 5.28(2 \mathrm{H}, \mathrm{s}), 6.81(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 6.97(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.03(2 \mathrm{H}$, d, J = 8.8 Hz), $7.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.9 \mathrm{~Hz}), 7.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.29-7.44(5 \mathrm{H}, \mathrm{m}), 9.46$ ($1 \mathrm{H}, \mathrm{br}$ s). ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 55.9,57.4,70.0,90.1, ~ 94.5,114.5,115.3$ 115.6, 119.2, 120.7, 126.5, 127.1, 127.4, 127.8, 128.5, 129.3, 129.5, 131.8, 137.0, 156.2, 157.3, 160.5. IR (KBr) 736, 838, 907, 982, 1016, 1024, 1083, 1125, 1146, 1237, 1257, 1377, 1422, 1539, $1688 \mathrm{~cm}^{-1}$. HRESIMS m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{NNaO}_{6}(\mathrm{M}+\mathrm{Na})^{+} 496.1736$, found 496.1698.

Methoxymethyl 4-(4-benzyloxyphenyl)-3-(4-(methoxymethoxy)phenyl)-1-[2-(4-methoxyphenyl)-2-oxoethyl]pyrrole-2-carboxylate (12a)

A mixture of $7 \mathbf{a}(278 \mathrm{mg}, 0.587 \mathrm{mmol})$, 4'-methoxyphenacyl bromide ($336 \mathrm{mg}, 1.47$ $\mathrm{mmol})$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(287 \mathrm{mg}, 0.881 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$ was heated under reflux for 7 hr . The mixture was then poured into $10 \% \mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted twice with EtOAc, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by medium pressure liquid chromatography on silica gel using toluene-EtOAc (19:1) as eluant to give 12a ($345 \mathrm{mg}, 0.544 \mathrm{mmol}, 95 \%$) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta 2.99(3 \mathrm{H}, \mathrm{s})$, $3.47(3 \mathrm{H}, \mathrm{s}), 3.88(3 \mathrm{H}, \mathrm{s}), 4.98(2 \mathrm{H}, \mathrm{s}), 5.03(2 \mathrm{H}, \mathrm{s}), 5.17(2 \mathrm{H}, \mathrm{s}), 5.75(2 \mathrm{H}, \mathrm{s}), 6.79(2 \mathrm{H}$, d, J = 8.9 Hz), 6.94-7.03 ($7 \mathrm{H}, \mathrm{m}$), $7.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.28-7.42(5 \mathrm{H}, \mathrm{m}), 8.01(2 \mathrm{H}$, d, J = 8.9 Hz). ${ }^{13} \mathrm{C}$ NMR (101 MHz) $\delta 55.48,55.53,55.9,57.1,69.9,89.8,94.5,114.1$, $114.4,115.3,119.5,124.8,127.1,127.5,127.7,127.8,127.9,128.5,129.3,129.5,130.3$, 131.5, 131.9, 137.0, 156.0, 157.1, 161.0, 164.0, 191.7. IR (KBr) 834, 993, 1051, 1078, 1171, 1237, 1601, 1693, $2926 \mathrm{~cm}^{-1}$. HRESIMS m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{NNaO}_{8}(\mathrm{M}+\mathrm{Na})^{+}$ 644.2260, found 644.2234 .

7-(4-Benzyloxyphenyl)-3-(4-methoxyphenyl)-8-[4-(methoxymethoxy)phenyl]-1H-pyrrolo[2,1-c][1,4]oxazin-1-one (13)

Method A

A mixture of 12a ($102 \mathrm{mg}, 0.164 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(60 \mathrm{mg}, 0.19 \mathrm{mmol})$, and MS4A (1 g , beads, ca. 2 mm , Nakarai tesque) in dry THF (25 mL) was heated at reflux for 100 min .

More of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($54 \mathrm{mg}, 0.16 \mathrm{mmol}$), and MS4A (0.8 g) were added and the heating was continued for additional 80 min . The mixture was then diluted with EtOAc and filtered. The filtrate was washed with $10 \% \mathrm{NH}_{4} \mathrm{Cl}$ solution, and the aqueous layer was extracted twice with EtOAc. After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and removing the solvent, the crude product was chromatographed on silica gel eluted with toluene-EtOAc (9:1) to give $\mathbf{1 3}$ (46 mg , $0.083 \mathrm{mmol}, 51 \%$) as pale yellow crystals, mp $178-181^{\circ} \mathrm{C}$.

Method B

A mixture of $7 \mathrm{a}(104 \mathrm{mg}, 0.220 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($145 \mathrm{mg}, 0.444 \mathrm{mmol}$), $4^{\prime}-$ methoxyphenacyl bromide ($126 \mathrm{mg}, 0.550 \mathrm{mmol}$) in dry DME $(2 \mathrm{~mL})$ was heated at $90^{\circ} \mathrm{C}$ (bath temp.) in a screw-sealed tube under Ar atmosphere for 6 h . The mixture was then diluted with EtOAc (20 mL), filtered through a short column of silica gel, and concentrated. The crude product was purified by silica gel column chromatography eluted with toluene-EtOAc (9:1) to give $\mathbf{1 3}(70 \mathrm{mg}, 0.13 \mathrm{mmol}, 57 \%)$ as pale yellow crystals. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}) \delta 3.50(3 \mathrm{H}, \mathrm{s}), 3.84(3 \mathrm{H}, \mathrm{s}), 5.03(2 \mathrm{H}, \mathrm{s}), 5.19(2 \mathrm{H}, \mathrm{s}), 6.87(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=8.8 \mathrm{~Hz}), 6.94(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 6.99(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}), 7.08(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz})$, $7.18(1 \mathrm{H}, \mathrm{s}), 7.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{s}), 7.38-7.41(5 \mathrm{H}, \mathrm{m}), 7.64(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $9.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (101 MHz) $\delta 55.4,56.1,70.0,94.5,102.7,112.9,114.2,114.8,115.5$, $119.0,123.0,125.8,126.0,127.5,128.0,128.1,128.6,129.5,129.8,132.0,136.9,142.0$, 154.3, 156.7, 157.8, 160.5 (one quaternary carbon signal is overlapping). IR (KBr) 799, 836, 1005, 1039, 1177, 1248, 1429, 1536, 1608, $1720 \mathrm{~cm}^{-1}$. HRESIMS m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{NNaO}_{6}(\mathrm{M}+\mathrm{Na})^{+}$582.1893, found 582.1910.

3,7,8-Tris(4-hydroxyphenyl)-1H-pyrrolo[2,1-c][1,4]oxazin-1-one (lukianol A, 1a)

To a solution of $\mathbf{1 3}(50.5 \mathrm{mg}, 0.0902 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5 \mathrm{~mL})$ was added 1 M hexane solution of $\mathrm{BBr}_{3}(0.63 \mathrm{~mL}, 0.63 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ under Ar atmosphere. The mixture
was stirred at $-78{ }^{\circ} \mathrm{C}(1 \mathrm{~h}), 0{ }^{\circ} \mathrm{C}(3 \mathrm{~h})$, and room temperature (30 min), before being quenched with saturated aqueous $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$. The mixture was vigorously stirred for 45 min and extracted twice with EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was chromatographed on silica gel eluted with hexane-EtOAc (2:3~0:1) to give $\mathbf{1 a}(36.2 \mathrm{mg}$, $0.0880 \mathrm{mmol}, 98 \%$) as pale yellow crystals. Recrystallization from EtOH-ether gave light gray crystals, mp 211-214 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}) $\delta 6.73(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}$), $6.78(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 6.94(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.03(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.16(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$
$=8.6 \mathrm{~Hz}), 7.52(1 \mathrm{H}, \mathrm{s}), 7.63(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.90(1 \mathrm{H}, \mathrm{s}), 8.35(1 \mathrm{H}, \mathrm{s}), 8.37(1 \mathrm{H}, \mathrm{s})$, $8.77(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , acetone- d_{6}) $8103.7,113.4,115.3,116.0,116.6,120.5$, $123.2,125.0,125.8,126.5,128.8,130.2,130.6,132.9,142.5,154.4,157.2,157.5,159.3$.

IR (KBr) 791, 836, 1041, 1173, 1204, 1240, 1420, 1506, 1518, 1610, 1696, $3330 \mathrm{~cm}^{-1}$.
HRESIMS m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{NNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+}$434.1004, found 434.0998.

7,8-Bis(4-hydroxyphenyl)-3-(4-methoxyphenyl)-1H-pyrrolo[2,1-c][1,4]oxazin-1-one

 (1b)To a solution of $\mathbf{1 3}(39.6 \mathrm{mg}, 0.0659 \mathrm{mmol})$ and $\mathrm{Me}_{2} \mathrm{~S}(0.24 \mathrm{~mL}, 3.2 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1 \mathrm{~mL})$, was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.176 \mathrm{~mL}, 1.35 \mathrm{mmol})$ at room temperature. After the mixture had been stirred for 5 h , the reaction was quenched with water and the whole was extracted twice with a mixture of EtOAc and THF (1:1). The organic layers were combined, washed with $5 \% \mathrm{NaHCO}_{3}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was triturated with EtOAc to give $\mathbf{1 b}(23.7 \mathrm{mg}, 0.0558 \mathrm{mmol}, 85 \%)$ as pale yellow crystals, $\mathrm{mp}>300^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO-d ${ }_{6}$) $\delta 3.81(3 \mathrm{H}, \mathrm{s}), 6.66(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6$ $\mathrm{Hz}), 6.70(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 6.95(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.05(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.06(2 \mathrm{H}$, d, J = 8.8 Hz), $7.59(1 \mathrm{H}, \mathrm{s}), 7.66(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 8.15(1 \mathrm{H}, \mathrm{s}), 9.43(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 9.48$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$) $\delta 55.4,103.7,112.0,114.5,114.6,115.3$, $119.6,122.9,123.1,123.9,125.4,127.5,128.5,129.5,131.8,140.4,153.6,156.4,156.6$, 159.9. IR (KBr) 763, 837, 1024, 1041, 1184, 1120. 1231, 1255, 1413, 1430, 1516, 1611,

1691, $3240,3448 \mathrm{~cm}^{-1}$. HRESIMS m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{NNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+}$448.1161,
found 448.1151 .

3,7,8-Tris(4-methoxyphenyl)-1H-pyrrolo[2,1-c][1,4]oxazin-1-one (1c)

A mixture of $\mathbf{1 b}(5.3 \mathrm{mg}, 0.12 \mathrm{mmol})$ and powdered $\mathrm{K}_{2} \mathrm{CO}_{3}(55.0 \mathrm{mg}, 0.399 \mathrm{mmol})$ in dry DMF (1 mL) was stirred for 10 min . MeI ($25 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$) was then added and the whole was stirred at room temperature for 16 h . The mixture was diluted with EtOAc (5 mL), filtered, and the filtrate was concentrated. The crude product was purified by a silica gel chromatography eluted with hexane-EtOAc (1:1) to give 1c ($5.5 \mathrm{mg}, 0.012 \mathrm{mmol}$, 100%) as yellow crystals, mp $181-183{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta 3.80(3 \mathrm{H}, \mathrm{s}), 3.84(3 \mathrm{H}$, s), $3.86(3 \mathrm{H}, \mathrm{s}), 6.82(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}), 6.88(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}), 6.97(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9$ $\mathrm{Hz}), 7.10(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{s}), 7.30(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}), 7.34(1 \mathrm{H}, \mathrm{s}), 7.67$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (101 MHz) $\delta 55.1,55.2,55.4,102.7,113.0,113.3,113.9$, $114.3,118.9,123.0,123.1,124.7,125.9,128.2,129.7,129.8,132.0,142.0,154.3,158.6$,
158.9, 160.5. IR (KBr) 795, 836, 1034, 1179, 1251, 1430, 1506, 1516, 1609, 1733, 2922
cm^{-1}. HRESIMS m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 476.1474$, found 476.1511 .

7-(4-Benzyloxyphenyl)-3,8-bis(4-methoxyphenyl)-1H-pyrrolo[2,1-c][1,4]oxazin-1one (14)

A solution of $\mathbf{1 3}(39.3 \mathrm{mg}, 0.0703 \mathrm{mmol})$ in $\mathrm{EtOH}(20 \mathrm{~mL})$ containing one drop of conc. HCl was heated at reflux for 45 min . The mixture was then cooled to room temperature, neutralized with one drop of $\mathrm{Et}_{3} \mathrm{~N}$, and concentrated. The crude product was purified by silica gel column chromatography eluted with hexane-EtOAc (1:1) to give $\mathbf{1 4}(34.2 \mathrm{mg}$, $0.0663 \mathrm{mmol}, 94 \%)$ as pale yellow crystals, mp $247-249^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d_{6}-acetone- $\left._{6}\right) \delta 3.81(3 \mathrm{H}, \mathrm{s}), 5.06(2 \mathrm{H}, \mathrm{s}), 6.72(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 6.93(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8$ $\mathrm{Hz}), 7.04-7.11(6 \mathrm{H}, \mathrm{m}), 7.31-7.35(1 \mathrm{H}, \mathrm{m}), 7.37-7.41(2 \mathrm{H}, \mathrm{m}), 7.42-7.46(2 \mathrm{H}, \mathrm{m}), 7.65$ $(1 \mathrm{H}, \mathrm{s}), 7.68(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}), 8.17(1 \mathrm{H}, \mathrm{s}), 9.49(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d_{6}-acetone- $_{6}$) $\delta 55.3,69.2,103.7,112.1,114.5,114.69,114.71,120.2,122.9,123.0$, 125.4, 125.8, 127.0, 127.8, 127.9, 128.4, 129.0, 129.4, 131.7, 137.0, 140.5, 153.5, 156.7, 157.3, 160.0. IR (KBr) 785, 831, 1046, 1181, 1251, 1417, 1430, 1506, 1518, 1615, 1700
cm^{-1}. HRESIMS m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{25} \mathrm{NNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 538.1630$, found 538.1649.

7-(4-Hydroxyphenyl)-3,8-bis(4-methoxyphenyl)-1H-pyrrolo[2,1-c][1,4]oxazin-1-one (1d)

A mixture of 14 ($48.6 \mathrm{mg}, 0.0942 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(130.0 \mathrm{mg}, 0.942 \mathrm{mmol})$, and MeI $(0.050 \mathrm{~mL}, 0.80 \mathrm{mmol})$ in dry acetone $(5 \mathrm{~mL})$ was heated at $50^{\circ} \mathrm{C}$. The progress of the reaction was monitored by TLC and some additional 0.050 mL portions of MeI were added until the TLC indicated complete consumption of the starting material. The mixture was then cooled to room temperature, diluted with EtOAc (10 mL), filtered through a pad of Celite, and concentrated to give crude 15 (66.1 mg).

The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and $\mathrm{Me}_{2} \mathrm{~S}(0.350 \mathrm{~mL}, 4.73$ $\mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.232 \mathrm{~mL}, 1.88 \mathrm{mmol})$ were added. After 4 h at room temperature, the reaction was quenched by addition of $5 \% \mathrm{NaHCO}_{3}$ solution and the volatiles were evaporated by a current of N_{2}. The mixture was then extracted twice with EtOAc, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The crude product was purified by silica gel chromatography eluted with hexane-EtOAc (2:1~1:1) to first afford 15 ($8.1 \mathrm{mg}, 0.015$ $\mathrm{mmol}, 16 \%$), followed by $\mathbf{1 d}(14.7 \mathrm{mg}, 0.0334 \mathrm{mmol}, 36 \%)$.

15: pale yellow crystals, mp $208-210{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta 3.83(3 \mathrm{H}, \mathrm{s})$,
$3.85(3 \mathrm{H}, \mathrm{s}), 5.03(2 \mathrm{H}, \mathrm{s}), 6.87(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 6.95(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}), 7.08(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=8.8 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{s}), 7.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.32(1 \mathrm{H}, \mathrm{s}), 7.32-7.44(5 \mathrm{H}, \mathrm{m}), 7.65$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (101 MHz) $\delta 55.1,55.4,70.0,102.7,112.9,113.3,114.3$, $114.8,118.9,123.1,124.3,124.6,125.8,126.1,127.5,128.0,128.1,128.6,129.8,132.0$, $136.9,140.9,154.3,157.8,158.9,160.5$. IR (KBr) 787, 839, 1032, 1176, 1249, 1431,

1506, 1517, 1609, $1728 \mathrm{~cm}^{-1}$. HRESIMS m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{NNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+}$552.1787, found 552.1820.

1d: pale yellow crystals, $\mathrm{mp}>300^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) $\delta 3.77$ $(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 6.65(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.88(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 6.94(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.7 \mathrm{~Hz}), 7.05(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}), 7.17(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{s}), 7.66(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.9 \mathrm{~Hz}), 8.16(1 \mathrm{H}, \mathrm{s}), 9.43(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$) 855.0, 55.3, 103.7, $112.1,113.1,114.5,115.3,120.1,122.9,123.8,124.8,125.4,127.6,128.4,129.5,131.8$, $140.5,153.5,156.4,158.4,160.0$. IR (KBr) 797, 825, 1029, 1178, 1257, 1428, 1508, 1516, 1611, 1698, 3441 (br) cm^{-1}. HRESIMS m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+}$462.1317, found 462.1325 .

7-(4-Hydroxyphenyl)-3-(4-methoxyphenyl)-8-[4-(methoxymethoxy)phenyl]-1H-pyrrolo[2,1-c][1,4]oxazin-1-one (16)

Compound $\mathbf{1 3}(151 \mathrm{mg}, 0.270 \mathrm{mmol})$ was hydrogenated over $10 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(27 \mathrm{mg})$ in THF (10 mL) at $13{ }^{\circ} \mathrm{C}$ under H_{2} balloon atmosphere for 25 min . The mixture was then filtered, concentrated, and chromatographed on silica gel eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone (19:1) to afford $\mathbf{1 6}(110 \mathrm{mg}, 0.235 \mathrm{mmol}, 87 \%)$ as pale yellow crystals, $\mathrm{mp} 234-235^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 3.42(3 \mathrm{H}, \mathrm{s}), 3.81(3 \mathrm{H}, \mathrm{s}), 5.19(2 \mathrm{H}, \mathrm{s}), 6.65(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.7 \mathrm{~Hz}), 6.94(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.03(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.57$ $(1 \mathrm{H}, \mathrm{s}), 7.66(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 8.08(1 \mathrm{H}, \mathrm{s}), 9.26(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}-$ DMSO-d ${ }_{6}$) $\delta 53.3,53.8,91.9,101.7,110.2,112.4,113.3,113.4,118.2,120.9,121.8$, $123.5,124.1,125.8,126.3,127.6,129.8,138.6,151.6,154.1,154.5,158.0$. IR (KBr) 844, $987,1155,1175,1201,1255,1413,1431,1505,1517,1610,1700,1711,3344(\mathrm{br}) \mathrm{cm}^{-}$ ${ }^{1}$. HRESIMS m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NNaO}_{6}(\mathrm{M}+\mathrm{Na})^{+}$492.1432, found 492.1384.

8-(4-Hydroxyphenyl)-3,7-bis(4-methoxyphenyl)-1H-pyrrolo[2,1-c][1,4]oxazin-1-one (1e)

Title compound was synthesized by subsequent methylation and demethoxymethylation
of 16 in 81% yield as described in the synthesis of 15 and 14 . 1e: pale yellow crystals, mp 289-290 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , acetone- d_{6}) $\delta 3.76(3 \mathrm{H}, \mathrm{s}), 3.85(3 \mathrm{H}, \mathrm{s}), 6.78(2 \mathrm{H}$, d, J = 8.7 Hz), $6.82(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.03(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}), 7.12(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz})$, $7.15(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{s}), 7.72(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}), 7.97(1 \mathrm{H}, \mathrm{s}), 7.98(1 \mathrm{H}, \mathrm{s})$. ${ }^{13}$ C-NMR (101 MHz, DMSO-d ${ }_{6}$) $\delta 55.0,55.3,103.7,112.1,113.9,114.5,114.7,120.2$, $122.9,123.0,125.4,125.6,127.0,129.0,129.4,131.7,140.5,153.5,156.7,158.1,160.0$. IR (KBr) 794, 838, 1033, 1047, 1178, 1249, 1431, 1519, 1613. 1701, 2963, 3271 (br) cm^{-1}. HRESIMS m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 462.1317$, found 462.1327.

7-(4-Benzyloxyphenyl)-3-(4-methanefulfonyloxyphenyl)-8-[4-(methoxymethoxy)phenyl]-1H-pyrrolo[2,1-c][1,4]oxazin-1-one (18)

The title compound was synthesized in 39% yield by the same manner as Method B in the synthesis of $\mathbf{1 3}$ using DMF instead of DME. 18: pale yellow crystals, mp 208-209 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 3.17(3 \mathrm{H}, \mathrm{s}), 3.50(3 \mathrm{H}, \mathrm{s}), 5.03(2 \mathrm{H}, \mathrm{s}), 5.19(2 \mathrm{H}, \mathrm{s}), 6.88(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=8.8 \mathrm{~Hz}), 6.99(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.08(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{s}), 7.27(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=8.8 \mathrm{~Hz}), 7.33-7.43(8 \mathrm{H}, \mathrm{m}), 7.75(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (101 MHz) $\delta 37.6$, 56.1, 70.0, 94.4, 104.6, 112.9, 114.8, 115.5, 119.4, 122.5, 125.5, 125.7, 125.9, 127.5, 128.0, 128.6, 128.7, 129.8, 130.2, 132.0, 136.8, 140.4, 149.4, 153.8, 156.8, 157.9 (one quaternary carbon signal is overlapping). IR (KBr) $845,887,1003,1048,1158,1177$, $1199,1234,1342,1429,1507,1741 \mathrm{~cm}^{-1}$. HRESIMS m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{NNaO}_{8} \mathrm{~S}$ $(\mathrm{M}+\mathrm{Na})^{+} 646.1512$, found 646.1545 .

7,8-Bis(4-hydroxyphenyl)-3-(4-methanefulfonyloxyphenyl)-1H-pyrrolo[2,1-

 c][1,4]oxazin-1-one (20)The title compound was synthesized from 18 in 52% yield in the same manner as described for the synthesis of $\mathbf{1 b}$. 20: pale yellow crystals, mp $164-165^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , acetone $\left.-\mathrm{d}_{6}\right) \delta 3.32(3 \mathrm{H}, \mathrm{s}), 6.73(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 6.79(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.03$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.17(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.46(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{s}), 7.89$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}), 8.15(1 \mathrm{H}, \mathrm{s}), 8.34(1 \mathrm{H}, \mathrm{s}), 8.37(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO$\left.\mathrm{d}_{6}\right) \delta 37.5,105.8,112.1,114.6,115.3,120.3,122.9,123.7,125.5,127.8,129.4,129.5$, $129.7,131.7,139.1,149.2,153.2,156.4,156.7$ (one quaternary carbon signal is overlapping). IR (KBr) 869, 1051, 1151, 1176, 1219, 1358, 1427, 1508, 1541, 1509, 1541,1653, 1729, 3406 (br) cm^{-1}. HRESIMS m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{NNaO}_{7} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$
512.0780, found 512.0805.

3-(4-Methanefulfonyloxyphenyl)-7,8-bis(4-methoxyphenyl)-1H-pyrrolo[2,1-c][1,4]oxazin-1-one (21)

The title compound was synthesized from 20 in 83% yield in the same manner as described for the synthesis of $\mathbf{1 5}$. 20: pale yellow crystals, mp 207-208 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}) \delta 3.18(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=0.5 \mathrm{~Hz}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 6.80(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 6.87$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.08(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{s}), 7.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.35$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.44(1 \mathrm{H}, \mathrm{s}), 7.75(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (101 MHz) 837.6 , $55.1,55.2,104.6,112.9,113.4,113.9,119.3,122.6,124.3,125.5,125.9,128.7,129.8$, 129.9, 130.4, 132.0, 140.5, 149.4, 153.8, 158.7, 159.0. IR (KBr) 845, 867, 1034, 1158, 1181, $1251,1366,1435,1509,1738 \mathrm{~cm}^{-1}$. HRESIMS m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NNaO}_{7} \mathrm{~S}$ $(\mathrm{M}+\mathrm{Na})^{+} 540.1093$, found 540.1054 .

3-(4-Hydroxyphenyl)-7,8-bis(4-methoxyphenyl)-1H-pyrrolo[2,1-c][1,4]oxazin-1-one (1f)

To a solution of $\mathbf{2 1}(25.0 \mathrm{mg}, 0.0483 \mathrm{mmol})$ in dry THF (1.5 mL), was added a 1M THF solution of TBAF ($0.193 \mathrm{~mL}, 0.193 \mathrm{mmol}$) at room temperature under Ar atmosphere (Fox 2002). After 4.5 h , additional portion (0.193 mL) portion of TBAF $(0.193 \mathrm{mmol})$ was added and the mixture was stirred for another 2 h . The reaction was then quenched by $10 \% \mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted 3 times with EtOAc, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by silica gel column chromatography eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone (19:1) to give $\mathbf{1 f}(13.5 \mathrm{mg}, 0.0307 \mathrm{mmol}, 64 \%)$ as pale yellow crystals, mp 215-216 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 3.71(3 \mathrm{H}, \mathrm{s}), 3.76(3 \mathrm{H}, \mathrm{s})$, $6.83(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 6.88(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.06(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.8 \mathrm{~Hz}), 7.17(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.55(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{s}), 8.08(1 \mathrm{H}, \mathrm{s})$, $9.90(1 \mathrm{H}, \mathrm{br}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 55.0,55.1,103.1,112.2,113.2,114.0$, $115.8,120.2,121.2,124.8,125.5,125.6,127.0,128.3,129.5,131.8,141.0,153.6,158.2$, 158.5 (2C). IR (KBr) 835, 1038, 1176, 1247, 1423, 1505, 1519, 1541, 1611, 1717, 2925, 3321 (br) cm^{-1}. HRESIMS m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+}$462.1317, found 462.1320.

7-(4-Benzyloxyphenyl)-8-[4-(methoxymethoxy)phenyl]-3-phenyl-1H-pyrrolo[2,1-c][1,4]oxazin-1-one (19)

The title compound was synthesized by the same procedure as Method B described in the synthesis of $\mathbf{1 3}$ using phenacyl bromide instead of 4'-methoxyphenacyl bromide in 65% yield. 19: white crystals, mp $163-164{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 3.52(3 \mathrm{H}, \mathrm{s}), 5.05(2 \mathrm{H}$, s), $5.21(2 H, s), 6.89(2 H, d, J=8.8 \mathrm{~Hz}), 7.01(2 H, d, J=8.8 \mathrm{~Hz}), 7.10(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8$ $\mathrm{Hz}), 7.22(1 \mathrm{H}, \mathrm{s}), 7.30(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.38-7.45(9 \mathrm{H}, \mathrm{m}), 7.73(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.1,1.4$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta 56.1,69.9,94.4,103.9,113.0,114.7,115.5,119.1,124.2$, $125.6,125.9,127.5,127.9,128.3,128.5,128.8,129.2,129.8,130.5,130.5,132.0,136.8$, 141.8, 154.1, 156.7, 157.8. IR (KBr) 758, 844, 997, 1033, 1078, 1153, 1175, 1198, 1235, 1426, 1450, 1503. $1536,1610,1717 \mathrm{~cm}^{-1}$. HRESIMS m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{NNaO}_{5}$ $(\mathrm{M}+\mathrm{Na})^{+}$552.1787, found 552.1775.

7,8-Bis(4-hydroxyphenyl)-3-phenyl-1H-pyrrolo[2,1-c][1,4]oxazin-1-one (1g)

The title compound was synthesized from 19 by the same procedure used for the synthesis of $\mathbf{1 b}$ in 73% yield. $\mathbf{1 g}$: pale yellow crystals, $\mathrm{mp}>300^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.\mathrm{d}_{6}\right) \delta 6.66(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.70(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.95(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.06(2 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.41-7.43(1 \mathrm{H}, \mathrm{m}), 7.47-7.51(2 \mathrm{H}, \mathrm{m}), 7.62(1 \mathrm{H}, \mathrm{s}), 7.72-7.74(2 \mathrm{H}, \mathrm{m})$, $8.29(1 \mathrm{H}, \mathrm{s}), 9.44(1 \mathrm{H}, \mathrm{s}), 9.48(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$) $\delta 105.2,112.1$, $114.6,115.3,120.3,123.0,123.7,123.8,127.7,129.0,129.2,129.5,130.6,131.8,140.1$, 153.4, 156.4, 156.7 (one quaternary carbon signal is overlapping). IR $(\mathrm{KBr}) 760,829$, $845,1059,1172,1199,1235,1256,1274,1371,1420,1507,1552,1613,1697,3196$,

3403 (br) cm^{-1}. HRESIMS m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{NNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 418.1055$, found 418.1069.

In vitro Aldose Reductase Inhibition Assay

The ALR2 activity assay was performed in a 96-well plate following standard protocols (Nishimura et al 1991; Mylari et al 2003; Saito et al 2009). In brief, a reaction mixture containing $25 \mu \mathrm{~L}$ of sample solution in MeOH containing $\mathrm{DMSO}(<10 \% \mathrm{v} / \mathrm{v}), 25 \mu \mathrm{~L}$ of $1.25 \mathrm{mM} \beta$-NADPH (Oriental Yeast, Osaka, Japan), $20 \mu \mathrm{~L}$ of $50 \mathrm{mg} / \mathrm{mL}$ human recombinant aldose reductase (ATGen, Seongnam, South Korea) in $155 \mu \mathrm{~L}$ of 100 mM pottasium phosphate buffer (pH 6.2) was preincubated at $37^{\circ} \mathrm{C}$ for 5 min . The reaction was initiated by adding $25 \mu \mathrm{~L}$ of 20 mM DL-glyceraldehyde (Wako Pure Chemical, Osaka, Japan). The rate of decrease in optical density at 340 nm after 30 min at $37{ }^{\circ} \mathrm{C}$ was recorded using a BioTek Cytation 3 microplate reader (BioTek Instruments Inc., USA). To correct for non-enzymatic oxidation of NADPH, a reference blank assay was

541 F.I. designed this study; T.F. contributed to the discussion; F.I., T.K., and M.S. performed

546 This work was supported in part by a Grant-in-Aid for Scientific Research from Nagasaki 547 University, Japan.

549 Disclosure Statement

550 The authors declare there are no conflicts of interest.

References

Banwell MG, Flynn BL, Hamel E et al. Convergent synthesis of the pyrrolic marine natural products lamellarin-O, lamellarin-Q, lukianol-A and some more highly oxygenated congeners. Chem Commun 1997: 207-208.

Billek G. p-Hydroxyphenylpyruvic acid. Org Synth 1963;43:49-53.
Boger DL, Boyce CW, Labroli MA et al. Total syntheses of ningalin A, lamellarin O, lukianol A, and permethyl storniamide A utilizing heterocyclic azadiene Diels Alder reactions. J Am Chem Soc 1999; 121:54-62.

Bullington JL, Wolff RR, Jackson PF. Regioselective preparation of 2-substituted 3,4diaryl pyrroles: A concise total synthesis of ningalin B. J Org Chem 2002;67:9439-9442.
de la Fuente JÁ, Manzanaro S. Aldose reductase inhibitors from natural sources. Nat Prod Rep 2003;20:243-251.
Dolenc D. N-Iodosaccharin - a new reagent for iodination of alkenes and activated aromatics. Synlett 2000: 544-546.
Fox E, Lennon IC, Meek G. A novel synthesis of 5-hydroxy-2,2-dimethyl-10-propyl-2H-pyrano[2,3-f]chromen-8-one. Tetrahedron Lett 2002;43;2899-2902.

Fuji K, Kawabata T, Fujita E. Hard acid and soft nucleophile system. IV. Removal of benzyl protecting group with boron trifluoride etherate and dimethyl sulfide. Chem Pharm Bull 1980;28:3662-3664.

Fürstner A, Weintritt H, Hupperts A. A new, titanium-mediated approach to pyrroles: First synthesis of lukianol A and lamellarin O dimethyl ether. J Org Chem 1995; 60: 6637-6641.

Ghafary S, Najafi Z, Mohammadi-Khanaposhtani, M et al. Novel cinnamic acidtryptamine hybrids as potent butyrylcholinesterase inhibitors: Synthesis, biologicalevaluation, and docking study. Arch Pharm Chem Life Sci 2018;351:e1800115.
Gupton JT, Sikorski JA. The application of vinylogous iminium salt derivatives to a regiocontrolled and efficient relay synthesis of lukianol A and related marine
natural products. Tetrahedron 1999;55:14515-14522.
Hinze C, Kreipi A, Terpin A et al. Synthesis of simple 3,4-diarylpyrrole-2,5-dicarboxylic acid and lukianol A by oxidative condensation of 3-arylpyruvic acid with ammonia. Synthesis 2007: 608-612.

Kerru N, Singh-Pillay A, Awolade P et al. Current anti-diabetic agents and their molecular targets: A review. Eur J Med Chem 2018;152:436-488.

Kim S, Son S, Kang H. Efficient syntheses of 2-carbomethoxy-3,4-disubstituted pyrroles by the condensation of vinylogous amides with aminomalonate. Bull Korean Chem Soc 2001;22:1403-1406

Kousaxidis A, Petrou A, Lavrentaki V et al. Aldose reductase and protein tyrosine phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus. Eur J Med Chem 2020;207:112742.
Liu JH, Yang QC, Mak TCW et al. Highly regioselective synthesis of 2,3,4-trisubstituted 1H-pyrroles: A formal total synthesis of lukianol A. J Org Chem 2000;65:35873595.

Lu Y, Arndtsen BA. A direct phosphine-mediated synthesis of pyrroles from accid chlorides and α, β-unsaturated imines. Org Lett 2009;11:1369-1372.

Manzanaro S, Salvá, de la Fuente JA. Phenolic marine natural products as aldose reductase inhibitors. J Nat Prod 2006;69:1485-1487.

Mathew P, Asokan CV. Cyclization of functionalized ketene-N,S-acetals to substituted pyrroles: application in the synthesis of marine pyrrole alkaloids. Tetrahedron Lett 2005;46:475-478.
Morikawa D, Morii K, Yasuda Y et al. Convergent total synthesis of lamellarins and their congeners. J Org Chem 2020;85:8603-8617.
Mylari BL, Armento SJ, Beebe DA et al. A highly selective, non-hydantoin, noncarboxylic acid inhibitor of aldose reductase with potent oral activity in diabetic rat models: 6-(5-Chloro-3-methylbenzofuran- 2-sulfonyl)-2-H-pyridazin-3-one. J Med Chem 2003;46:2283-2286

Niimi N, Yako H, Takaku S et al. Aldose reductase and the polyol pathway in Schwann cells: Old and new problems. Int J Mol Sci 2021;22:1031-1045.

Nishimura C, Yamaoka T, Mizutani M et al. Purification and characterization of the recombinant human aldose reductase expressed in baculovirus system. Biochim Biophys Acta 1991;1078:171-178.

Saito R, Tokita M, Uda K et al. Synthesis and in vitro evaluation of botryllazine B analogues as a new class of inhibitor against human aldose reductase. Tetrahedron 2009;65:3019-3026.

Sato A, Morishita T, Shiraki T et al. Aldose reductase inhibitors from a marine sponge, Dictyodendrilla sp. J Org Chem 1993;58:7632-7634.
Satyanarayana I, Yang DY, Liou TJ. Synthesis of lamellarin R, lukianol A, lamellarin O and their analogues. RSC Adv 2020;10:43168-43174.

Takamura K, Matsuo H, Tanaka A et al. Total synthesis of the marine natural products lukianols A and B. Tetrahedron 2013;69:2782-2788.

Thakur S, Gupta SK, Ali V et al. Aldose Reductase: a cause and a potential target for the treatment of diabetic complications. Arch Pharm Res 2021;44:655-667

Yabe-Nishimura Aldose reductase in glucose toxicity: A potential target for the prevention of diabetic complications. Pharmacol Rev 1998;50:21-34.

Yoshida WY, Lee KK, Carroll AR et al. A complex pyrrolo-oxazinone and its iodo derivative isolated from a tunicate. Helv Chim Acta 1992;75:1721-1725.

You HW, Lee KL. Halodecarboxylation of α, β-unsaturated carboxylic acids bearing aryl and styrenyl group at β-carbon with oxone ${ }^{\circledR}$ and sodium halide. Synlett 2001:105107.

Zhou C, Ma D. A copper-catalyzed coupling reaction of vinyl halides and carbazates: application in the assembly of polysubstituted pyrroles. Chem Commun 2014;50:3085-3088.

642 Scheme 2. Synthesis of lukianol A (1a), 4'-O-methyl lukianol A (1b), and tri-O-methyl

Figure caption/legend

Fig. 1. Structure of lukianol A (1), B (2), and Fürstner interemediate (3).

Scheme 1. Zhou and Ma's polysubstituted pyrrole synthesis lukianol A (1c). (a) $\mathrm{NaBr}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, Oxone ${ }^{\circledR}$, aq. $\mathrm{CH}_{3} \mathrm{CN}$ (77\%); (b) BocNHNH ${ }_{2}$, CuI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMSO, $80^{\circ} \mathrm{C}$ (95\%); (c) AcOH, EtOH, reflux (89\%); (d) MOMCl, t-BuOK, THF (82%); (e) $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, THF, reflux (95%); (f) $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, THF, reflux (51\%); (g) BBr_{3}, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}(1 \mathrm{~h}), 0{ }^{\circ} \mathrm{C}(3 \mathrm{~h})$, and rt (30 min), (1a: 98\%); (h) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{Me}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1b: 85%); (i) MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}, \operatorname{DMF}(100 \%)$.

Scheme 3. Synthesis of $4^{\prime \prime}$-O-methyl lukianol A (1d) and $4^{\prime \prime \prime}$ - O-methyl lukianol A (1e). (a) $\mathrm{HCl}, \mathrm{EtOH}$, reflux, (14: $94 \%, \mathbf{1 e}: 81 \%$ (2 steps)); (b) $\mathrm{MeI}, \mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, reflux; (c) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{Me}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 36 \%(1 \mathbf{c}, 2$ steps $) ;$ (d) $\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}, \mathrm{THF}, 87 \%$.

Scheme 4. Synthesis of 4', $4^{\prime \prime \prime}$-bis- O-methyl lukianol A (1f) and 4'-dehydroxy lukianol A (1g). (a) $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (18: in DMF, 39%, 19: in DME, 69%); (b) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{Me}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (20: 52%, 1g: 73%); (c) MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, reflux (83%); (d) Bu4NF, THF (64\%) (Fox 2002).

Fig. 2. Aldose reductase inhibitors isolated from a marine sponge, Dictyodendrilla sp.

Graphical abstract caption

Lukianol A (1a) and its derivatives $\mathbf{1 b} \mathbf{- 1 g}$ were synthesized and evaluated for their ability to inhibit human aldose reductase (Table 1).

679 Table 1. In vitro human ALR2 inhibitory activity of lukianol A derivatives $\mathbf{1 a - 1 g}$ and 680 epalrestat.

1a~1g epalrestat
681

Compound	R^{1}	R^{2}	R^{3}	Concentration ($\mu \mathrm{M}$)	Inhibition $(\%)^{\mathrm{a}}$	$\mathrm{IC}_{50}(\mu \mathrm{M})^{\mathrm{b}}$	R^{2}
12	H	H	OH	50	79.4 ± 8.1	2.2	0.981
				10	62.3 ± 7.4		
				2	47.0 ± 7.9		
				0.83	43.9 ± 6.2		
1b	H	H	OMe	50	79.8 ± 10.7	5.3	0.989
				10	46.1 ± 8.7		
				2	36.8 ± 8.7		
				0.83	25.6 ± 6.7		
1c	Me	Me	OMe	10	6.1 ± 4.9	$n d^{\text {c }}$	
1d	H	Me	OMe	10	1.7 ± 0.6	$n d^{\text {c }}$	
1e	Me	H	OMe	50	55.5 ± 3.4	47.8	0.937
				10	22.4 ± 4.1		
				2	10.7 ± 0.5		
				0.83	3.0 ± 2.1		
1 f	Me	Me	OH	10	1.3 ± 1.0	$n d^{\text {c }}$	

$\mathbf{1 g}$	H	H	H	50	85.9 ± 5.6	3.2
				10	64.3 ± 13.7	
			2	44.1 ± 9.9		
				0.83	32.0 ± 6.6	
epalrestat				10	67.2 ± 6.0	0.8

$682{ }^{\text {a }}$ Each value represents the mean $\pm \operatorname{SEM}(\mathrm{n}=3)$.
$683{ }^{\mathrm{b}} \mathrm{IC} \mathrm{C}_{50}$ values were calculated from the least-square regression line of the logarithmic concentration plotted against inhibitory activity.
685
${ }^{c}$ not determined

Fig. 1. Structure of lukianol A (1), B (2), and Fürstner interemediate (3).
$92 \times 64 \mathrm{~mm}(96 \times 96$ DPI)

Scheme 1. Zhou and Ma's polysubstituted pyrrole synthesis.

$$
116 \times 26 \mathrm{~mm}(96 \times 96 \mathrm{DPI})
$$

Scheme 2. Synthesis of lukianol A (1a), 4'-O-methyl lukianol A (1b), and tri-O-methyl lukianol A (1c). (a) $\mathrm{NaBr}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, Oxone ${ }^{\circledR}$, aq. $\mathrm{CH}_{3} \mathrm{CN}(77 \%)$; (b) $\mathrm{BocNHNH}_{2}, \mathrm{CuI}, \mathrm{K}_{2} \mathrm{CO}_{3}$, DMSO, $80^{\circ} \mathrm{C}$ (95\%); (c) AcOH, EtOH , reflux (89\%); (d) MOMCl, t-BuOK, THF (82\%); (e) $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{THF}$, reflux (95\%); (f) $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{THF}$, reflux (51\%); (g) $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}(1 \mathrm{~h}), 0^{\circ} \mathrm{C}(3 \mathrm{~h})$, and rt (30 min), (1a: 98\%); (h) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{Me}_{2} \mathrm{~S}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1b: 85\%); (i) MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}$ (100\%).

Scheme 3. Synthesis of $4^{\prime \prime}$-O-methyl lukianol A (1d) and $4^{\prime \prime \prime}$-O-methyl lukianol A (1e). (a) HCl , EtOH , reflux, (14: 94\%, 1e: 81% (2 steps)); (b) MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, reflux; (c) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{Me}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 36 \%$ (1c, 2 steps); (d) $\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}, \mathrm{THF}, 87 \%$.

Scheme 4. Synthesis of $4^{\prime}, 4^{\prime \prime \prime}$-bis-O-methyl lukianol $\mathrm{A}(\mathbf{1 f})$ and 4^{\prime}-dehydroxy lukianol A ($\mathbf{1 g}$). (a) $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (18: in DMF, 39\%, 19: in DME, 69\%); (b) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{Me}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (20:52\%, 1g: 73\%); (c) MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, reflux (83\%); (d) Bu4NF, THF (64\%) (Fox 2002).
$194 \times 83 \mathrm{~mm}(96 \times 96 \mathrm{DPI})$

22a: $R^{1}=H, R^{2}=\mathrm{SO}_{3} \mathrm{Na}$
22b: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{SO}_{3} \mathrm{H}$
22c: $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
22d: $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ac}$

23a: $\mathrm{R}=\mathrm{SO}_{3} \mathrm{H}$
23b: $\mathrm{R}=\mathrm{H}$

Fig. 2. Aldose reductase inhibitors isolated from a marine sponge, Dictyodendrilla sp .
$94 \times 83 \mathrm{~mm}(96 \times 96 \mathrm{DPI})$

Supplemental materials

Synthesis and structure-activity relationship study of the aldose reductase inhibiting marine alkaloid lukianol A and its derivatives

Fumito Ishibashi ${ }^{1 *}$, Shijiao Zha ${ }^{3}$, Mikinori Ueno ${ }^{1}$, Tsutomu Fukuda ${ }^{2}$
${ }^{1}$ Graduate School of Fisheries and Environmental Sciences, and ${ }^{2}$ Environmental Protection Center, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki, Japan
${ }^{3}$ School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China

Contents

Fig. 1. NMR spectra of compound 9 2
Fig. 2. NMR spectra of compound $\mathbf{1 0}$ 3
Fig. 3. NMR spectra of compound 11 4
Fig. 4. NMR spectra of compound $7 \mathbf{7 a}$ 5
Fig. 5. NMR spectra of compound 12a 6
Fig. 6. NMR spectra of compound 13 7
Fig. 7. NMR spectra of compound 1a 8
Fig. 8. NMR spectra of compound $\mathbf{1 b}$ 9
Fig. 9. NMR spectra of compound 1c 11
Fig. 10. NMR spectra of compound 14 12
Fig. 11. NMR spectra of compound 15 13
Fig. 12. NMR spectra of compound 1d 14
Fig. 13. NMR spectra of compound 16 15
Fig. 14. NMR spectra of compound $\mathbf{1 e}$ 16
Fig. 15. NMR spectra of compound 18 17
Fig. 16. NMR spectra of compound 20 18
Fig. 17. NMR spectra of compound 21 19
Fig. 18. NMR spectra of compound $\mathbf{1 f}$ 20

Fig. 19. NMR spectra of compound 19

Table 1. Concentration-response curves for inhibitory effect (\%) of compounds $\mathbf{1 a}(\mathrm{A}), \mathbf{1 b}(\mathrm{B}), \mathbf{1 e}(\mathrm{C})$, and $\mathbf{1 g}(\mathrm{D})$ on h-ALR2... 23

Fig. 1. NMR spectra of compound 9
${ }^{1} \mathrm{H}$ NMR spectrum of compound $9\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound 9 ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Fig. 2. NMR spectra of compound $\mathbf{1 0}$
${ }^{1} \mathrm{H}$ NMR spectrum of compound $10\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$

10
${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 0}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. 3. NMR spectra of compound $\mathbf{1 1}$
${ }^{1} \mathrm{H}$ NMR spectrum of compound 11 (300 MHz, DMSO- d_{6})

11
${ }^{13} \mathrm{C}$ NMR spectrum of compound 11 (101 MHz, DMSO- d_{6})

Fig. 4. NMR spectra of compound 7a
${ }^{1} \mathrm{H}$ NMR spectrum of compound $7 \mathbf{7 a}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $7 \mathbf{a}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. 5. NMR spectra of compound $\mathbf{1 2 a}$
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 2 a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 2 a}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. 6. NMR spectra of compound $\mathbf{1 3}$
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound 13 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Fig. 7. NMR spectra of compound 1a
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 a}\left(400 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 a}\left(101 \mathrm{MHz}\right.$, acetone $\left.-\mathrm{d}_{6}\right)$

Fig. 8. NMR spectra of compound $\mathbf{1 b}$
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 b}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 b}$ ($101 \mathrm{MHz}, \mathrm{DMSO}_{-}$(${ }_{6}$)

HSQC spectrum of compound $\mathbf{1 b}$

Fig. 9. NMR spectra of compound 1c
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 c}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. 10. NMR spectra of compound 14
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 4}\left(300 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 14 (75 MHz , $\mathrm{DMSO}-\mathrm{d}_{6}$)

Fig. 11. NMR spectra of compound 15
${ }^{1} \mathrm{H}$ NMR spectrum of compound $15\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound 15 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Fig. 12. NMR spectra of compound 1d
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 d}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 d}$ ($101 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$)

Fig. 13. NMR spectra of compound $\mathbf{1 6}$
${ }^{1} \mathrm{H}$ NMR spectrum of compound $16\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 6}$ ($101 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$)

Fig. 14. NMR spectra of compound $\mathbf{1 e}$
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 e}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 e}\left(101 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$

Fig. 15. NMR spectra of compound $\mathbf{1 8}$
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 8}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 8}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Fig. 16. NMR spectra of compound 20
${ }^{1} \mathrm{H}$ NMR spectrum of compound $20\left(400 \mathrm{MHz}\right.$, acetone- d_{6})

${ }^{13} \mathrm{C}$ NMR spectrum of compound $20\left(101 \mathrm{MHz}\right.$, DMSO- d_{6})

Fig. 17. NMR spectra of compound 21
${ }^{1} \mathrm{H}$ NMR spectrum of compound $21\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound 21 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Fig. 18. NMR spectra of compound $\mathbf{1 f}$
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 f}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 f}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. 19. NMR spectra of compound 19
${ }^{1} \mathrm{H}$ NMR spectrum of compound $19\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(19)/TK34_H.fid/fid
${ }^{13} \mathrm{C}$ NMR spectrum of compound 19 ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Fig. 20. NMR spectra of compound $\mathbf{1 g}$
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 g}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 g}\left(101 \mathrm{MHz}\right.$, DMSO- $\left.\left.\mathrm{d}_{6}\right)\right)$

Table 1. Concentration-response curves for inhibitory effect (\%) of compounds $\mathbf{1 a}(\mathrm{A}), \mathbf{1 b}(\mathrm{B}), \mathbf{1 e}(\mathrm{C})$, and $\mathbf{1 g}(\mathrm{D})$
on h-ALR2.
(A)

Concentration ($\mu \mathrm{M}$)
(B)

Concentration ($\mu \mathrm{M}$)
(C)

Concentration ($\mu \mathrm{M}$)
(D)

Concentration ($\mu \mathrm{M}$)

