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A B S T R A C T   

The detection of induced pluripotent stem cell (iPSC) colonies often needs the precise extraction of the colony 
features. However, existing computerized systems relied on segmentation of contours by preprocessing for 
classifying the colony conditions were task-extensive. To maximize the efficiency in categorizing colony con
ditions, we propose a multiple instance learning (MIL) in weakly supervised settings. It is designed in a single 
model to produce weak segmentation and classification of colonies without using finely labeled samples. As a 
single model, we employ a U-net-like convolution neural network (CNN) to train on binary image-level labels for 
MIL colonies classification. Furthermore, to specify the object of interest we used a simple post-processing 
method. The proposed approach is compared over conventional methods using five-fold cross-validation and 
receiver operating characteristic (ROC) curve. The maximum accuracy of the MIL-net is 95%, which is 15% 
higher than the conventional methods. Furthermore, the ability to interpret the location of the iPSC colonies 
based on the image level label without using a pixel-wise ground truth image is more appealing and cost-effective 
in colony condition recognition.   

1. Introduction 

Induced pluripotent stem cells (iPSC) can self-renew infinitely and 
generate into every human body’s cell type. The iPSCs are helpful to 
substitute deteriorated tissue of the human body and thus it is highly 
demanded clini- cal drug development (Takahashi et al., 2007). To 
realize reliable and secured tissue regeneration, it is essential to deter
mine the conditions of the cells during their culture. Identifying the good 
quality cells and colonies (cluster of identical cells) for subsequent 
treatment therapy is generally observed by the eye in terms of the 
morphological features, such as colonies with a densely packed cell ap- 
pearance and almost a well-defined edge. On the contrary to the 
morphology of the excellent quality cells, harmful quality colonies are 
detected. However, manual evaluations of cell conditions highly rely on 
human experts and cost errors (Fan et al., 2017). Furthermore, the 
assessment of a massive amount of cell conditions in culturing is tedious 
and laborious. Hence non-invasive automatic classification technique 
would benefit from tracing large numbers automatically interestedly 
without any classification errors. 

On the other hand, MIL (Multiple Instance Learning), is a machine 
learning technique that involves learning from a dataset of labeled bags, 
and each bag containing multiple instances (examples). In the biological 
and medical fields, MIL has been applied in a variety of contexts, 
including drug discovery, protein function prediction, and disease 
diagnosis. Several applications of MIL in medical images have shown 
outperforming classical training approach. Melanoma detection using 
color and texture features (Fuduli et al., 2019), by means of MIL to 
discriminate melanomas and common nevi (Astorino et al., 2020), viral 
pneumonia images classification by MIL (Zumpano et al., 2021), and 
diabetic retinopathy images classification via MIL (Vocaturo and Zum
pano, 2021) are some of proposed MIL in this field that shows out
performing classical learning. 

Motivated by the studies mentioned above, we intended to utilize the 
effectsof MIL through a weakly supervised approach, where the binary 
image- level label (colony with dense cells as good /sparse cells as bad) 
is given to the group of instances. However, the aforementioned MIL- 
based CNN archi- tectures extracted local to global features from the 
multiple non-linear layers limiting the performance by insisting on the 
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intensity profile with shape features. In order to improve that, we intend 
to push the local colony structure information in the MIL-net by high
lighting the essential features for colony conditions. MIL is used to 
determine a sample when all of the instances from a sample must be 
taken into account without any specific pixel label to each of the in
stances. In our case, MIL attempts to discover the target variable from 
the instances of sparse and dense patterns of stem cells by extracting the 
feature maps through several convolution layers and transformed into a 
low dimensional space. There it can generate a single bag level repre
sentation using average weighted pooling and classifies the bag into 
good or bad colony image. Furthermore, supervised learning demanding 
a large amount of annotated images, which are tedious and time- 
consuming. Alternatively, the proposed approach based on a U-net- 
like structure to predict the pixel-level segmentation with the bound
aries of the colonies without a finely-labeled sample is promising in cell 
detection. 

The contribution of this study can be summarized as follows:  

1) Proposes a multiple instance approach in form of weakly supervised 
for iPSC colony segmentation and colony conditions classification 
based on Unet-like architecture in an end-to-end manner without 
using finely-labeled samples. 

2) Involves simple post-processing in the learning output to automati
cally specify region of interests and removes the unwanted pixel 
localizations as false positives. 

3) Compares the performance of the proposed framework over archi
tectures that includes U-net with fully connected layer (hereafter 
termed as baseline), patch-based shallow U-net, ResNet-50, deep V- 
CNN and SVM.  

4) Investigates the performance of the proposed model using five-fold 
cross-validation. 

5) Evaluates the performance of all architectures by using mean accu
racy, precision, recall, F-score and receiver operating characteristic 
curve (ROC) measures. 

2. Related works 

2.1. State-of-the-art method in iPSC classification 

Several automated techniques have been developed to classify 
various conditions of iPSCs (Yuan-Hsiang et al., 2017; Kavitha et al., 
2017; Joutsijoki et al., 2016). Several research works using digital image 
processing techniques exploiting preliminary filtering and thresholding 
to detect the shape of the objects of the colonies (Kavitha et al., 2017; 
Chen and Zhang, 2009). However, the feature assessment using image 
analysis techniques depends on prior parameters and manual in
teractions, prone to large-scale assessment errors (Kavitha, et al., 2020; 
Kavitha, et al., 2016). Furthermore, the morphology of colonies is 
dynamically changed in subsequent reprogramming stages. Thus prior 
parameter setting approaches were not appropriate for evaluating the 
colonies (Nagasaka et al., 2017; Kato et al., 2016). In order to alleviate 
manual interaction, few approaches used machine learning techniques. 
However, machine learning methods relied on hand-crafted microscopic 
morphology-based and texture-based features of colonies to classify cell 
conditions (Joutsijoki et al., 2016; Stumpf and MacArthur, 2019; Zhang 
et al., 2019). Specifically, hand-crafted features-based support vector 
machine (SVM) models were commonly applied and produced satis
factory results for the classification of conditions of colonies (Raytchev 
et al., 2016; Kavitha et al., 2018). 

Recently deep learning methods are extensively used in detecting 
cell images because of the ability to recognize the changes and devel
opment of stem cells without manual interventions (Waisman et al., 
2019; Moen et al., 2019). The open-source package and Xception 
network were effective in differentiating the types of neural stem cells 
(Zhu et al., 2021). A vector-based convolutional neural network 
(V-CNN) was developed and matrix transformation is added as a 

pre-processing layer in the two- dimensional CNN (Kavitha et al., 2017). 
The authors in Kavitha et al. (2017) claimed that the V-CNN produced 
better performance than SVM for the classification of colonies. A simple 
LeNet architecture with an image processing algorithm efficiently 
derived cell types from iPSCs with high performance (Kusumoto et al., 
2018). However, the methods mentioned above highly relied on the 
number of pre-processing ways to locate most related features for iPSC 
colony classification. The pre-processing steps are often 
problem-specific and required prior parameter settings, which is not 
always appropriate for evaluating the variations in iPSCs heterogeneity. 

Thus we intend to develop a single model without pre-processes for 
reducing the risk of biased results and inconsistencies for colony con
ditions evaluation. We used a customized version of the popular 
encoder-decoder based U-net architecture (Ronneberger et al., 2015). 
Previously, several biological imaging tasks have been utilized U-net or 
attention mechanism for segmentation due to its ability to capture 
coarse-to-fine structures (Yudistira et al., 2020; Du et al., 2020; Oktay 
et al., 2018). Differently in this study, we proposed to use an end-to-end 
MIL-net without pre-processing that implements local connectivity 
patterns between the neurons of the adjacent layers and average pooling 
for the attention features at the end of the architecture. MIL is a specific 
type of supervised learning, where instances are grouped into sets, 
termed as bags, and labels are only given at the bag level and not for 
each individual instance level. In our case, MIL attempts to discover the 
target variable from the instances of sparse and dense patterns of stem 
cells. The instances of stem cells are extracted through several convo
lution layers and transformed into a low dimensional space. There it can 
generate a single bag level representation using average weighted 
pooling with highest attention to show landmarks of stem cell region as 
well as classifies the bag into good or bad colony image. The classical 
global pooling methods can only detect approximate pixel location, and 
thus, global weighted average pooling was used to evaluate the pixel 
level localization (Qiu, 2018). A fully convolutional neural network 
trained with fewer ground truth bounding boxes and many image-level 
labels was found to be effective in locating the pixel-level objects on the 
benchmark datasets (Qiu, 2018). Attention gating as Sononet was used 
in VGG or U-net to detect salient regions on the medical images 
(Schlemper et al., 2019). Attention mechanism using GRADCam in U-net 
with logistic regression classifier enhanced Alzheimer’s disease classi
fication (Kavitha et al., 2019). A modified 25-layers of U-net was 
effectively used to diagnose cardiac arrhythmia based on the electro
cardiographic signals (Oh et al., 2019). A weakly-supervised approach 
using feedback CNN and global average pooling with binary labels was 
used to locate the satellite images (Liu et al., 2016). The attention mask 
generated from the attention U-net improved the iris region detection 
(Lian et al., 2018). 

2.2. Applications of MIL in medical field 

One of the applications of MIL in the medical field is disease diag
nosis (Fuduli et al., 2019; Astorino et al., 2020; Zumpano et al., 2021; 
Vocaturo and Zumpano, 2021). For example, a bag might represent a 
patient’s medical record, and the instances within the bag represent 
different symptoms or test results. The label for the bag indicate whether 
the patient has a particular disease. By training a MIL model on a dataset 
of labeled bags, it can learn to predict the presence of a disease based on 
the patient’s symptoms and test results. 

Some examples of recent works in which the MIL approach has been 
shown to perform well in the medical field have been proposed. In 
traditional machine learning, MIL has been incorporated to improve 
classification performance. In the study of Melanoma detection using 
color and texture features (Fuduli et al., 2019; Astorino et al., 2020), the 
authors used MIL to classify images of skin lesions as benign or malig
nant (melanoma). They found that MIL outperformed traditional ma
chine learning approaches regarding accuracy and sensitivity, such as 
support vector machines and decision trees. In the study of viral 
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pneumonia images classification (Zumpano et al., 2021), the authors 
used MIL to classify chest X-ray images as normal or abnormal (pneu
monia). They found that MIL achieved higher accuracy compared to a 
traditional machine learning approach, such as support vector ma
chines. In the study of Diabetic Retinopathy classification, the authors 
(Vocaturo and Zumpano, 2021) used MIL to classify retinal images as 
healthy or containing diabetic retinopathy. They found that MIL out
performed other methods, such as support vector machines and decision 
trees, in terms of accuracy. There are many other studies that have used 
MIL for tasks such as cancer diagnosis, disease prediction, and image 
classification, and have demonstrated the potential of this approach for 
solving complex, real-world problems. 

3. Materials and methods 

3.1. Dataset 

This study included a set of 94 images of iPSC colonies. Out of 94 
images, 60 were maintained as described elsewhere (Okita et al., 2007) 
and 34 were received from American Type Culture Collection. The de
tails of gathering the iPSC colonies and phase contrast microscopic 
image collection settings are explained in our previous study (Kavitha 
et al., 2017). We also used another dataset namely Raabin-WBC (Kou
zehkanan et al., 2021), which is the large-scale white blood images data. 
The dataset contains granulocytes (neutrophils, basophils, and eosino
phils), lymphocyte, and monocytes classes. 1145 cropped images 
including 242 lymphocytes, 242 monocytes, 242 neutrophils, 201 eo
sinophils, and 218 basophils were randomly selected, and their ground 
truths were extracted by experts. Each of the image from 1145 selected 
cells has ground truth of the nucleus and cytoplasm. In order to extract 
the nucleus ground truth, image processing tricks were used. The ground 
truth of the whole cell is prepared for basophils, without the basophils’ 
cytoplasm and nucleus. This makes it challenging for MIL to extract 
cytoplasm and nucleus level ground truth. 

3.2. Data augmentation  

The gray scale images of iPSC input images are fed into the network. 
Thetraining data are augmented thus there is increase in number and 
variation. We used augmentation images involved with vertical or 
horizontal flip and rotation of 90, 180 and 270◦ degrees. To resolve 
imbalanced classes within training data, the minority class is over
samped, eventhough the level of imbalance is not severe. 

3.3. Proposed MIL for discriminative cell patterns for colony condition 

MIL is a type of machine learning approach in which the learning 
algorithm is presented with a set of labeled bags, each of which contains 
a set of instances (e.g., images, text documents, etc.). The label for a bag 
is determined by the labels of the instances it contains, rather than the 
label being assigned directly to each instance. The learning algorithm 
would need to identify the relevant features of the object in each image 
in the bag in order to correctly classify the bag. MIL is often used in 
situations where it is difficult to label individual instances accurately, 
but it is still possible to label groups of instances (e.g., bags) based on the 
majority label of the instances they contain. This can be useful for tasks 
such as object recognition, where the object of interest may appear in 
different positions, scales, or orientations within an image, making it 
challenging to label each instance individually. The specific approach 
used will depend on the characteristics of the data and the specific task 
being addressed. MIL can be formulated as a supervised learning prob
lem, where the goal is to learn a function that can map a set of instances 
to a label. The instances are grouped into bags, and the label for a bag is 
determined by the labels of the instances it contains. One common 
formulation of MIL uses a function f that maps a bag X to a label y: 

f : X− > y (1)  

where X is a bag containing a set of instances {x1, x2,…, xn}, and y is the 
label for the bag. The bags can be termed as relation between instances. 
Hence the positive bag included positive instances and negative bag 
included negative instances with label Y = {y1, y2,…yn} of +1 and − 1, 
respectively. Then MIL label follows the equation as, 

X(ω) =
{
+1 if exists yi : yi = +1
− 1 if Otherwise (2) 

In this formulation, the goal of the learning algorithm is to find the 
function f that best approximates the true underlying relationship be
tween the bags and their labels. This can be done using a variety of 
techniques, such as supervised learning algorithms that optimize a loss 
function using gradient descent. One way to formulate MIL using a su
pervised learning algorithm is to use a neural network with multiple 
hidden layers and an output layer. The input to the network would be 
the set of instances in a bag, and the output would be the predicted label 
for the bag. The weights and biases of the network could then be 
adjusted based on the errors made during training, using an optimiza
tion algorithm such as stochastic gradient descent. 

To learn the function f, we can use a supervised learning algorithm 
that is trained on a labeled dataset of bags. The algorithm adjusts the 
parameters of the function f (e.g., the weights and biases of a neural 
network) based on the errors made during training. One way to express 
the learning objective for MIL is to use a loss function L that measures 
the difference between the predicted label y′ and the true label y for a 
given bag: 

L = L(y′

, y) (3) 

The goal of the learning algorithm is to find the parameters of f that 
minimize the average loss over the training dataset. This can be done by 
using an optimization algorithm such as gradient descent to adjust the 
parameters of f based on the gradient of the loss function with respect to 
the parameters. Colony condition recognition is a typical binary image 
classification problem for a learning algorithm. Consider X is the input 
image, and N represents the total number of classes. Hence, L ∈

{1,…, N} is the corresponding class label of X. The training algorithm 
proposes to find a function f : X→L. In conventional image classification 
frameworks for colony condition detection, f is often defined as G(E(X)), 
where E(X) and G(.) indicate the feature extractors and classifiers, 
respectively. We used the criterion of bags and instances in the MIL 
settings. In this study, a single channel 250X250 pixels size of good and 
bad quality iPSC colony images are used with their categorical labels to 
train the model. 

3.4. Multiple instance classification 

Image level labels or bag labels of input data is used to generate pixel 
locations or instance labels of the cell area. The bag labels consist of two 
classes of images in this study. Furthermore, in this study we did not 
label the exact location or each pixel in the stem cell regions, instead 
image-wise good and bad labels are used to train the network. However, 
each pixel locations were generated from the network weights that 
trained after the backpropagation by using average activation. There, it 
can automatically find the region of interest by visualizing the stem cell 
colonies and it is indicated as a weak segmentation in this study. 
Furthermore, the highest attention that contributing the cell region 
enhance the performance in classifying the conditions of the good and 
bad colonies. The steps involved in the proposed MIL-net are; classifi
cation of the classes of good or bad iPSCs until convergence and weakly 
supervised segmentation of the cell colonies retrieve from the last con
volutional layer of the network. 

N. Yudistira et al.                                                                                                                                                                                                                               



Intelligent Systems with Applications 17 (2023) 200187

4

3.5. Proposed architecture of U-Net based MIL 

In this study, we propose a U-net-like CNN architecture that auto
matically finds regions of interest and differentiates between different 
cell conditions of iPSC, such as good and bad, in an end-to-end fashion 
(Fig. 1). U-Net has been shown to perform well on a variety of images. 
Specifically, it has a symmetrical architecture that effectively localizes 
objects or features in an image. Moreover, U-net-like architecture is 
relatively simple and can be easily trained using standard CNN training 
techniques. This is useful for tasks such as identifying the boundaries of 
objects or cells in biomedical im- ages. The feature maps of decoder are 
concatenated with the feature maps skipped from the encoder through 
the skip connections. Thus, it can able to retrieve the full spatial reso
lution at the network output. Furthermore, it added an average pooling 
layer at the end of the network layer to enhance the classification ca
pacity of the CNN. The proposed architecture is designed by large 
receptive fields of the output neurons, essential for multiple instance 
classifications. The new addition of average pooling and fully connected 
layer at the final layer complement their plain counterparts in the 
classical U-net architecture. Therefore, it is trained by leveraging and 
back-propagating the network to give classification results. 

The network implemented m × m convolution filters for features 
extraction and dimension reduction. The softmax is used to find the 
probability of the colony conditions followed by the average pooling and 
fully connected layer. The encoder and decoder structure combines the 
feature maps. The encoder consists of eight layers of convolutions and 
leaky ReLU. Each convolutional layer has 4 × 4 kernels with stride 2. 
The encoder part starts with 64-dimensional features or channels and it 
increases until to reach 512 feature maps. In the encoder, the input x 
convolved with filter of wc and residual bias bcl, where c is channel 
number and l is layer number, before fed into non-linear activation 
function of f (leaky ReLU). It is defined as 

yl
ij = f

(
∑m

p=0

∑m

q=0
wc

p,qxl− 1
(p+i)(q+j) + bcl

)

(4) 

The convolutions are done spatially in 2-dimensional space, where p 
and q are width and height of the input, respectively. The previous 
output layer xl− 1 is convoluted and activated to produce the activation 
output of yl. 

The decoder path consists of eight up-sampling convolutions called 
de-convolution layers (Yang et al., 2021) and ReLU activation functions. 

Drop out operation is added on first three up-sampling convolutions that 
is after ReLU. It maximizes feature maps by 4, and minimizes the 
number of features dimension by half. If there is any negative activa
tions, ReLu returns zero and hence the gradient become zero for all the 
inputs to the following layers. However, Leaky ReLu returns very small 
value for any negative inputs. Hence, we used Leaky ReLu in the encoder 
and ReLu in the decoder. The output of the last up-sampling layer is 
passed into the average pooling layer followed by fully connected layer. 
The high-level feature vectors of the last convolution layer are derived 
from low to high layers are passed into the average pooling. Average 
pooling helped to reduce the number of parameters as well as make the 
features invariant to varying locations, rotations, and scales that bene
ficial for generalization. Hence, the precise attention and compact fea
tures derived from the average pooling flow into the softmax cross 
entropy for classification can be capable to maintain the most relevant 
features for stem cell region and that enhance the network efficiency in 
categorizing the classes of colony conditions. The attention of the 
average pooling is used to localize the region of interest for visual 
interpretation and termed as weakly localization of the stem cell regions 
in this study. 

The filters in the decoder are also trainable parameters. The output x 
of the previous layer is transposed and convoluted with filter of wc with 
the bias value of bj before nonlinear activation function of f1. The total 
number of trainable parameters obtained from eight convolution layers 
of encoder and seven deconvolution layers of decoder are 54,653,008. 
The last convolution in the decoder is used for the reconstruction to the 
original size. 

Furthermore, in the concepts of MIL-based CNN architectures, f 
consisted of multiple non-linear layers with convolutional layers, each 
followed by pooling and one fully connected and softmax classifier to 
extract local to global features. However, in the process of colony con
dition recognition, the local definite structure information in the cell 
colony is often asymmetrically distributed. Hence, learning global fea
tures from the conventional multiple non-linear layers-based CNN 
limited the performance in distinguishing the colony condition. 
Furthermore, it demands the intensity profile along with the shape 
features. To resolve this issue, we constructed an end-to-end U-net like 
deeper CNN architecture adopted to MIL framework by pushing the local 
colony structure information for colony condition detection. More of 
interest, automatically partition the informative local colony contour 
according to the conditions of the colonies without finely labeled sam
ples are promising in cell detection. 

Fig. 1. Proposed attention-effective learning network for induced pluripotent stem cell colony conditions classification.  
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The proposed framework fits into MIL criterion and consists of train 
encoder and decoder stages (Fig. 1). We trained our proposed archi
tecture independently from scratch. No pretraining or transfer learning 
was used in any of our experiments in this study. It fits into the weakly 
supervised learning in which input data is labeled as good/bad called 
bags (Zhi-Hua et al., 2012; Foulds and Frank, 2010). 

Furthermore, the direct localization via classification using the MIL- 
net based CNN method is evaluated by removing the average pooling 
with three fully connected layers and patch-based shallow number of 
layers for the conditions of the iPSC colony. The input and the number of 
neurons in the three fully connected layers are 5000, 1000 and two, 
respectively, corresponding to the good and bad conditions of colony. 
For comparison, additionally we built a MIL-net using patch based input. 
It is evaluated to reduce the computational burden. It included shal
lower layers of three convolutions and deconvolutions with average 
pooling at the final layer before the softmax. 

3.6. Weakly supervised visualization 

We used the softmax cross-entropy loss function by learning from 
image-level labels to train the proposed network. The proposed MIL-net 
directly learns the input and output relationship of different colony 
conditions. The classification of the colonies is learned from the network 
weights that learn after the convergence. The intermediate activation 
output of the last convolutional layer is used to visualize the localization 
of the region of interest. The weakly supervised learning of the proposed 
network visualizes the texture features of the colonies by minimizing the 
irrelevant neuron activation. The output investigates distinctive textures 
that identify the condition of the colonies. 

3.7. Post-processing 

The colony region obtained from the learning is not clearly delin
eated and still included some outliers which are not important for the 
detection. Particularly the neural network is highly uncertain with less 
the number of training data and thus this condition often occurs. Hence 
a simple post-processing step is needed to remove the unwanted pixel 
localizations. In order to achieve this, we used the morphological 
operation such as an opening that keeps the largest localized object 
visible. The remaining objects are removed as false positives. The 
opening operation consists of erosion and then dilation with structuring 
element or kernel. We used rectangle-based kernel of z with 20 × 20 in 
size by experiment. The formulation of opening operation is shown as 
follows: 

S∘z = (S ⊖ z) ⊕ z (5)  

Where S and z are input and kernel, respectively. The parameter z per
forms erosion morphological operation (⊖ ) on input S. And then dila
tion morphological operation (⊕) is performed on S. These consecutive 
operations removed the small noisy artifacts and keeps iPSC colony re
gion as the region of interest. 

4. Experimental setup 

4.1. Experimental evaluation settings 

The proposed MIL-net classification method is applied to iPSC of 
good and bad colonies to evaluate its utility and effectiveness. Out of 94 
images, the number of good and bad colonies used in this study are 54 
and 40, respectively. The dataset is randomly partitioned into 74 
training and 20 testing images without using any same instances in both 
train and test set. The good and bad colonies are 44 and 30, respectively 
in the training and 10 and 10, respectively in the testing set. To avoid 
overfitting we applied several regularizer methods throughout the 
network during training phase. In our architecture, we used dropout at 

the first three deconvolutional layers, batch normalization at Conv1 to 
DeConv7, ReLU for all layers, and weight decay. Dropout is important to 
prevent co-dependent neuron units and thus only the key properties are 
selected within thinned networks. To prevent covariate shift which oc
curs when the distribution between training and testing data are 
different while the conditional label distributions are the same, batch 
normalization is utilized. Finally, Leaky ReLU and ReLU activations are 
applied across layers to guarantee sparseness by removing unnecessary 
negative values which is beneficial for generalization. The proposed 
approach is compared over baseline U-net, patch-based shallow Unet, 
ResNet50, deep V-CNN and SVM methods. In patch-based shallow U-net 
we used patches of input as (48X48) to train the network. Different from 
U-net, ResNet-50 only considers using encoder as end to end learning of 
image with skip connections and blocks (He et al., 2016; Jifara et al., 
2019). And it can overcome vanishing gradient problems of deep 
network and thus it can allow to train with deeper layer without severe 
over- fitting. The performance of all architectures used in this study is 
compared using accuracy, precision, recall and F1-score. Additionally, 
the performance of the proposed approach is evaluated using five-fold 
cross validation by randomly splitting train and test using five times 
without repeating the same instances in each fold. Furthermore, we used 
receiver operating characteristic (ROC) curve to evaluate the perfor
mance of the architectures in classifying the colony qualities. We used 
the same training and testing splits for all the methods compared in this 
study. All the methods used in the 5-fold cross validation experiment are 
used the same train and test set splits for all the folds. The best hyper 
parameters are selected heuristically using the proposed model. The 
networks are trained using Adam optimizer with starting alpha (learning 
rate of Adam), beta, and weight decay of 0.0001, 0.5, and 0.000001, 
respectively. To avoid local minima, the alpha value of Adam is 
decreased by multiplying it with 0.9 for every 20,000 iterations out of 
300 epochs. The learning rate is dynamically and gradually reduced 
from 0.0001 to 0.00001 which make the loss smoothly decreased 
overtime. Thus, the final learning rate of 0.00001 is achieved and that 
lead smooth convergence. By experiment we set the learning rate of 
0.001 to the baseline U-net. All the architectures were implemented in 
Python using the Chainer framework. 

5. Results and discussions 

As shown in Table 1, the proposed MIL-net learning architecture 
outperforms all other architectures experimented in this study. The ac
curacy of the MIL-net is higher than the baseline, patch-based shallow- 
net and ResNet-50 by 5.0%, 35.0%, and 15.0%, respectively. Patch 
based segmentation or classification becomes alternative to network to 
learn via data augmentation. It increases variation thus network can 
learn more. However, in this study patch-based shallow network can not 
perform well because patch based is failed to learn global texture. 

Though, the experimental results of the ResNet-50 is high with 
reasonable accuracy, the spatial pooling nature of the encoder make the 
network difficult to visualize. While compared to the SVM and V-CNN, 
the MIL-net outperformed by 12.0% and 2.0%, respectively. and does 
not require pre-training and pre-processing techniques to extend the 
localization of cell regions through the classification. Furthermore, the 
proposed approach has lower number of parameters than the baseline 

Table 1 
Performance comparison of the MIL-net with other architectures.  

Architectures Accuracy Precision Recall F-Score 

MIL-net 0.95 0.99 0.89 0.95 
Baseline 0.90 1.0 0.8 0.89 
Shallow-net 0.60 0.57 0.80 0.70 
ResNet-50 0.80 0.75 0.90 0.82 
V-CNN 0.93 0.90 0.90 0.90 
SVM 0.83 0.84 0.82 0.82  
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and yields high F-score with the value of 95.0% compared to 89.0%. of 
baseline. 

As shown in Table 2, using an average of five-fold cross validation, 
the MIL-net is still the best in terms of recall with 96.0%. The baseline 
shows good performance in terms of F-score. However, it has higher 
number of parameters than the MIL-net. Thus the proposed structure is 
still considered to be beneficial. 

Fig. 2 shows the ROC graph of the proposed network based on five- 
fold validation. It shows that the probabilities of different thresholds 
produce almost similar accuracy based on the network output. 
Furthermore, our data set used both separate as well as combined not 
more than two colonies in the dataset. The stem cell colony condition 
detection is not intended to separate the boundary of the combined 
colonies and hence, the performance of the MIL-net is not affected with 
the combined colonies. Compared to MIL-net as in Fig. 2, the baseline as 
in Fig. 3 is better in terms of mean ROC of five-folds with AUC of 97.0%. 
However, in terms of the ROC graph, MIL-net outperforms as revealed 
from figure. 

Fig. 4 shows the ROC of the ResNet-50 in classifying the colony 
conditions using five-fold cross validation. It describes lower perfor
mance than the proposed and baseline with the mean AUC of 93.0%. The 
proposed MIL-net classify the colony quality followed by automatic 
localization of cell areas which is different from the traditional cell 
classification that performed classification after feeding the localized 
cell regions from several pre-processing steps. The approach used large 
series of mouse embryonic stem cells based on various architectures of 
deep CNN with annotations revealed 99.0% accu- racy in differentiating 
two different types of cells (Stumpf and MacArthur, 2019). The detec
tion rate of neuron in neural stem cells using Xception network was 
92.0% (Raytchev et al., 2016). The stem cell differentiation using simple 
and shallow CNN networks produced 75–90% accuracy (Kavitha et al., 
2018). The performance of our proposed approach in detecting iPSC 
colony conditions is almost similar with those of the above studies. 
However the above mentioned stem cell detection studies used large 
series of training data. Whereas in this study we used limited number of 
dataset and different nature of stem cells than those of the above studies. 

5.1. Learning for localization 

Though using limited number of training data, the decoder of the 
trained MIL-net can able to generate accurate activation of the region of 
interest. Figs. 5 and 6 demonstrate the representative examples of the 
inferred colony regions of the proposed network. The weekly localiza
tion of the cell colony can be clearly visualized from the texture features 
gathered from the average pooling of the MIL-net. The effect of MIL 
justified in this study is the extension of localization through the clas
sification, though it is not directed to do so. 

One potential drawback of using MIL and DL approaches is that they 
can be complex and may not be as transparent as other methods. This 
lack of transparency can make it difficult for researchers and practi
tioners to understand how the AI system arrived at a particular 
conclusion or recommendation. In addition, these approaches may not 
be as interpretable as other methods, which can make it difficult to 
explain the results to others or to validate the results. 

Therefore, it is important for researchers to carefully consider the 

trade-offs between the performance and explanatory power of different 
AI approaches, and to clearly communicate the limitations and potential 
drawbacks of their proposed methods in their research. This will help 
ensure that the results of AI research are transparent, understandable, 
and reliable, which is essential for the responsible and ethical use of AI 
in medical informatics and other fields. 

. To answer the explanatory power and reliability of the proposed 
study we compare the region of interest results of our method with the 
ResNet- 50. Figs. 7 demonstrates the representative examples of the 
region of interests of the inferred colony regions of the proposed 
network and ResNet- 50 using post-processing method. Compared to the 
ResNet50, MIL-net localization is more concentrated into the main cell 
(true positives) than ResNet50’s first layer output localization. It proves 
that autoencoder like architecture like U-Net can neglect noise and oc
clusion occurred in images. 

Table 2 
Performance comparison of the MIL-net using five-fold cross validation.  

Architectures Accuracy Precision Recall F-score 

MIL-net 0.92 0.84 0.96 0.88 
Baseline 0.87 0.83 1.0 0.90 
Shallow-net 0.50 0.58 1.0 0.73 
ResNet-50 0.83 0.80 0.90 0.85 
V-CNN 0.92 0.87 0.86 0.87 
SVM 0.77 0.87 0.86 0.77  

Fig. 2. Evaluation of the receiver operating characteristic curve of the pro
posed approach based on five-fold cross validation. 

Fig. 3. Evaluation of the receiver operating characteristic curve of the baseline 
based on five-fold cross validation. 

Fig. 4. Evaluation of the receiver operating characteristic curve of the ResNet- 
50 based on five-fold cross validation. 
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Fig. 8 shows the results of the white blood cell localization using the 
Raabin-WBC dataset. Each row of the figure represents basophils, eo
sinophils, lym-phocytes, monocytes, and neutrophils respectively. In 
each column it shows the original cell image, manual labeling, activa
tion map on the final MIL-net layer, and localization results sequentially. 
The classification results of the five classes using five-fold cross-valida
tion resulting the average accuracy of 70%. However, if we see the re
sults of the localization from the MIL-net are more detailed than the 
manual labeling. With a note that the manual labeling is not done at the 
cytoplasm and nucleus level. Whereas in MIL-net visual localization 
looks close to the level of cytoplasm and nucleus, so that it is more 
detailed and better than manual labeling by experts. 

6. Limitations 

To extend the proposed work, argumentation approaches for 
explainable AI that involve the use of game theory and argumentation 
frameworks can be utilized to provide insights into the reasoning behind 
the decisions made by AI systems. These approaches seek to make the 
decision-making process more transparent and interpretable by human, 
and constructing, evaluating arguments and counter arguments based 
on the data and knowledge used by the AI system. In general, argu
mentation approaches can be seen as a way to provide a more human- 
like explanation of the decision-making process of AI systems. They 
can be used to identify and evaluate the relative strengths and weak
nesses of different arguments and to determine which argument is the 
most reasonable or justified with given the available evidence. 

Argumentation approaches can be applied to a wide range of AI 

Fig. 5. Visualization of weak segmentation of good condition of colonies showing dense cells.(a) input image, (b) dense activation output, and (c) region of in
terest output. 

Fig. 6. Visualization of weak segmentation of bad condition of colonies showing sparse cells.(a) input image, (b) sparse activation output, and (c) region of in
terest output. 
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Fig. 7. Comparison between the localization results of the first layer output of ResNet- 50 (first row) and the last layer activation output of MIL-net (second row).  

Fig. 8. Each row of the figure represents basophils, eosinophils, lymphocytes, monocytes, and neutrophils respectively. Each column shows the original cell image, 
manual labeling, activation map on the final MIL-net layer, and localization results, respectively. 
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systems and domains, including medical informatics (Caroprese et al., 
2022), where they can be used to provide explanations for the diagnosis 
and treatment recommendations made by AI-powered medical decision 
support systems. However, there are several potential drawbacks to 
using argumentation approaches for explainable AI in medical infor
matics. Argumentation approaches can be quite complex, as they 
involve constructing and evaluating arguments and counterarguments. 
This complexity makes it difficult for non-experts to understand and 
interpret the results of these approaches. Argumentation approaches 
may not be suitable for all types of AI systems or for all types of medical 
data. They can be more effective for more straightforward or 
well-defined problems, but may be less effective for more complex or 
open-ended problems. Moreover, constructing and evaluating argu
ments and counter-arguments can be time-consuming and 
resource-intensive, which may make it difficult to apply these ap
proaches in practice. While argumentation approaches may provide 
some level of transparency, they may not fully reveal the inner workings 
of the AI system or the reasoning behind its decisions. Like any other 
approach, argumentation approaches can be subject to biases, either in 
the construction of the arguments or in the evaluation of them. This can 
potentially lead to biased or unfair results. It is important to note that 
these drawbacks are not necessarily unique to argumentation ap
proaches, and similar challenges may also be present in other explain
able AI approaches. It is necessary to carefully consider the trade-offs 
and limitations of any approach when applying it in practice. 

7. Conclusion 

This study proposed a single network multiple instance learning in a 
weakly supervised settings based on U-net like architecture for anno
tating colonies and classifying the colony conditions. Most appealing in 
this study is the automatic visualization of the segmentation output of 
the cell regions without using the pixel-wise ground truth. Thus it 
reduced the annotation cost and maximized the classification accuracy 
in detecting the colony conditions. Experimentally we proved the 
robustness of our proposed approach by comparing the performance 
with state-of-the-art methods. Furthermore, through the experiments, 
we observed that the proposed approach has fewer number of parame
ters and high detection ability when compared over CNN-based and 
SVM methods. Hence it indicated its simplicity and the reliability. Thus 
the proposed approach for extending the localization through classifi
cation is highly useful to explain the reasons for decision making in 
identifying the colony conditions. Though our approach reveals high 
performance and produced attention-effective learning with weakly la
bels using iPSC dataset, the approach is needed to evaluate on different 
cell types data and different medical image dataset. It helps to under
stand the generalization ability of the proposed approach. In addition, 
the MIL-net with self-supervised setting is needed to test the optimal 
procedure of the architecture. 
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