
DOI:10.1587/transfun.2022VLP0009

Publicized:2022/09/05

 This article has been accepted and published on J-STAGE in advance of
copyediting. Content is final as presented.

IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER Special Section on VLSI Design and CAD Algorithms

Real-Time Image-Based Vibration Extraction with
Memory-Efficient Optical Flow and Block-Based Adaptive Filter

Taito MANABE†a), Nonmember and Yuichiro SHIBATA†b), Member

SUMMARY In this paper, we propose a real-time vibration extraction
system, which extracts vibration component within a given frequency range
from videos in real time, for realizing tremor suppression used in micro-
surgery assistance systems. To overcome the problems in our previous
system based on the mean Lucas-Kanade (LK) optical flow of the whole
frame, we have introduced a new architecture combining dense optical flow
calculated with simple feature matching and block-based band-pass filter-
ing using band-limited multiple Fourier linear combiner (BMFLC). As a
feature of optical flow calculation, we use the simplified rotation-invariant
histogram of oriented gradients (RIHOG) based on a gradient angle quan-
tized to 1, 2, or 3 bits, which greatly reduces the usage of memory resources
for a frame buffer. An obtained optical flow map is then divided into mul-
tiple blocks, and BMFLC is applied to the mean optical flow of each block
independently. By using the 𝐿1-norm of adaptive weight vectors in BMFLC
as a criterion, blocks belonging to vibrating objects can be isolated from
background at low cost, leading to better extraction accuracy compared to
the previous system. The whole system for 480p and 720p resolutions can
be implemented on a single Xilinx Zynq-7000 XC7Z020 FPGA without any
external memory, and can process a video stream supplied directly from a
camera at 60 fps.
key words: Optical Flow, Feature Matching, BMFLC, FPGA, Real-Time

1. Introduction

Microsurgery, a delicate surgery using a surgical microscope,
has been performed commonly. In microsurgery, however,
an involuntary movement called tremor is a severe problem
to a surgeon. Developing a microsurgery assistance system
which detects and suppresses physiological hand tremor by
actively generating anti-phase vibration is one of the solu-
tions to this problem.

Various research works have been carried out to date
on tremor attenuation from a wide range of aspects [1]–[10].
For isolating the vibration component of tremor from volun-
tary motion without phase delay, which is an essential part of
active tremor canceling, Riviere et al. proposed an adaptive
algorithm called the weighted frequency Fourier linear com-
biner (WFLC) [1]. WFLC estimates a quasi-periodic signal
by adjusting amplitude, phase, and frequency of a truncated
Fourier series model. The concept of WFLC was extended
by Veluvolu et al. as the band-limited multiple Fourier linear
combiner (BMFLC) [2] so that a signal containing multiple
frequency components can be effectively handled. They ex-
ecuted BMFLC as software on a real-time operating system

†The authors are with Nagasaki University, Nagasaki-shi, 852-
8521, Japan.

a) E-mail: tmanabe@nagasaki-u.ac.jp
b) E-mail: shibata@cis.nagasaki-u.ac.jp

to process input data from an accelerometer. Rocon et al.
implemented a WFLC-based tremor suppression system in a
rehabilitation robotic exoskeleton [3], where tremor signals
were acquired with gyroscopes.

Though most tremor attenuation systems including
these depend on inertial sensors, it is undesirable to put such
sensors on top of modern microscopic surgical instruments,
as they may disturb delicate works. A promising approach
is to use a real-time image processing technique to obtain
vibration components in a live video from a stationary mi-
croscope. Use of a camera will not be hindrance to surgical
procedures, since heads-up surgery using a display showing
the microscopic image is very common nowadays. However,
many research works using visual information have focused
on detecting and analyzing tremor, not on canceling it. For
example, Uhrikova et al. implemented an image-based sys-
tem for measuring the frequency of tremor [7]. Soran et al.
developed a tremor detection system using a support vector
machine (SVM) in the frequency domain [9], and Wang et al.
proposed a hand tremor detection system based on neural-
network-based approaches [10], both of which detect the
presence of tremor. These are useful for diagnosis purposes,
but not directly applicable to real-time tremor canceling.

To generate anti-phase vibration for tremor suppression
using an image-based approach, both extraction of vibration
components and band-pass filtering must be done in real time
with low latency. This is difficult to accomplish with soft-
ware processing on CPU where the entire frame data must be
kept on memory before processing. We have addressed this
challenge by using a pipelined architecture using an FPGA
which is directly connected to a camera. In [11], we pro-
posed the method combining the mean Lucas-Kanade (LK)
optical flow [12] of the whole frame and BMFLC adaptive
filtering. Though the system based on this method achieved
low latency, it could not extract large vibration components
accurately and was severely affected by optical flow of the
background, as described later in Sect. 2. To overcome
these problems, we propose a tremor-extraction system with
a completely-redesigned algorithm in this paper. The major
contributions of this paper include:

• Simple feature matching using a quantized gradient an-
gle enables fully-pipelined optical flow calculation for
720p videos without any external memory.

• Block-based BMFLC filtering enables detection of the
region belonging to a vibrating object at low cost, lead-
ing to better extraction accuracy.

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

• Deeply-pipelined FPGA design and implementation of
the proposed approach are presented for real-time vi-
bration extraction at 60 fps with low latency.

The rest of this paper is organized as follows. We
firstly make a brief explanation on our previous system in
Sect. 2. Based on this, the newly-proposed algorithm and
its implementation are detailedly described in Sect. 3 and 4,
respectively. Sect. 5 shows evaluation results of the system,
and finally, we conclude the paper in Sect. 6.

2. Overview of the Previous System

To clarify the advantage of the newly-proposed algorithm, we
describe the overview of the algorithm and implementation
of the previous system [11] as well as its problems.

2.1 Optical Flow Estimation with LK method

First, a dense Lucas-Kanade (LK) optical flow is calculated.
Unlike the methods using an iterative approach like the Horn-
Schunck method [13], the plain LK method is simple and
easy to implement on hardware. Let the pixel value (lumi-
nance) at the coordinates (𝑥, 𝑦) at the time 𝑡 be 𝐼 (𝑥, 𝑦, 𝑡).
Given that the object located at (𝑥, 𝑦) at the time 𝑡 moves to
(𝑥+Δ𝑥, 𝑦+Δ𝑦) at the time 𝑡+Δ𝑡, and the pixel value remains
unchanged, then the following relation holds:

𝐼 (𝑥, 𝑦, 𝑡) = 𝐼 (𝑥 + Δ𝑥, 𝑦 + Δ𝑦, 𝑡 + Δ𝑡) (1)

On the assumption that the image is differentiable andΔ𝑥,Δ𝑦
are small, the following approximate expression can be ob-
tained by Taylor-expanding Eq. (1) to the 1st order:

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 ≃ 0(
𝐼𝑥 =

𝜕𝐼

𝜕𝑥
, 𝐼𝑦 =

𝜕𝐼

𝜕𝑦
, 𝐼𝑡 =

𝜕𝐼

𝜕𝑡
, 𝑢 =

Δ𝑥
Δ𝑡
, 𝑣 =

Δ𝑦
Δ𝑡

)
(2)

where 𝐼𝑥 , 𝐼𝑦 are the horizontal and vertical intensity gradi-
ents, 𝐼𝑡 is the difference of the pixel values between the 2
frames, and (𝑢, 𝑣) is the optical flow at (𝑥, 𝑦). By introduc-
ing the assumption that neighboring pixels in a small region
have the same optical flow, we can estimate (𝑢, 𝑣) using the
least squares method.

In the previous system, this algorithm is implemented as
a fully-pipelined structure to estimate optical flow. However,
because of the assumption thatΔ𝑥,Δ𝑦 are small, large optical
flow cannot be extracted accurately. The common solution
to this is the introduction of the pyramidal approach, which
we did not adopt since it makes the structure and control of
the pipeline complicated. In addition, the assumption of the
luminance invariance also makes the system vulnerable to a
change in light condition. Large memory requirement for a
frame buffer is also problematic in embedded platforms.

2.2 Mean Optical Flow Calculation

By taking the average of all the optical flow values in a frame

for both horizontal and vertical directions, the mean optical
flow of the frame (𝑢, 𝑣) are calculated. To mitigate the effect
from background (the region outside a surgical tool) and
noises, only the optical flow whose absolute value is greater
than the pre-defined threshold is taken into account. The sign
filtering, which ignores negative or positive values when the
sum of all the values is positive or negative, is applied at the
same time. However, these mechanisms work only when the
background stands still. The fact that they only consider the
movement (displacement) from the previous frame is also
inappropriate for the filtering of vibration component.

2.3 BMFLC Filtering

The band-pass filtering using BMFLC is applied to 𝑢 and
𝑣. In BMFLC, the pass frequency band [𝑓lower, 𝑓upper] is
equally divided into 𝐿 sub-bands, and the reference input
vector 𝒙 is generated based on the current time 𝑡 [sec]:

𝒙 = (sin𝜔0𝑡, ..., sin𝜔𝐿−1𝑡, cos𝜔0𝑡, ..., cos𝜔𝐿−1𝑡)𝑇(
𝜔𝑟 = 2𝜋

(
𝑓lower +

𝑓upper − 𝑓lower

𝐿
𝑟

))
(3)

Considering the characteristics of physiological tremor [14],
we set 𝑓lower and 𝑓upper to 8 and 12, respectively. The number
of harmonics 𝐿 is set to 16.

We can estimate the band-limited values of the input
signals 𝑢 and 𝑣 by taking the weighted sums of 𝒙 and the
adaptive weight vectors 𝒘𝑥 = (𝑤𝑥,0, 𝑤𝑥,1, ..., 𝑤𝑥,2𝐿−1)𝑇 and
𝒘𝑦 = (𝑤𝑦,0, 𝑤𝑦,1, ..., 𝑤𝑦,2𝐿−1)𝑇 , as follows:

(Δ𝑥,Δ𝑦) = (𝒘𝑇
𝑥 𝒙,𝒘

𝑇
𝑦 𝒙) (4)

The adaptive weight vectors 𝒘𝑥 and 𝒘𝑦 are updated using
the least mean square algorithm [15], as follows:

𝒘𝑥 ← 𝒘𝑥 + 2𝜇(𝑢 − Δ𝑥)𝒙 (5)
𝒘𝑦 ← 𝒘𝑦 + 2𝜇(𝑣 − Δ𝑦)𝒙 (6)

The gain parameter 𝜇 = 2−7 controls the balance between
convergence speed and stability.

By repeating the 3 steps described in Sect. 2.1 to 2.3 for
each frame, the extracted vibration components (Δ𝑥,Δ𝑦) can
be obtained. Note that all calculations are done using integer
or fixed-point arithmetic to reduce resource utilization.

3. Algorithm

As explained in Sect. 2, our previous vibration extraction sys-
tem had several problems including low accuracy of optical
flow estimation, large memory utilization, and insufficient
isolation between background and target area. To cope with
these problems, we have designed a new vibration extraction
algorithm. The algorithm can be divided into 6 steps, each
of which is described detailedly in this section.

3.1 Gradient Calculation

Firstly in this step, the 3 × 3 Gaussian kernel 𝐺 is applied

MANABE and SHIBATA: RT IMAGE-BASED VIBRATION EXTRACTION WITH MEMORY-EFFICIENT OPTFLOW AND BLOCK-BASED ADAPTIVE FILTER
3

0

12

3

4

5 6

7

0

1

2

3

4

5
6

7

𝜃3 𝜙

Fig. 1 Calculation of 3-bit gradient angle

to the input 8-bit grayscale image 𝐼 to obtain the smoothed
image 𝐼 ′ = 𝐼 ∗𝐺. Next, the horizontal and vertical gradients
𝐼𝑥 and 𝐼𝑦 are calculated as follows:

𝐼𝑥 (𝑥, 𝑦) = 𝐼 ′(𝑥 + 1, 𝑦) − 𝐼 ′(𝑥 − 1, 𝑦) (7)
𝐼𝑦 (𝑥, 𝑦) = 𝐼 ′(𝑥, 𝑦 + 1) − 𝐼 ′(𝑥, 𝑦 − 1) (8)

where 𝑥 and 𝑦 are the horizontal and vertical coordinates with
the origin placed at the top-left edge of the image. Based
on the gradient values, the gradient angle 𝜃 is calculated for
each pixel. To save memory resources for a frame buffer, 𝜃
is quantized to 1, 2, or 3 bits. Firstly, the 3-bit gradient angle
𝜃3 (0 ≤ 𝜃 ≤ 7), as shown in Fig. 1, is calculated:

𝜃3 (𝑥, 𝑦) =
⌊4 × atan2(𝐼𝑦 (𝑥, 𝑦), 𝐼𝑥 (𝑥, 𝑦))

𝜋

⌋
mod 8 (9)

𝜃3 can be calculated using the simple magnitude correlation
of 𝐼𝑥 and 𝐼𝑦, making it robust to brightness change.

If the quantization bit width𝑄 ∈ {1, 2, 3} is 1 or 2, 𝜃3 is
further quantized with spatial dithering by adding the offset 𝑒
depending on the coordinates. As a result, 𝜃 (0 ≤ 𝜃 ≤ 2𝑄−1)
is represented as follows:

𝜃 (𝑥, 𝑦) =
⌊
𝜃3 (𝑥, 𝑦) + 𝑒(𝑥, 𝑦)

23−𝑄

⌋
(10)

𝑒(𝑥, 𝑦) = (𝑥 + 𝑦) mod 23−𝑄 (11)

Examples of the quantization for each bit width is shown in
the first row of Fig. 2. The 3-bit gradient angle map shown
on the left is quantized to 2 bits or 1 bit using the dithering
pattern. With 1-bit quantization, memory utilization for a
frame buffer can be reduced to 1/8.

3.2 Feature Calculation

For each of the current and previous frames, a simple fea-
ture used for optical flow estimation is generated from the
quantized gradient angle 𝜃. The algorithm is based on
the rotation-invariant histogram of oriented gradients (RI-
HOG) [16], a variant of the histogram of oriented gradients
(HOG) [17]. HOG is a well-known feature descriptor based
on a histogram of gradient orientation, which is robust to
illumination change. The first step of feature generation is
to dequantize the 𝜃 to get a 3-bit gradient angle 𝜃 ′:

𝜃 ′(𝑥, 𝑦) = (23−𝑄𝜃 (𝑥, 𝑦) − 𝑒(𝑥, 𝑦)) mod 8 (12)

𝜃 = 𝜃3 (𝑄 = 3) 𝜃 (𝑄 = 2) 𝜃 (𝑄 = 1)

𝜃′ = 𝜃 (𝑄 = 3) 𝜃′ (𝑄 = 2) 𝜃′ (𝑄 = 1)
Fig. 2 Quantization and dequantization of gradient angle

This is also illustrated in the second row of Fig. 2. Then,
for each pixel, the simplified RIHOG feature is calculated
from the small region (cell) of size 𝐶 × 𝐶 surrounding the
pixel. Let us consider the relative coordinates (𝑎, 𝑏) in a cell,
where the center of the cell is regarded as the origin. Then,
to make the feature rotation-invariant, the relative gradient
angle 𝜃rel of each pixel in the cell is calculated as follows:

𝜃rel (𝑥, 𝑦, 𝑎, 𝑏) = (𝜃 ′(𝑥 + 𝑎, 𝑦 + 𝑏) − 𝜙(𝑎, 𝑏)) mod 8
(13)

Here, 𝜙(𝑎, 𝑏) is the 3-bit angular coordinates of each point
in the cell. As shown in Fig. 1, 𝜙 is calculated in the almost
same way as 𝜃3, except that the offset of 𝜋/8 is added:

𝜙(𝑎, 𝑏) =
⌊
4 × atan2(𝑏, 𝑎)

𝜋
+ 1

2

⌋
mod 8 (14)

Note that 𝜙 and 𝜃rel is undefined when 𝑎 = 𝑏 = 0.
Finally, the simplified RIHOG feature is calculated by

making a histogram of the relative gradient angles in the cell.
Let the number of pixels with 𝜃rel = 𝑖 (0 ≤ 𝑖 ≤ 7) be 𝑛𝑖 , then
the feature descriptor 𝐻 is represented as:

𝐻 (𝑥, 𝑦) = (𝑛0, 𝑛1, 𝑛2, ..., 𝑛7)𝑇 (15)(
0 ≤ 𝑛𝑖 ≤ 𝐶2 − 1,

7∑
𝑖=0

𝑛𝑖 = 𝐶
2 − 1

)
The distribution of 𝑛𝑖 depends on the quantization bit width
𝑄. If 𝑄 is 1 or 2, the peak number of 𝑛𝑖 gets smaller
since the dithering works as a smoothing filter. The possible
maximum value of 𝑛𝑖 is expected to be (𝐶2 − 1)/2 for 𝑄 =
2 and (𝐶2 − 1)/4 for 𝑄 = 1, indicating that the feature
can be represented with less bits. However, because of the
normalization using 𝜙, the actual value can exceed these
limits. The offset to 𝜙 shown in Eq. (14) helps to mitigate
this overflow by avoiding the resemblance to the dithering
pattern described in Sect. 3.1.

The flow of the feature calculation is illustrated in Fig. 3.
Unlike the common HOG feature, the gradient magnitude is
not considered. This enables us not only to make a frame

4
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

−

Fig. 3 Feature calculation

buffer small but also to remove the need for histogram nor-
malization with accumulation and division.

3.3 Optical Flow Estimation Using Feature Matching

Based on the feature vector of the current frame 𝐻𝑘 and
that of the previous frame 𝐻𝑘−1, optical flow of each pixel
is estimated using pattern matching. Given that the optical
flow at the point (𝑥, 𝑦) is 𝐹 (𝑥, 𝑦) = (𝑢, 𝑣), the point (𝑥, 𝑦)
in the current frame corresponds to the point (𝑥 − 𝑢, 𝑦 − 𝑣)
in the previous frame. Here, we define the feature similarity
𝑆(𝑢, 𝑣) using the histogram intersection (HI) [18]:

𝑆(𝑢, 𝑣) = max(𝑆raw(𝑢, 𝑣) − 𝑝(𝑢, 𝑣), 0) (16)
𝑆raw (𝑢, 𝑣) = HI (𝐻𝑘 (𝑥, 𝑦), 𝐻𝑘−1 (𝑥 − 𝑢, 𝑦 − 𝑣)) (17)

𝑝(𝑢, 𝑣) =
⌊√
𝑢2 + 𝑣2

2
+ 0.5

⌋
(18)

The histogram intersection of two histograms 𝐻1 = (𝑛1,𝑖)
and 𝐻2 = (𝑛2,𝑖) is defined as:

HI (𝐻1, 𝐻2) =
∑
𝑖

min(𝑛1,𝑖 , 𝑛2,𝑖) (19)

And 𝑝(𝑢, 𝑣) is a penalty term to mitigate noises. Using the
similarity, the best (𝑢, 𝑣) in the pre-defined search window
of size 𝐾 × 𝐾 that maximizes the similarity is searched for:

𝐹 (𝑥, 𝑦) = arg max
(𝑢,𝑣)

𝑆(𝑢, 𝑣) (20)

At the same time, the reliability of the optical flow 𝑅(𝑥, 𝑦)
used in the following step is calculated as follows:

𝑅(𝑥, 𝑦) = max
𝑢,𝑣

𝑆(𝑢, 𝑣) − 𝑆, 𝑆 =

∑
𝑢,𝑣 𝑆(𝑢, 𝑣)
𝐾2 (21)

This is the difference between the mean similarity and the
maximum similarity, playing a role to prioritize the flow with
the specifically-high similarity.

3.4 Block-Mean Optical Flow Calculation

Next, the image is divided into small blocks, each of which
has the size of 𝐵×𝐵, and the mean optical flow of each block
is calculated. Let the optical flow and reliability of the 𝑗-th
pixel in the block 𝑖 (0 ≤ 𝑗 ≤ 𝐵2 − 1) be 𝐹𝑖 (𝑗) = (𝑢𝑖 𝑗 , 𝑣𝑖 𝑗)

and 𝑅𝑖 (𝑗), respectively. Then, the block-mean optical flow
𝐹𝑖 = (𝑢𝑖 , 𝑣𝑖) is calculated as the weighted average:

𝐹𝑖 = (𝑢𝑖 , 𝑣𝑖) =
(∑

𝑗 𝑢𝑖 𝑗 × 𝑅𝑖 (𝑗)∑
𝑗 𝑅𝑖 (𝑗)

,

∑
𝑗 𝑣𝑖 𝑗 × 𝑅𝑖 (𝑗)∑

𝑗 𝑅𝑖 (𝑗)

)
(22)

3.5 Per-Block BMFLC Filtering

Unlike the previous system, we apply BMFLC filtering to
each of the blocks independently, not to the mean optical
flow of the entire frame. Let us denote the adaptive weight
vectors of the block 𝑖 for horizontal and vertical directions as
𝒘𝑥,𝑖 , 𝒘𝑦,𝑖 , respectively. Note that the reference input vector
𝒙 is shared among all the blocks. Here, the band-limited
estimated mean optical flow of block 𝑖 is represented as:

𝐹
′
𝑖 = (𝑢′𝑖 , 𝑣′𝑖) = (𝒘𝑇

𝑥,𝑖𝒙,𝒘
𝑇
𝑦,𝑖𝒙) (23)

The adaptive weight vectors are updated as follows:

𝒘𝑥,𝑖 ← 𝒘𝑥,𝑖 + 2𝜇(𝑢𝑖 − 𝑢′𝑖)𝒙 (24)
𝒘𝑦,𝑖 ← 𝒘𝑦,𝑖 + 2𝜇(𝑣𝑖 − 𝑣′𝑖)𝒙 (25)

With this block-wise BMFLC filtering, the region belonging
to a vibrating object (surgical tool) can be detected using the
block weight𝑊𝑖 calculated as follows:

𝑊𝑖 = max

(
∥𝒘𝑥,𝑖 ∥1 + ∥𝒘𝑦,𝑖 ∥1

2
− 𝜏, 0

)
(26)

Basically, this is the mean of the 𝐿1-norms of adaptive weight
vectors for both directions. To ignore the blocks with small
weights, the threshold 𝜏 is subtracted from the mean.

3.6 Vibration Component Calculation

Finally, the vibration component (Δ𝑥,Δ𝑦) is extracted as the
weighted mean of the estimated mean optical flows 𝐹 ′𝑖 =
(𝑢′𝑖 , 𝑣′𝑖) and the block weights𝑊𝑖 of all the blocks:

(Δ𝑥,Δ𝑦) =
(∑

𝑖 𝑢
′
𝑖 ×𝑊𝑖∑
𝑖𝑊𝑖

,

∑
𝑖 𝑣
′
𝑖 ×𝑊𝑖∑
𝑖𝑊𝑖

)
(27)

This is the output for each input frame.

4. Implementation

The entire system is described using SystemVerilog. An
overview of the system is shown in Fig. 4. The system inputs
a pixel stream of 8-bit grayscale image with 480p (640×480)
or 720p (1280 × 720) resolution, and is synchronized with
the pixel clock. In this section, we briefly explain the design
and implementation of each module in the system.

4.1 Gradient Calculation Module

The gradient calculation module firstly applies the Gaussian
and the differential kernels to the luminance value given

MANABE and SHIBATA: RT IMAGE-BASED VIBRATION EXTRACTION WITH MEMORY-EFFICIENT OPTFLOW AND BLOCK-BASED ADAPTIVE FILTER
5

Gradient Calc.

Feature Calc.

Adaptive
Weight

Memory

Feature Calc.

Frame Buffer

Optical Flow Estimation

Vibration Component Calculation

Block-Mean Optical Flow Calculation

BMFLC

Fig. 4 System Overview

in a raster-scan manner, with the stream processing using
a moving window composed of FIFOs and shift registers.
Next, the 3-bit gradient angle 𝜃3 is calculated directly from
𝐼𝑥 and 𝐼𝑦 using the following equation:

(𝛼, 𝛽, 𝑞) =


(𝐼𝑥 , 𝐼𝑦, 0) (𝐼𝑥 > 0, 𝐼𝑦 ≥ 0)
(𝐼𝑦,−𝐼𝑥 , 1) (𝐼𝑥 ≤ 0, 𝐼𝑦 > 0)
(−𝐼𝑥 ,−𝐼𝑦, 2) (𝐼𝑥 < 0, 𝐼𝑦 ≤ 0)
(−𝐼𝑦, 𝐼𝑥 , 3) (𝐼𝑥 ≥ 0, 𝐼𝑦 < 0)

(28)

𝜃3 =

{
2𝑞 (𝛼 > 𝛽)
2𝑞 + 1 (otherwise)

(29)

Eq. (28) corresponds to the quadrant selection, and Eq. (29)
divides the quadrant into two. 𝜃3 is undefined when 𝐼𝑥 =
𝐼𝑦 = 0. Then, 𝜃3 is further quantized to 𝜃 with 𝑄 = 1, 2, or
3 bits, based on Eq. (10).

4.2 Feature Calculation Module

This module calculates the feature of each pixel in the current
and previous frames with the stream processing. First, the 3-
bit dequantized gradient angle 𝜃 ′ is calculated using Eq. (12).
Next, all the relative gradient angles 𝜃rel in the cell, which is
implemented as a moving window, are calculated in parallel
based on Eq. (13). And finally, for each of 𝑖 = 0, 1, ..., 7,
the number of pixels 𝑛𝑖 is calculated using a tree adder to
generate the feature 𝐻 = {𝑛0, 𝑛1, ..., 𝑛7}.

Currently, the cell size 𝐶 is set to 11. Since the value
range of 𝑛𝑖 is 0 ≤ 𝑛𝑖 ≤ 120 < 27 based on Eq. (15), 𝐻 can
be represented with 7 × 8 = 56 bits at most. As explained in
Sect. 3.2, this can be reduced when using 𝑄 = 1 (5 × 8 = 40
bits) or 𝑄 = 2 (6 × 8 = 48 bits). If an overflow occurs, 𝑛𝑖 is
clipped to the maximum number allowed.

Tree Adder with Argmax Calculation

Similarity Similarity Similarity Similarity

FIFO

FIFO

FIFO

9×9

40~56

4 4

7 7 7 7

40~56

÷ −81

＋

−

7

Fig. 5 Overview of Optical Flow Estimation Module

4.3 Optical Flow Estimation Module

In this module, the optical flow 𝐹 = (𝑢, 𝑣) is estimated based
on the feature of the current frame𝐻𝑘 and that of the previous
frame 𝐻𝑘−1. We set the search window size 𝐾 to 9. The
overview is shown in Fig. 5.

To begin with, all neighboring values of 𝐻𝑘−1 in the
search window of size 9× 9 that appear in a moving window
are obtained. The latency required here is compensated by
reducing the length of the frame buffer in Fig. 4. For each of
these values, the similarity 𝑆(𝑢, 𝑣) to 𝐻𝑘 is calculated simul-
taneously. Then, using a tree adder with argmax calculation,
the module determines (𝑢, 𝑣) that maximizes 𝑆, and the sum
and maximum of 𝑆. Finally, (𝑢, 𝑣) is output as well as the
reliability 𝑅 which is calculated using Eq. (21).

4.4 Block-Mean Optical Flow Calculation Module

From the input optical flow 𝐹 = (𝑢, 𝑣) and its reliability
𝑅, the block-mean optical flow 𝐹𝑖 = (𝑢𝑖 , 𝑣𝑖) is calculated
based on Eq. (22). This module has 3 accumulate registers
for each column of block array. We set the block size 𝐵 to 16
for 480p and 32 for 720p resolution, so there are 40 sets of
registers for both resolutions. Using 𝑢, 𝑣, and 𝑅, the module
calculates 𝑢 × 𝑅, 𝑣 × 𝑅, and 𝑅 and adds them to the register
set of the corresponding block. Once all the elements of the
block 𝑖 have been accumulated, the values in the register set
are put into a queue, and the registers are initialized to 0.

All the processes after this queue are separated from the
pipeline explained so far, and controlled by a state machine.
A dotted line in Fig. 4 shows this boundary. A set of values
in the queue is read one by one, and the block-mean optical
flow is calculated using a divider. Since the queue receives
new data every 𝐵2 = 256 or 1024 clock cycles on average, the
divider can process it in an iterative way and does not have to

6
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

Table 1 Configurations of parameters
𝑓BG 𝐴BG 𝑑 𝑓FG 𝐴FG Direction 𝑄

Pattern [Hz] [px] [px] [Hz] [px] BG/FG [bit]
1 0.4 0 8 8.25 0 V/V 1
2 0.8 5 16 9.00 1 V/D 2
3 1.2 10 24 9.75 2 D/V 3
4 1.6 15 32 10.50 3 D/D -
5 2.0 20 40 11.25 4 - -

be pipelined. The quotient is represented in the fixed-point
format with 8 fractional bits.

4.5 BMFLC module

The BMFLC module is controlled by a state machine and
performs the calculation of the band-limited mean optical
flow 𝐹

′
𝑖 = (𝑢′𝑖 , 𝑣′𝑖) and the block weight 𝑊𝑖 , as well as the

update of the adaptive weight vectors 𝒘𝑥,𝑖 , 𝒘𝑦,𝑖 , based on
fixed-point arithmetic with the fractional bit width of 12.

𝐹
′
𝑖 and𝑊𝑖 are calculated in the vertical blanking region,

after updating the adaptive weight vectors of all the blocks.
First, the reference input vector 𝒙 is updated using a lookup-
table-based sine function module. Then, the adaptive weight
vectors of each block are read from memory in turn, which
are used to calculate 𝐹 ′𝑖 based on Eq. (23) sequentially. 𝑊𝑖 is
calculated at the same time using Eq. (26) with the threshold
𝜏 = 1.6. The results are output to the following module, and
𝐹
′
𝑖 is also saved into memory for the next frame.

The update of the adaptive weight vectors is done by
calculating Eq. (24) and (25) using the block-mean optical
flow 𝐹𝑖 input from the preceding module and 𝐹 ′𝑖 which has
already been stored into memory.

4.6 Vibration Component Calculation Module

This module calculates and outputs the extracted vibration
component (Δ𝑥,Δ𝑦) from the band-limited mean optical
flow 𝐹

′
𝑖 and the block weight𝑊𝑖 using Eq. (27). This can be

done simply by accumulating 𝑢′𝑖 ×𝑊𝑖 , 𝑣′𝑖 ×𝑊𝑖 , 𝑊𝑖 using 3
registers and then performing division. Then, the extracted
vibration component is sent to an external actuator system,
which generates anti-phase vibration to cancel tremor.

5. Evaluation

In this section, we show the evaluation results of the proposed
system in terms of extraction accuracy, resource utilization,
and latency.

5.1 Accuracy Evaluation Using Synthesized Video

To evaluate extraction accuracy, we synthesized 480p 60-fps
video clips with 1200 frames, as shown in Fig. 6, composed
of a public-domain image of the retina (background) and a
rod-shaped object mimicking a surgical tool (foreground).
The background and foreground keep moving back-and-
forth. For sub-pixel accuracy, the video is generated from

Fig. 6 Synthesized video for evaluation (diagonal/vertical)

8x-oversampled images (5120 × 3840).
We prepared 29 different video clips with different con-

figurations of the following 6 parameters: frequency and
𝑦-axis amplitude of background (𝑓BG, 𝐴BG), diameter, fre-
quency, and 𝑦-axis amplitude of foreground (𝑑, 𝑓FG, 𝐴FG),
and a combination of background and foreground moving
directions. The values used for each parameter is listed in
Table 1. For the moving direction, either vertical (V) or
diagonal (D) is used, as illustrated in Fig. 6. In the diagonal
mode, the 𝑦-axis amplitude is also applied to 𝑥-axis, so the
actual amplitude is

√
2𝐴. To restrict the number of combi-

nations, when we focus on one of the parameters, the other
parameters are set to default, which is written in boldface.

Each video is processed using a simulator written in
Python that reproduces the exact result of the system im-
plemented on an FPGA. For the default configuration, 3
quantization bit widths (𝑄 = 1, 2, 3) are used to evaluate
the effect of quantization. A result of the previous system
is also evaluated here. Then, the output vibration compo-
nent is compared with the ground truth based on the mean
absolute error between them. We only use Δ𝑦 here since the
algorithm for each axis is substantially the same.

Let Δ𝑦 at frame 𝑘 and its corresponding ground truth
be 𝑥(𝑘) and 𝑦(𝑘). To evaluate relative difference, we use the
weighted mean absolute percentage error (WMAPE). This is
the mean absolute error combined with normalization using
the sum of |𝑦(𝑘) |, and given as follows:

𝑒norm =
∑

𝑘 |𝑥(𝑘) − 𝑦(𝑘) |∑
𝑘 |𝑦(𝑘) |

(30)

It takes 0 only when the extraction result is perfectly accurate
and takes 1 when 𝑥(𝑘) is always 0. Note that

∑
𝑘 |𝑦(𝑘) | is

MANABE and SHIBATA: RT IMAGE-BASED VIBRATION EXTRACTION WITH MEMORY-EFFICIENT OPTFLOW AND BLOCK-BASED ADAPTIVE FILTER
7

Table 2 WMAPE (𝑒norm) of each configuration
Proposed system Previous System

Pattern 𝑓BG 𝐴BG 𝑑 𝑓FG 𝐴FG Dir. 𝑄 𝑓BG 𝐴BG 𝑑 𝑓FG 𝐴FG Dir.
1 0.2817 0.2553 0.6084 0.2829 (0/0) 0.2200 0.3615 0.6238 0.6193 0.9325 0.7973 (Inf) 0.8762
2 0.2858 0.2804 0.4802 0.2923 0.2686 0.2867 0.3249 0.6737 0.6208 0.7686 0.7801 0.8132 0.6629
3 0.3071 0.2861 0.3490 0.3071 0.2593 0.2594 0.3071 0.7908 0.6646 0.7830 0.7908 0.8080 0.9309
4 0.3090 0.3071 0.3071 0.3447 0.3071 0.3071 - 0.8647 0.7908 0.7908 0.7776 0.7908 0.7908
5 0.3218 0.3266 0.3220 0.3415 0.3700 - - 0.8889 0.8546 0.7786 0.7783 0.7818 -

Table 3 WMAPE with scale matching (𝑒scale) of each configuration
Proposed system Previous System

Pattern 𝑓BG 𝐴BG 𝑑 𝑓FG 𝐴FG Dir. 𝑄 𝑓BG 𝐴BG 𝑑 𝑓FG 𝐴FG Dir.
1 0.2014 0.2043 0.2659 0.2040 - 0.2096 0.2062 0.2424 0.2647 1.1258 0.4450 - 0.7713
2 0.2040 0.2021 0.2084 0.2094 0.2654 0.1996 0.2015 0.2816 0.2432 0.6665 0.4364 0.9139 0.2663
3 0.1981 0.2019 0.2033 0.1981 0.2115 0.2025 0.1981 0.5449 0.2677 0.5877 0.5449 0.7538 0.9504
4 0.2032 0.1981 0.1981 0.2005 0.1981 0.1981 - 0.6792 0.5449 0.5449 0.4185 0.5449 0.5449
5 0.2008 0.1974 0.1995 0.2066 0.1956 - - 0.7163 0.7417 0.4552 0.3517 0.3732

almost proportional to 𝑓FG × 𝐴FG and is not affected by the
other parameters.

As a supplementary criterion, we also use the WMAPE
with scale matching, that is, 𝑥(𝑘) and 𝑦(𝑘) are normalized
independently to match scales of both before taking the sum
of absolute error between them, as follows:

𝑒scale =
∑
𝑘

���� 𝑥(𝑘)∑
𝑘 |𝑥(𝑘) |

− 𝑦(𝑘)∑
𝑘 |𝑦(𝑘) |

���� (31)

If 𝑒norm is high while 𝑒scale is low, 𝑥(𝑘) and 𝑦(𝑘) have dif-
ferent scales but are similar to each other, indicating that it
may be possible to reduce error by applying an appropriate
scaling factor to 𝑥(𝑘). The result of each configuration is
summarized in Table 2 and Table 3.

Let us focus on the quantization bit width 𝑄 first (all
the video parameters are default). Fig. 7 (a) shows the true
background motion (displacement from the previous frame)
and the average of all the raw optical flow vectors 𝐹 (𝑥, 𝑦)
in a frame. Since the background occupies the most area of
a frame, the raw average of the proposed system is close to
the background motion except for some modulation by the
foreground motion. With 𝑄 = 1, the amplitude tends to be
slightly smaller. The raw average of the previous system is
very small since optical flow was estimated to be 0 in most
background area.

Fig. 7 (b) shows the true foreground motion, which
should be extracted, and the extracted vibration component.
Though amplitude is smaller in the first few seconds because
it takes some time for BMFLC to adapt to the signal, the
results of the proposed system show high correlation with
the ground truth, since exclusion of the blocks with small
block weights, explained in Sect. 3.5 and 3.6, filtered out the
optical flow in the background. In addition, the result with
𝑄 = 1 is close to that with 𝑄 = 3. As shown in Table 2 and
Table 3, the 𝑄 = 1 configuration brings somewhat higher
𝑒norm (0.3615) but has little impact on 𝑒scale (0.2062). On
the other hand, it is clear that the previous system is severely
affected by the background motion, resulting in the higher
error values (𝑒norm = 0.7908, 𝑒scale = 0.5449).

Next, we evaluate how each of the video parameters af-
fects the results. To begin with, increasing 𝑓BG and 𝐴BG, the
frequency and amplitude of the background, causes gradual
increase in 𝑒norm. This is because blocks on a periphery
of the tool are affected by the background motion, inter-
fering with the block-mean optical flow 𝐹𝑖 (Sect. 3.4) of
them. Nonetheless, 𝑒scale remains almost constant, and the
extracted waveform of 𝐴BG = 0 and 20 are close to each
other as shown in Fig. 8 (a). On the other hand, the previous
system suffers from obvious deterioration in accuracy with
higher frequency or amplitude, since the filtering mecha-
nism explained in Sect. 2.2 does not work well with large
background motion.

Focusing on the tool (foreground) parameters, decreas-
ing the diameter 𝑑 negatively affects the accuracy since
blocks on the boundary become dominant. Especially with
𝑑 = 8, half of the block size 𝐵 = 16, not only 𝑒norm but also
𝑒scale get high. However, as shown in Fig. 8 (b), the proposed
system with 𝑑 = 8 is still superior to the previous system with
𝑑 = 40. If the size of the tool and its distance from a micro-
scope are known in advance, it is possible that scaling with
a pre-defined factor helps reduce 𝑒norm. Next, increasing the
frequency 𝑓FG causes error increase to the proposed system
partly because of the penalty term in the feature matching
defined in Eq. (18). The amplitude 𝐴FG is similar, except
for the 𝐴FG = 1 configuration. Possible causes include es-
timation error of optical flow and quantization error of the
ground truth data, which has 1/8-pixel precision. In Fig. 8
(c), it can be confirmed that the waveform of 𝐴FG = 1 (with
4x scaling) is less stable than 𝐴FG = 4. Still, it fits the
ground truth fairly better than the previous system, which is
completely off-track when 𝐴FG = 1.

Finally, we evaluate the combination of moving direc-
tions. In terms of 𝑒norm, vertical motion is better than diag-
onal. With vertical background motion, there is no 𝑥-axis
motion and thus the weight of blocks on the boundary is kept
low. Vertical tool motion allows the tool area to fit the grid
of blocks since the diameter 𝑑 = 32 is twice the size of block
𝐵 = 16, which is the ideal situation for the algorithm. How-

8
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300 350 400 450

D
e
lt
a
 y

Frame Number

Background
Proposed (Q = 3)
Proposed (Q = 1)

Previous

(a) True background motion and average of raw optical flow

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300 350 400 450

D
e
lt
a
 y

Frame Number

Foreground
Proposed (Q = 3)
Proposed (Q = 1)

Previous

(b) True foreground motion and extracted vibration component

Fig. 7 Processing results for the synthesized video of the default configuration

-4

-3

-2

-1

 0

 1

 2

 3

 4

 150 200 250 300 350

D
e

lt
a

 y

Frame Number

Foreground
Proposed (A = 0)
Proposed (A = 20)
Previous (A = 0)
Previous (A = 20)

(a) Amplitude of the background 𝐴BG

-4

-3

-2

-1

 0

 1

 2

 3

 4

 150 200 250 300 350

D
e

lt
a

 y

Frame Number

Foreground
Proposed (d = 40)
Proposed (d = 24)
Proposed (d = 8)
Previous (d = 40)

(b) Diameter of the tool 𝑑

-4

-3

-2

-1

 0

 1

 2

 3

 4

 150 200 250 300 350

D
e

lt
a

 y

Frame Number

Foreground
Proposed (A = 4)
Proposed (A = 1)
Previous (A = 4)
Previous (A = 1)

(c) Amplitude of the tool 𝐴FG (with 4x scaling for 𝐴FG = 1)

-4

-3

-2

-1

 0

 1

 2

 3

 4

 150 200 250 300 350

D
e

lt
a

 y

Frame Number

Foreground
Proposed (V/V)
Proposed (V/D)
Previous (V/V)
Previous (V/D)

(d) Moving direction

Fig. 8 Processing results with different configurations

ever, 𝑒scale values and the waveform in Fig. 8 (d) indicate
that the result is similar regardless of the combination. In
the previous system, on the other hand, extraction accuracy
is greatly affected.

Considering the results, the proposed system is able
to extract the desired vibration components from video
clips with various parameter configurations with consistently

Fig. 9 Processing results using actual video

higher accuracy than the previous system.

5.2 Qualitative Evaluation Using Actual Video

As an additional experiment to evaluate the practicability of
the system, we processed an actual video clip (560 × 480)
of simulated ophthalmology surgery (epiretinal membrane
peel) with the quantization bit width𝑄 = 3. In this video, an
ophthalmologist is reproducing physiological tremor which
is so severe that it is difficult to continue the operation. We
observed that the typical amount of movement between two
successive frames is not more than 3 pixels at 60 fps. As
shown in Sect. 5.1, the proposed system is capable of han-
dling such movement. An example of the visualized result
is shown in Fig. 9. The first row shows an input frame and a
block weight map with extracted vibration component, and
the second row shows raw and block-mean optical flow map,
where angle and magnitude are visualized as hue and value
in the HSV color space.

Focusing on the block-mean optical flow (bottom-right),
we can see that noises in the raw optical flow (bottom-left) are
reduced because of the weighted average using the reliability

MANABE and SHIBATA: RT IMAGE-BASED VIBRATION EXTRACTION WITH MEMORY-EFFICIENT OPTFLOW AND BLOCK-BASED ADAPTIVE FILTER
9

explained in Sect. 3.3 and 3.4. Based on the block-mean
optical flow, the system successfully detects the region of a
trembling tool as shown in the block weight map (top-right)
as white blocks, though it takes a few seconds for BMFLC
to be adapted well. We also qualitatively confirmed that
the system can extract the vibration component of the tool
with the correct direction, which is shown as the cyan arrow
overlaid on the block weight map.

5.3 Resource Utilization

The system was implemented on a Xilinx Zynq-7000
XC7Z020-1CLG400C FPGA, using Vivado 2021.2. Pro-
cessing system (PS) is not used. The resource utilization
is summarized as Table 4. The system configurations are
the combinations of 2 resolutions (480p with block size
𝐵 = 16 and 720p with 𝐵 = 32) and 3 quantization bit
widths (𝑄 ∈ {1, 2, 3}). Note that the result of 720p with
𝑄 = 3 is omitted since this configuration causes overutiliza-
tion of BRAM (141) and cannot be implemented. The “OF”
columns show the utilization of the modules from gradient
calculation (Sect. 4.1) to optical flow estimation (Sect. 4.3),
and the “Total” columns show the total utilization including
the rest. For reference, the utilization of our previous sys-
tem [11] for 480p input, which is implemented on a different
FPGA (Kintex-7 XC7K325T), is also listed.

According to the table, most of LUTs and FFs are used
for optical flow estimation, where a large amount of compu-
tations for feature calculation and matching are performed
parallelly in a pipeline. Nonetheless, their utilization ratios
are well below 40 %. The ratio of DSP for multiplication
is even lower. The most dominant resource is Block RAM,
which mainly is used as: (a) a frame buffer for the quan-
tized gradient angle 𝜃, (b) line buffers of feature vectors
𝐻𝑘−1 for feature matching, and (c) memory of the adaptive
weight vectors 𝒘 of BMFLC. The BRAM utilization of OF
corresponds to (a) and (b), which is mainly affected by the
quantization bit width 𝑄 and the image size, as well as the
cell size 𝐶 and the search window size 𝐾 . Focusing on 𝑄,
while (a) changes almost proportionally, the change in (b)
explained in Sect. 3.2 is rather gradual. This makes (b) more
dominant with smaller 𝑄. On the other hand, (c) mainly
depends on the number of blocks. Since 720p resolution
with 𝐵 = 32 requires less blocks (40 × 22 = 880) than the
480p resolution with 𝐵 = 16 (40 × 30 = 1280), the BRAM
utilization outside OF is less with 720p than 480p.

While BRAM is the most dominant resource, the uti-
lization at 480p is reduced by up to 60 % (𝑄 = 1) compared
to the previous system which uses an 8-bit frame buffer. This
enables the implementation for the smaller FPGA, even with
720p resolution which has 3 times as many pixels as 480p.

5.4 Latency

As shown in Table 4, the maximum operating frequency
(𝐹max) is around 123 MHz independently of the configura-
tion. Given that the image size including blanking region is

800× 525 for 480p and 1650× 750 for 720p, the pixel clock
frequency at 60 fps is 25.2 MHz for 480p and 74.25 MHz for
720p, both of which are well lower than the maximum op-
erating frequency. We also confirmed that the implemented
system connected with a Digilent Pcam 5C camera works
flawlessly at 720p.

We summarize the cumulative latency (clock cycles)
from the input of the last pixel of the last block (𝐼 (639, 479)
for 480p and 𝐼 (1279, 703) for 720p) to the end of each pro-
cessing step, in Table 5. Given that a frequency of tremor is
10 Hz, the latency must be less than about 1590 𝜇s to reduce
its amplitude by 90 % using anti-phase vibration. Until the
adaptive weight vector update, 720p takes about twice as
many clock cycles as 480p, which is almost proportional to
the image width. On the other hand, latency of the vibration
component calculation, which is the most dominant part, de-
pends on the number of blocks. As a result, it takes 49790
cycles at 480p and 43615 cycles at 720p in total to output
the estimated vibration component of the next frame.

The previous system, on the other hand, requires 1694
cycles to finish optical flow estimation of each pixel, and
1821 cycles in total to output the extracted result after the
last pixel of the frame (480p) is input. This is shorter than the
current system since the previous system had narrow search
area for optical flow and applied BMFLC filtering only to the
mean optical flow of the entire frame. However, considering
that it takes 36160 cycles at 480p and 49870 cycles at 720p for
the next frame to begin, the estimated vibration component
of each frame can be obtained 13630 cycles (540.9 𝜇s) after
the frame begins at 480p and before the frame begins at
720p. Therefore, the substantial latency for each resolution
is well lower than the threshold for 90 % tremor canceling
(1590 𝜇s). It is possible to reduce the latency further by
increasing the parallelism of the corresponding modules at
the cost of resource utilization, or by using an independent
faster clock to drive them. Since the maximum operating
frequency is higher than the pixel clock, using a camera with
higher frame rate would also help.

6. Conclusion and Future Work

In this paper, we proposed a real-time vibration extraction
system using dense optical flow and block-based BMFLC
filtering, and implemented the system on an FPGA. The
optical flow calculation is based on simple feature matching
using the simplified rotation-invariant histogram of oriented
gradients. The use of the quantized gradient angle reduced
memory resources used for a frame buffer. In addition, the
block-based BMFLC filtering enables the detection of blocks
belonging to the vibrating objects at low cost. Evaluation
results revealed that the proposed system brings consistently
better accuracy compared to our previous system.

For future work, we aim to improve the accuracy by in-
troducing better algorithms including new metrics for feature
similarity, optical flow reliability, and block weight. Further
reduction in Block RAM utilization will help to expand the
search window size and support higher resolutions. It is also

10
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

Table 4 Resource utilization
480p (𝐵 = 16) 720p (𝐵 = 32)

𝑄 = 1 𝑄 = 2 𝑄 = 3 𝑄 = 1 𝑄 = 2
Resource OF Total OF Total OF Total OF Total OF Total Prev. Available

LUT 12744 17925 13827 18997 14456 19627 12820 17403 14568 19123 24247 53200
FF 25595 28733 28680 31819 31696 34831 25653 28768 29137 32235 28279 106400

BRAM 21.5 68.5 33.0 80.0 46.0 93.0 51.5 83.5 78.0 110.0 172.0 140.0
DSP 1 7 1 7 1 7 1 7 1 7 54 220

𝐹max (MHz) 122.2 123.9 123.2 124.3 122.4 99.5 -

Table 5 Cumulative latency (clock cycles) at the end of each step
Step 480p 720p

Gradient Calculation 1611 3311
Feature Calculation 5626 11576

Optical Flow Estimation 5639 11589
Block-Mean OF Calculation 5652 11621

Adaptive Weight Vector Update 6549 11894
Vibration Component Calculation 49790 43615

important to perform demonstration experiments in coopera-
tion with an actuator to show the practicability of the system
to tremor suppression.

References

[1] C. N. Riviere, R. S. Rader, and N. V. Thakor, “Adaptive Cancelling of
Physiological Tremor for Improved Precision in Microsurgery,” IEEE
Transactions on Biomedical Engineering, vol.45, no.7, pp.839–846,
1998.

[2] K. C. Veluvolu, U. X. Tan, W. T. Latt, C. Y. Shee, and W. T.
Ang, “Bandlimited Multiple Fourier Linear Combiner for Real-time
Tremor Compensation,” Proc. Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBS),
pp.2847–2850, 2007.

[3] E. Rocon, J. M. Belda-Lois, A. F. Ruiz, M. Manto, J. C. Moreno,
and J. L. Pons, “Design and Validation of a Rehabilitation Robotic
Exoskeleton for Tremor Assessment and Suppression,” IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering, vol.15,
no.3, pp.367–378, 2007.

[4] A. As’arry, M. Z. Md zain, M. Mailah, and M. Hussein, “Suppres-
sion of Hand Tremor Model Using Active Force Control with Par-
ticle Swarm Optimization and Differential Evolution,” International
Journal of Innovative Computing, Information and Control (IJICIC),
vol.9, no.9, pp.3759–3777, 2013.

[5] K. Sajith, V. Darade, and S. Chaudhuri, “Hand Tremor Analysis
Using Rigid Body Manipulation in a Dynamic Virtual Haptic Envi-
ronment,” Proc. Conference on Advances In Robotics (AIR), pp.1–5,
2013.

[6] D. Case, B. Taheri, and E. Richer, “Design and Characterization of a
Small-Scale Magnetorheological Damper for Tremor Suppression,”
IEEE/ASME Transactions on Mechatronics, vol.18, no.1, pp.96–
103, 2013.

[7] Z. Uhrikova, O. Sprdlik, V. Hlavac, and E. Ruzicka, “Action Tremor
Analysis from Ordinary Video Sequence,” Proc. Annual Interna-
tional Conference of the IEEE Engineering in Medicine and Biology
Society (EMBS), pp.6123–6126, 2009.

[8] K. Cuppens, B. Vanrumste, B. Ceulemans, L. Lagae, and S. Van
Huffel, “Detection of Epileptic Seizures Using Video Data,” Proc.
International Conference on Intelligent Environments (IE), pp.372–
373, 2010.

[9] B. Soran, J. N. Hwang, S. I. Lee, and L. Shapiro, “Tremor Detection
Using Motion Filtering and SVM,” Proc. International Conference
on Pattern Recognition (ICPR), pp.178–181, 2012.

[10] X. Wang, S. Garg, S. N. Tran, Q. Bai, and J. Alty, “Hand Tremor

Detection in Videos with Cluttered Background using Neural Net-
work Based Approaches,” Health Information Science and Systems,
vol.9(30), 2021.

[11] T. Manabe, K. Uetsuhara, A. Tahara, and Y. Shibata, “FPGA Im-
plementation and Evaluation of a Real-Time Image-Based Vibration
Detection System with Adaptive Filtering,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sci-
ences, vol.E103.A, no.12, pp.1472–1480, 2020.

[12] B. D. Lucas and T. Kanade, “An Iterative Image Registration Tech-
nique with an Application to Stereo Vision,” Proc. International Joint
Conference on Artificial Intelligence (IJCAI), pp.674–679, 1981.

[13] B. K. P. Horn and B. G. Schunck, “Determining Optical Flow,”
Artificial Intelligence, vol.17, pp.185–203, 1981.

[14] R. J. Elble and W. C. Koller, Tremor, Johns Hopkins University
Press, 1990.

[15] B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice
Hall, 1985.

[16] Z. Luo, J. Chen, T. Takiguchi, and Y. Ariki, “Rotation-Invariant
Histograms of Oriented Gradients for Local Patch Robust Represen-
tation,” Proc. Asia-Pacific Signal and Information Processing As-
sociation Annual Summit and Conference (APSIPA), pp.196–199,
2015.

[17] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Hu-
man Detection,” Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp.886–893, 2005.

[18] M. J. Swain and D. H. Ballard, “Color Indexing,” International Jour-
nal of Computer Vision, vol.7, pp.11–32, 1991.

Taito MANABE Taito Manabe received
the B.E, M.E, and Ph.D. degrees from Nagasaki
University, Japan, in 2016, 2018, and 2021, re-
spectively. Now he is an assistant professor at
School of Information and Data Sciences, Na-
gasaki University. His research interests include
real-time processing with an FPGA.

Yuichiro SHIBATA Yuichiro Shibata re-
ceived the B.E. degree in electrical engineering,
the M.E. and Ph.D. degrees in computer science
from Keio University, Japan, in 1996, 1998 and
2001, respectively. Currently, he is a professor at
Graduate School of Engineering, Nagasaki Uni-
versity. He was a Visiting Scholar at University
of South Carolina in 2006. His research inter-
ests include reconfigurable systems and parallel
processing.

