Echinocandin Resistance in Candida auris Occurs in the Murine Gastrointestinal Tract due 1 to FKS1 Mutations

3

4	Tatsuro Hirayama, ^{a,b} # Taiga Miyazaki, ^c Makoto Sumiyoshi, ^c Yuya Ito, ^b Nobuyuki							
5	Ashizawa, ^{b,d} Kazuaki Takeda, ^b Naoki Iwanaga, ^b Takahiro Takazono, ^{b,e} Kazuko Yamamoto, ^b							
6	Koichi Izumikawa, ^{d,e} Katsunori Yanagihara, ^f Koichi Makimura, ^g Kazuhiro Tsukamoto, ^a							
7	Shigeru Kohno, ^b Hiroshi Mukae ^b							
8								
9	^a Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical							
10	Sciences, Nagasaki, Japan							
11	^b Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan							
12	^c Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department							
13	of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan							
14	^d Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan							
15	^e Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical							
16	Sciences, Nagasaki, Japan							
17	^f Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan							

- ^g Teikyo University Institute of Medical Mycology, Teikyo University, Tokyo, Japan
- 19 Running title: Echinocandin Resistance in *C. auris* from *FKS1* Mutation
- 20
- 21 #Address correspondence to Tatsuro Hirayama, tatsuro_h_20@nagasaki-u.ac.jp
- 22 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; Tel: +81 95 819 7273; Fax: +81 95 849 7285

24	Candida auris is resistant to multiple antifungal agents. This study investigated its							
25	antifungal susceptibility and explored FKS1 mutations across the isolates from mice							
26	enterically colonized with wild-type C. auris and treated with echinocandin. Resistant C.							
27	auris with FKS1 mutations, including S639F, S639Y, D642Y, R1354H, or R1354Y, were							
28	isolated and found to be micafungin and caspofungin resistant in vivo; however, the MIC of							
29	isolates with mutation in R1354 remained below the micafungin breakpoint in vitro.							
30								
31	Keywords: Candida auris, yeast, antifungal resistance, gastrointestinal tract							
32								
33	Text							
34	Candida auris is a multidrug-resistant yeast responsible for causing invasive fungal							
35	diseases. Despite this, most C. auris isolates are susceptible to echinocandins, making it the							
36	recommended initial treatment for infections caused by C. auris in adults (1). Clinical							
37	echinocandin resistance in C. auris is generally associated with amino acid mutations in the							
38	hot spot (HS) regions of <i>FKS1</i> , which encode β -1,3-D glucan synthase (2, 3). The							
39	development of echinocandin resistance has been reported in C. auris isolates recovered from							

40 patients treated with echinocandins (4-6).

41	C. auris was reported to mainly colonize mucosal surfaces such as the skin and
42	respiratory and urinary tracts; however, it could also be isolated from stools, indicating that
43	it colonized the intestinal tract (7, 8). Diarrhea and gastrointestinal (GI) decompression were
44	reported to be risk factors for C. auris infection (9), suggesting the possibility of C. auris
45	colonization of the intestinal tract and dissemination via translocation; this was reported in a
46	murine model (10). The GI tract is the reservoir of Candida spp., where they acquire
47	antifungal drug resistance (11); therefore, studies are needed to elucidate the mechanism of
48	C. auris antifungal resistance acquisition in the intestinal tract. This study investigated C.
49	auris antifungal susceptibility and explored the FKS1 mutations across isolates from mice
50	enterically colonized with C. auris and subsequently treated with micafungin or caspofungin.
51	C. auris NCPF 8971 (Clade I) (12), C. auris JCM 15448 (Clade II) (13), and
52	Candida albicans SC 5314 (14) were used in this study. Micafungin and caspofungin MICs
53	were 0.12 and 0.25 μ g/mL, respectively, for NCPF 8971 and 0.06 and 0.008 μ g/mL each for
54	JCM 15448, and SC 5314, respectively.
55	All animal experiments were performed in compliance with the Guide for the Care

and Use of Laboratory Animals (15) and the institutional regulations and guidelines for

57	animal experimentation after pertinent review and approval by the Institutional Animal Care
58	and Use Committee of Nagasaki University under protocol number 1906121536. Candida
59	colonization of the intestinal tract of a murine model was established, as described previously
60	(16). Briefly, specific-pathogen-free, 5-week-old female DBA/2J mice (CLEA Japan Inc.,
61	Tokyo, Japan) were fed a low-protein diet before colonization. The mice were inoculated
62	intragastrically with 0.2 mL of <i>Candida</i> cell suspensions adjusted to 5×10^6 cells/mL. Sterile
63	water with antibacterial agents was provided post-inoculation. The mice were treated
64	intraperitoneally with 2.71 mg/kg micafungin (Astellas, Tokyo, Japan) or 0.76 mg/kg
65	caspofungin (MSD, Tokyo, Japan) for 11 days (4-14 days after inoculation). Echinocandin
66	dose was the standard (AUC $_{100}$), corresponding to human equivalent exposure, and was
67	calculated using the pharmacokinetic/pharmacodynamic study (17). Fifteen days post-
68	inoculation, stool from live mice was collected, weighed, and homogenized. The latter was
69	then appropriately diluted and spread on yeast extract peptone dextrose plates with 200 mg/L
70	imipenem. After 48-h incubation, a single colony per animal was collected from the
71	developed colonies, stored at -80 °C, and tested for drug sensitivity to echinocandins. All
72	animal experiments were performed twice, with 10 mice per group in each experiment, and
73	data from two experiments were combined to get the final value.

74	While SC 5314 or JCM 15448 had no colony, NCPF 8971 formed colonies at 3 to 4
75	log ₁₀ CFU/mg of stool. Table 1 shows echinocandin susceptibilities of <i>C. auris</i> isolates from
76	the stool of NCPF 8971-inoculated mice treated with micafungin or caspofungin. Antifungal
77	susceptibility tests were performed using the Sensititre YeastOne microtiter panel (TREK
78	Diagnostic Systems, East Grinstead, UK) (18). Although breakpoints have not been
79	established for C. auris, the Centers for Disease Control and Prevention (CDC) published
80	tentative MIC breakpoints, as follows: micafungin, caspofungin, and anidulafungin \ge 4, 2,
81	and 4 µg/mL, respectively (<u>https://www.cdc.gov/fungal/candida-auris/c-auris-</u>
82	antifungal.html). Accordingly, 5%, 20%, and 5% of the micafungin-treated isolates and 10%,
83	35%, and 5% of caspofungin-treated isolates were considered resistant to micafungin,
84	caspofungin, and anidulafungin, respectively. All micafungin or anidulafungin-resistant
85	isolates were found to be caspofungin resistant.
86	The sequences of FKS1 HS1, HS2, and HS3 regions of all isolates were analyzed
87	next. FKS1 mutations were found in 10% of micafungin-treated mice and 20% of

89 identified from 20 strains across micafungin-treated mice; four isolates harboring S639F,

88

90 D642Y, R1354Y, or R1354H were identified from 20 strains in caspofungin-treated mice

caspofungin-treated mice. Two isolates harboring FKS1 mutation (S639Y or R1354H) were

91	(Table 1). No isolate with mutation in FKS1 HS3 was observed. All micafungin or
92	anidulafungin-resistant isolates harbored mutations in FKS1 HS1 or HS2, whereas 45% of
93	caspofungin-resistant isolates had no mutation. The FKS1 sequences of all non-wild-type
94	strains were deposited to the DDBJ with the accession numbers shown in Table 1.
95	All statistical analyses were carried out using Prism, version 9.0.2 software
96	(GraphPad Software, Inc., La Jolla, CA, USA). The survival curves were compared using log
97	rank (Mantel-Cox) test. The fungal burden in the organs was analysed using Mann-Whitney
98	U test. A P value < 0.05 was considered to be statistically significant.
99	To examine in vivo echinocandin susceptibility, survival curves of mice infected
100	with wild-type and mutant strains evolved in vivo in the above experiment were evaluated.
101	Mice were infected intravenously with C. auris NCPF 8971 (wild type) and four isolates,
102	each harboring S639Y, D642Y, R1354Y, and R1354H, and subsequently treated with
103	micafungin or caspofungin (n = 5 /group). Specific-pathogen-free, 7-week-old female
104	BALB/c mice (Japan SLC Inc., Shizuoka, Japan) were administered 150 and 100 mg/kg
105	cyclophosphamide 4 and 1 day before infection, respectively, and 100 mg/kg 2 and 5 days
106	post-infection. They were infected intravenously through the lateral vein with 0.2 mL of
107	Candida cell suspension adjusted to 3.5×10^5 cells/mL. Micafungin (2.71 mg/kg) and

108	caspofungin (0.76 mg/kg) were administered intraperitoneally for seven consecutive days
109	commencing 2 h post-infection. The survival rates were not significantly different between
110	wild-type- and mutant strains-infected mice in the no-treatment group. However, the survival
111	rates of the wild-type-infected mice suggested lower mortality than those of mice infected
112	with all types of <i>FKS1</i> mutants in micafungin or caspofungin treatment groups ($P < 0.05$)
113	(Figure 1).
114	The therapeutic efficacy of echinocandin was evaluated by comparing the reduction
115	in C. auris CFU burden in mice kidneys. BALB/c mice were infected intravenously with C.
116	auris NCPF 8971 and four isolates harboring FKS1 mutations. The number of Candida cells
117	was adjusted to 5×10^{6} CFU/mouse. Micafungin (2.71 mg/kg) and caspofungin (0.76 mg/kg)
118	were administered intraperitoneally for three consecutive days commencing 2 h post-
119	infection. To evaluate fungal burden in kidneys, mice were euthanized 3 days after infection
120	(n = 5/group). In wild-type-infected mice, both micafungin and caspofungin significantly
121	reduced the kidney fungal burden ($P < 0.01$) compared to the control group; no significant
122	reduction was observed among the four isolates harboring FKS1 mutations (Figure 2).
123	This is the first report of C. auris acquiring echinocandin resistance in the murine

124 GI tract. Here, resistant strains were isolated from NCPF 8971-inoculated mice; none were

isolated from those inoculated with JCM 15448 and SC 5314. Since only few *C. auris* clade
II strains are echinocandins resistant (19), different *C. auris* clades may have varying
capacities to acquire echinocandin resistance.

In C. auris, three mutations (S639Y, S639P, and S639F) in FKS1 HS1 have been 128reported to be correlated with echinocandin resistance (2, 3); recently, mutations in FKS1 129HS1 (Δ F635, F635Y, F635L, and D642Y) and *FKS1* HS2 (R1354S and R1354H) have also 130 131been reportedly implicated (4, 5, 20). In our study, isolates harbored mutations in FKS1, such as S639F, S639Y, D642Y, R1354H, and R1354Y. These mutations except R1354Y have all 132previously been described multiple times. All mutations showed echinocandin resistance 133134both in vitro and in vivo. Our findings show that the strains with mutation in R1354 were the most isolated, and there could be more strains with this mutation clinically. Interestingly, in 135vitro MICs of all the isolates with mutation in R1354 exceeded caspofungin breakpoints but 136not micafungin and anidulafungin, as proposed by CDC; the therapeutic effect of micafungin 137in vivo was poor. This indicated that although the MICs of echinocandins are below the 138breakpoints, if close to 1 µg/mL, strains may become echinocandin resistant. 139

The present study demonstrated that *C. auris* acquires echinocandin resistance
relatively easily in the murine GI tract. Limitations of the present study include the use of

142	only two C. auris strains and the inability to clarify the echinocandin concentrations in the
143	GI tract. Previous studies reported that the GI caspofungin concentrations were significantly
144	lower than plasma levels, and drug levels within the GI tract were not sufficiently maintained
145	for long time in a murine model (11). Similarly, in our model, GI drug concentrations were
146	unlikely to be high enough to inhibit C. auris growth; this may have created a niche that
147	allowed C. auris to acquire echinocandin resistance. To the best of our knowledge, there are
148	no reports examining echinocandin concentrations in human GI tract; however, insufficient
149	echinocandin concentrations may induce C. auris to acquire echinocandin resistance in
150	humans. Further studies are warranted to examine the relationship between drug
151	concentrations in the GI tract and C. auris resistance acquisition, as well as GI echinocandin
152	concentrations in humans. This study may have implications in clinical practice and future
153	validation; therefore, using various strains with different clades might help identify novel
154	FKS1 mutations.

155

156 Acknowledgments

This work was partially supported by the Japan Society for the Promotion of Science (JSPS)
KAKENHI (grant numbers 21K16322 to T.H. and 19K07540 to T.M.) and the Research

- 160 Medical Research and Development (AMED) (grant number JP21fk0108094 to T.M., K.M.,
- 161 and S.K.).
- 162

163 **References**

Tsay S, Kallen A, Jackson BR, Chiller TM, Vallabhaneni S. 2018. Approach to the
 Investigation and Management of Patients With Candida auris, an Emerging Multidrug Resistant Yeast. Clin Infect Dis 66:306-311.

- Chowdhary A, Prakash A, Sharma C, Kordalewska M, Kumar A, Sarma S, Tarai B, Singh
 A, Upadhyaya G, Upadhyay S, Yadav P, Singh PK, Khillan V, Sachdeva N, Perlin DS,
 Meis JF. 2018. A multicentre study of antifungal susceptibility patterns among 350
 Candida auris isolates (2009-17) in India: role of the ERG11 and FKS1 genes in azole
 and echinocandin resistance. J Antimicrob Chemother 73:891-899.
- Rhodes J, Abdolrasouli A, Farrer RA, Cuomo CA, Aanensen DM, Armstrong-James D,
 Fisher MC, Schelenz S. 2018. Genomic epidemiology of the UK outbreak of the emerging
 human fungal pathogen Candida auris. Emerg Microbes Infect 7:1-2.
- Alfouzan W, Ahmad S, Dhar R, Asadzadeh M, Almerdasi N, Abdo NM, Joseph L, de Groot
 T, Alali WQ, Khan Z, Meis JF, Al-Rashidi MR. 2020. Molecular Epidemiology of Candida
 Auris Outbreak in a Major Secondary-Care Hospital in Kuwait. J Fungi (Basel) 6.
- Asadzadeh M, Mokaddas E, Ahmad S, Abdullah AA, de Groot T, Meis JF, Shetty SA.
 2022. Molecular characterisation of Candida auris isolates from immunocompromised
 patients in a tertiary-care hospital in Kuwait reveals a novel mutation in FKS1
 conferring reduced susceptibility to echinocandins. Mycoses 65:331-343.
- Jacobs SE, Jacobs JL, Dennis EK, Taimur S, Rana M, Patel D, Gitman M, Patel G,
 Schaefer S, Iyer K, Moon J, Adams V, Lerner P, Walsh TJ, Zhu Y, Anower MR, Vaidya
 MM, Chaturvedi S, Chaturvedi V. 2022. Candida auris Pan-Drug-Resistant to Four
 Classes of Antifungal Agents. Antimicrob Agents Chemother 66:e0005322.
- 186 7. Welsh RM, Bentz ML, Shams A, Houston H, Lyons A, Rose LJ, Litvintseva AP. 2017.

187	Survival, Persistence, and Isolation of the Emerging Multidrug-Resistant Pathogenic
188	Yeast Candida auris on a Plastic Health Care Surface. J Clin Microbiol 55:2996-3005.

- Piatti G, Sartini M, Cusato C, Schito AM. 2022. Colonization by Candida auris in critically ill patients: role of cutaneous and rectal localization during an outbreak. J Hosp Infect 120:85-89.
- Tian S, Rong C, Nian H, Li F, Chu Y, Cheng S, Shang H. 2018. First cases and risk factors
 of super yeast Candida auris infection or colonization from Shenyang, China. Emerg
 Microbes Infect 7:1-9.
- 195 10. Abe M, Katano H, Nagi M, Higashi Y, Sato Y, Kikuchi K, Hasegawa H, Miyazaki Y. 2020.
 196 Potency of gastrointestinal colonization and virulence of Candida auris in a murine
 197 endogenous candidiasis. PLoS One 15:e0243223.
- Healey KR, Nagasaki Y, Zimmerman M, Kordalewska M, Park S, Zhao Y, Perlin DS. 2017.
 The Gastrointestinal Tract Is a Major Source of Echinocandin Drug Resistance in a Murine Model of Candida glabrata Colonization and Systemic Dissemination.
 Antimicrob Agents Chemother 61.
- 202 12. Borman AM, Szekely A, Johnson EM. 2017. Isolates of the emerging pathogen Candida
 203 auris present in the UK have several geographic origins. Med Mycol 55:563-567.
- 13. Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H. 2009. Candida
 auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an
 inpatient in a Japanese hospital. Microbiol Immunol 53:41-44.
- 207 14. Gillum AM, Tsay EY, Kirsch DR. 1984. Isolation of the Candida albicans gene for
 208 orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E.
 209 coli pyrF mutations. Mol Gen Genet 198:179-182.
- 210 15. Anonymous. Institute of Laboratory Animal Resources (U.S.). Committee on Care and
 211 Use of Laboratory Animals. 2011. Guide for the care and use of laboratory animals.
- 16. Hirayama T, Miyazaki T, Ito Y, Wakayama M, Shibuya K, Yamashita K, Takazono T,
 Saijo T, Shimamura S, Yamamoto K, Imamura Y, Izumikawa K, Yanagihara K, Kohno S,
 Mukae H. 2020. Virulence assessment of six major pathogenic Candida species in the
 mouse model of invasive candidiasis caused by fungal translocation. Sci Rep 10:3814.
- Arendrup MC, Perlin DS, Jensen RH, Howard SJ, Goodwin J, Hope W. 2012. Differential
 in vivo activities of anidulafungin, caspofungin, and micafungin against Candida
 glabrata isolates with and without FKS resistance mutations. Antimicrob Agents
 Chemother 56:2435-2442.

Pfaller MA, Chaturvedi V, Diekema DJ, Ghannoum MA, Holliday NM, Killian SB, Knapp
CC, Messer SA, Miskou A, Ramani R. 2012. Comparison of the Sensititre YeastOne
colorimetric antifungal panel with CLSI microdilution for antifungal susceptibility
testing of the echinocandins against Candida spp., using new clinical breakpoints and
epidemiological cutoff values. Diagn Microbiol Infect Dis 73:365-368.

- 19. Iguchi S, Itakura Y, Yoshida A, Kamada K, Mizushima R, Arai Y, Uzawa Y, Kikuchi K.
 2019. Candida auris: A pathogen difficult to identify, treat, and eradicate and its
 characteristics in Japanese strains. J Infect Chemother 25:743-749.
- 228 20. Sharma D, Paul RA, Rudramurthy SM, Kashyap N, Bhattacharya S, Soman R,
 229 Shankarnarayan SA, Chavan D, Singh S, Das P, Kaur H, Ghosh AK, Prasad R, Sanyal
 230 K, Chakrabarti A. 2022. Impact of FKS1 Genotype on Echinocandin In Vitro
 231 Susceptibility in Candida auris and In Vivo Response in a Murine Model of Infection.
 232 Antimicrob Agents Chemother 66:e0165221.

Table 1. Echinocandin susceptibilities of *C. auris* wild-type and mutant strains isolated from

234	mouse	stool

Agents	Stain	DDBJ	Amino acid mutation		MIC (µg/mL)		
administered	no.	Accession	FKS1	FKS1	MFG	CAS	AFG
		no.	HS1	HS2			
	NCPF		WT	WT	0.12	0.25	0.12
	8971						
MFG	1	LC736030	S639Y	WT	8	> 8	> 8
	2	LC736033	WT	R1354H	1	> 8	1
	3		WT	WT	1	> 8	1

4	WT	WT	0.5	2	1
5	WT	WT	0.25	1	0.25
6	WT	WT	0.25	0.5	0.25
7	WT	WT	0.12	1	0.25
8	WT	WT	0.12	1	0.25
9	WT	WT	0.12	1	0.25
10	WT	WT	0.12	1	0.25
11	WT	WT	0.12	1	0.12
12	WT	WT	0.12	1	0.12
13	WT	WT	0.12	1	0.12
14	WT	WT	0.12	0.5	0.25
15	WT	WT	0.12	0.5	0.25
16	WT	WT	0.12	0.5	0.12
17	WT	WT	0.12	0.5	0.12
18	WT	WT	0.12	0.5	0.12
19	WT	WT	0.12	0.25	0.25

	20		WT	WT	0.03	1	0.25	
CAS	1	LC736029	S639F	WT	> 8	> 8	1	
	2	LC736031	D642Y	WT	4	> 8	> 8	
	3	LC736034	WT	R1354H	2	> 8	2	
	4	LC736032	WT	R1354Y	1	4	1	
	5		WT	WT	0.5	> 8	0.5	
	6		WT	WT	0.25	> 8	0.5	
	7		WT	WT	0.25	1	0.25	
	8		WT	WT	0.12	1	0.25	
	9		WT	WT	0.12	1	0.25	
	10		WT	WT	0.12	1	0.25	
	11		WT	WT	0.12	1	0.25	
	12		WT	WT	0.12	1	0.12	
	13		WT	WT	0.12	1	0.12	
	14		WT	WT	0.12	1	0.12	
	15		WT	WT	0.12	0.5	0.12	

16	WT	WT	0.12	0.5	0.12
17	WT	WT	0.12	0.5	0.12
18	WT	WT	0.12	0.25	0.12
19	WT	WT	0.06	0.25	0.12
20	WT	WT	0.03	2	0.25

235 Tentative MIC breakpoints: micafungin $\geq 4 \ \mu g/mL$, caspofungin $\geq 2 \ \mu g/mL$, and 236 anidulafungin $\geq 4 \ \mu g/mL$

MFG, micafungin; CAS, caspofungin; AFG, anidulafungin; WT, wild type

239 Figure legends

Figure 1. Survival analyses of mice infected with C. auris wild-type strain and FKS1

241 mutants

242 Immunocompromised mice were inoculated with C. auris NCPF 8971 (wild-type) and

isolates harboring *FKS1* mutations. Micafungin (2.71 mg/kg) and caspofungin (0.76 mg/kg)

244 were administered intraperitoneally for seven consecutive days. Survival curves of FKS1

- 245 mutant infection were compared with those of FKS1 wild-type infection. Data were analyzed
- by log-rank (Mantel-Cox) test. Asterisks indicate statistically significant differences (* P <
- 247 0.05).

248 MFG, micafungin; CAS, caspofungin

249

250	Figure 2. Treatment efficacy of micafungin and caspofungin against <i>C. auris</i> wild-type
251	strain and <i>FKS1</i> mutants
252	BALB/c mice were infected with C. auris NCPF 8971 (wild-type) and isolates harboring
253	FKS1 mutations. Micafungin (2.71 mg/kg) and caspofungin (0.76 mg/kg) were administered
254	intraperitoneally for three consecutive days. The number of cells recovered from the bilateral
255	kidneys is indicated for individual mice in the plots, and error bars represent SDs. Asterisks
256	and NS indicate statistically significant differences (** $P < 0.01$) and no significance ($P >$
257	0.05), respectively. NT indicates no treatment. MFG, micafungin; CAS, caspofungin

