1	Macrolides promote CCL2-mediated macrophage recruitment and clearance of
2	nasopharyngeal pneumococcal colonies in mice
3	
4	Naoki Iwanaga ¹ , Shigeki Nakamura ^{1, 2} , Kazuhiro Oshima ¹ , Toshiki Kajihara ¹ , Takahiro
5	Takazono ¹ , Taiga Miyazaki ¹ , Koichi Izumikawa ^{1, 2} , Katsunori Yanagihara ³ , Akihiro
6	Sugawara ⁴ , Toshiaki Sunazuka ⁴ , Satoshi Omura ⁴ , Shigeru Kohno ¹
7	
8	¹ Department of Respiratory Diseases and ² Unit of Molecular Microbiology and
9	Immunology, Nagasaki University Graduate School of Biomedical Sciences,
10	³ Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki,
11	⁴ Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
12	
13	Address for correspondence:
14	Dr. Shigeki Nakamura, MD., Ph.D.
15	Department of Respiratory Diseases and Unit of Molecular Microbiology and
16	Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1
17	Sakamoto, Nagasaki, 852-8501, Japan
18	Tel: +81-95-819-7273; Fax: +81-95-849-7285; E-mail: moju516@nagasaki-u.ac.jp

- 19 Running title: Macrolides and pneumococcal colonization
- 20
- 21 *Financial support.* No financial support.
- 22 *Potential conflicts of interest.* All authors: No reported conflicts.
- 23 Correspondence: Dr. Shigeki Nakamura, MD, PhD
- 24 Department of Respiratory Diseases and Unit of Molecular Microbiology and
- 25 Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1
- 26 Sakamoto, Nagasaki, 852-8501, Japan
- 27 Tel: +81-95-819-7273; Fax: +81-95-849-7285; E-mail: moju516@nagasaki-u.ac.jp

29 Abstract

30 **Background.** Streptococcus pneumoniae (pneumococcus) colonizes mucosal surfaces of the upper respiratory tract (URT), resulting in invasive disease. Macrolides 3132are known for their immunomodulatory effects. We investigated the potency of macrolides to reduce pneumococcal colonization by activating host innate immunity. 33 The kinetics of colonization, cellular response, and inflammatory cytokine 34Methods. levels in the URT were assessed after nasal inoculation of pneumococci. EM900 (a 35novel 12-membered non-antibiotic macrolide having an immunomodulatory effect) was 36 37orally administered throughout the experiment. Survival was evaluated for 10 days. Macrolide-mediated CCL2 production from peritoneal macrophages was determined by 38ELISA. The cell-signaling pathway was analyzed by western blotting and gene 39 40 silencing assays. S. pneumoniae was significantly reduced from EM900-treated mice 14 days 41 Results. 42after pneumococcal inoculation. Macrophage recruitment and *Ccl2* mRNA expression were promoted. CCL2 production from peritoneal macrophages was significantly 43induced by macrolides and was dependent on NF-kB phosphorylation through the 4445MyD88- or TRIF-mediated pathway. Mortality of mice with invasive pneumococcal disease was improved by pre-treatment with EM900. 46

Conclusions. Macrolides may inhibit invasive pneumococcal infections by
accelerating the clearance of pneumococcal nasopharyngeal colonization via promotion
of macrophage-mediated innate immunity.
Key words: *Streptococcus pneumoniae*, macrolides, colonization, CCL2, macrophage

52 Introduction

53	Streptococcus pneumoniae (pneumococcus) is the most common cause of
54	community-acquired pneumonia in all age groups and leads to hospitalization [1].
55	Pneumococcus frequently colonizes the upper respiratory tract (URT), where it persists
56	for four to six weeks [2]. In general, this colonization is simply asymptomatic carriage;
57	however, it occasionally leads to invasive disease [3]. Therefore, control of
58	pneumococcal nasopharyngeal colonization is crucial.
59	Local immune responses play an important regulatory role in resistance to pathogens
60	at the infection site. Recognition of pneumococcus by different sensors of the innate
61	immune system called pattern recognition receptors (PRR) regulates production of
62	inflammatory mediators that orchestrate subsequent adaptive immune responses [4]. In
63	particular, TLR2 senses lipid-modified constituents on S. pneumoniae, which
64	contributes to clearance of colonies through the Th17 response and influx of monocytes
65	and macrophages [5]. A recent study found that Nod2 protein, present on phagocytes,
66	senses degradation products of pneumococcus-derived peptidoglycan, leading to the
67	release of the CCL2 chemokine, followed by recruitment of monocytes/macrophages
68	and clearance of pneumococcal colonization [6].
69	The current conjugate vaccine against pneumococcus is highly effective against

 $\mathbf{5}$

70	nasopharyngeal carriage and invasive disease caused by vaccine-type strains [7].
71	However, the surface capsular polysaccharide of pneumococcus serves as the basis for
72	serotyping of these organisms; currently, >90 different pneumococcal serotypes have
73	been identified, and serotype replacement by non-vaccine-type strains, which generate
74	disease, has become a serious threat [7]. Additionally, in contrast to conjugate vaccines,
75	the 23-valent pneumococcal polysaccharide vaccine cannot eradicate pneumococcal
76	colonization and sequential bacterial pneumonia [8]. Therefore, new strategies to elicit
77	protection against a broader range of pneumococcal strains are required.
78	Macrolides are antibiotics that are classically known as protein synthesis inhibitors;
79	they have a broad antimicrobial effect on gram-positive cocci and atypical pathogens. In
80	addition to these antimicrobial effects, several studies demonstrate the
81	immunomodulatory activities of macrolides on host bacteria [9, 10]. The regulation of
82	excessive inflammation by macrolides is well characterized and the role of macrolides
83	in the activation of innate immunity, including their ability to promote neutrophil
84	migration [9], regulate monocyte differentiation into macrophages, and modulate
85	macrophage function, has been established [10]. Recently, the Kitasato Institute for Life
86	Sciences at Kitasato University prepared EM900, a new 12-membered-ring
87	non-antibiotic macrolide derivative of erythromycin that does not have antimicrobial

88	activity but has immunomodulatory effects [11]. EM900 suppresses activation of
89	nuclear factor NF- κ B and production of interleukin (IL)-8, IL-1 β , and TNF- α from
90	human airway epithelial cells, demonstrating its anti-inflammatory action [12]. We
91	hypothesized that macrolides may be potential candidates for prophylaxis of
92	pneumococcal infection through modulation of host innate immunity. This study
93	investigated the immunomodulatory effects of macrolides in inhibiting pneumococcal
94	nasopharyngeal colonization and subsequent invasive disease in mice.
95	
96	Methods
97	Laboratory animals
98	C57BL/6 (six weeks old, female) specific-pathogen-free mice were purchased from
99	Japan SLC (Hamamatsu, Japan). All animal experiments were performed in accordance
100	with the guidelines of the Laboratory Animal Center for Biomedical Research, Nagasaki
101	University School of Medicine.
102	
103	Bacterial strains and growth conditions
104	S. pneumoniae strain P1121 (type 23F clinical isolate) [5, 13], P1547 (S. pneumoniae
105	serotype 6A, mouse virulent, clinical isolate from blood) [14], and P173 (S. pneumoniae

 $\overline{7}$

106	serotype 2, capsulated clinical isolate) were kindly provided by JN Weiser (Professor,
107	University of Pennsylvania). P1121 cells were grown in 10 ml of tryptic soy broth
108	(Difco; BD) until the mid-log phase was reached ($OD_{660} = 0.5$). After centrifugation, the
109	pellet was resuspended in 100 μ l of sterile PBS to achieve a density of 10 ⁹ CFU/ml [5].
110	
111	Experimental murine model of pneumococcal colonization and invasive diseases
112	In colonization studies, 10 μ l (10 ⁷ CFUs) of the pneumococcal suspension was
113	introduced into the nostril of each mouse. After a predetermined number of days, mice
114	were sacrificed by CO ₂ asphyxiation. The trachea was exposed and cannulated to
115	introduce 200 μ l of sterile PBS. The lavage fluid exiting the nares was collected and
116	P1121 cells were quantified by plating 10 μ l serial dilutions of the nasal wash onto
117	tryptic soy agar plates supplemented with catalase (4,741 U/plate) (Worthington
118	Biochemical Corp.) and neomycin (20 μ g · ml ⁻¹) (Sigma-Aldrich Japan, Tokyo, Japan),
119	and incubating overnight at 37°C in a 5% CO ₂ atmosphere [5]. EM900 (10 mg \cdot kg ⁻¹), a
120	gift from T Sunazuka (Kitasato University, Tokyo, Japan) [11], was administered orally
121	twice a day from one week before the inoculation and throughout the experiment (We
122	confirmed that MICs of EM900 against pneumococcus used in this study are greater
123	than 100 μ g · ml ⁻¹). At days 3, 7, and 14 after inoculation, the mice were sacrificed and

124	nasal washing was performed. These lavages were analyzed to evaluate the kinetics of
125	colonization and cellular inflammatory response by flow cytometry, and Ccl2 and
126	IL-17A mRNA expression by quantitative RT-PCR (qRT-PCR). WT mice with or
127	without EM900 treatment for three weeks before infection were challenged intranasally
128	with 5×10^7 CFU of strains P1547 and P173, and survival was observed for 10 days
129	after the challenge.

131 Flow cytometry and intracellular cytokine staining

132Nasal lavages were pooled from 5 mice and the cells were collected by centrifugation at 1200 g for 10 min at 4°C. The pellets were washed once using 200 µl washing buffer 133(PBS supplemented with 1% BSA), collected again by centrifugation, resuspended in 134200 µl of washing buffer, and transferred to a 96-well polypropylene plate. Nonspecific 135136 binding was blocked using a rat anti-mouse antibody directed against the FcyIII/II 137 receptor (CD16/CD32) (BD Biosciences), and the following rat anti-mouse cell surface antibodies were applied: Ly6G (BD Biosciences), CD45 (BD Biosciences), and F4/80 138 (eBioscience). The final dilutions of the antibodies were 1:300 for the FITC- Ly6G 139140 antibody and 1:400 for PE-CD45 and APC-F4/80 antibodies. Reactions were performed by incubating the plate on ice in the dark for 45 min. All samples were resuspended in 141

142	wash buffer and then subjected to flow cytometry analysis by using a BD FACSCalibur
143	flow cytometer (BD Biosciences) [15]. For intracellular staining, cytokine secretion
144	from peritoneal cells pretreated with macrolides was blocked by using GolgiPlug (BD
145	Biosciences). Stimulated peritoneal cells were detached from plates by chilling on ice at
146	4°C and washing with cold PBS. The cells were pelleted, resuspended in 1% BSA, and
147	stained for surface markers as described above. Cells were then fixed and permeabilized
148	using the BD Cytofix/Cytoperm Plus Kit (BD Biosciences). Accumulation of
149	intracellular CCL2 was detected using an Armenian hamster anti-mouse CCL2
150	antibody (eBioscience). An Armenian hamster IgG isotype control was used for the
151	detection of nonspecific binding. All flow cytometry data were analyzed using Flow Jo
152	Mac, version 9.6 (Tree Star) [6].
153	
154	Macrophage depletion
155	Resident macrophages in the nasopharynx were depleted using liposome-Cl2MDP
156	(FormuMax) as previously described [5]. For depletion, liposome-Cl ₂ MDP (20 μ l/dose)
157	was administered intranasally at 4 and 8 days before and 1 and 8 days after the P1121
158	challenge. The influence of macrophage depletion was evaluated at 14 days after
159	bacterial inoculation.

1	6	ſ
т	v	v

161	Isolation and culture of peritoneal macrophages
162	Three days after intraperitoneal injection of 4% sterile thioglycollate medium (2 ml),
163	peritoneal macrophages were isolated by peritoneal lavage with Hank's buffer (without
164	Ca^{2+} and Mg^{2+}) containing 0.1% gelatin. Contaminating erythrocytes, granulocytes, and
165	dead cells were removed by density gradient centrifugation for 45 min at 800 g in
166	Mono-Poly resolving medium, according to the manufacturer's protocol (MP
167	Biomedicals). Purified peritoneal macrophages were washed 3 times and cultured
168	overnight in Dulbecco's modified Eagle medium [6].
169	
170	ELISA and cytokine array
171	CCL2 concentrations in culture supernatants of peritoneal macrophages that were
172	pretreated with EM900, clarithromycin (CAM) (Sigma-Aldrich Japan, Tokyo, Japan),
173	azithromycin (AZM) (Sigma-Aldrich Japan, Tokyo, Japan), or solvent only for 12–18 h
174	were assayed using mouse Quantikine ELISA kits (R&D Systems, Minneapolis, MN),
175	according to the manufacturer's protocols. To investigate macrolide-mediated signaling
176	transduction pathways, we utilized specific MAPK inhibitors, i.e., SP600125 (JNK
177	inhibitor), SB203580 (p38 inhibitor), PD98059 (MEK-1 inhibitor), and parthenolide

178	(NF-kB inhibitor) (Sigma-Aldrich Japan, Tokyo, Japan). Additionally, the cytokine
179	expression profile of macrolide-stimulated peritoneal macrophages was analyzed using
180	a mouse cytokine protein array (R&D Systems, Minneapolis, MN), following the
181	manufacturer's instructions. For this experiment, the same amount of cell density and
182	supernatant derived from each culture were used.
183	
184	Lipopolysaccharide (LPS) detection
185	To exclude the possibility of LPS contamination, the Limulus amebocyte lysate test
186	using the Gel-clot method (Pyrotell) was performed for culture supernatants and
186 187	using the Gel-clot method (Pyrotell) was performed for culture supernatants and reagents. The detection limit of the assay was 0.03 EU/ml (0.003 ng
186 187 188	using the Gel-clot method (Pyrotell) was performed for culture supernatants and reagents. The detection limit of the assay was 0.03 EU/ml (0.003 ng /ml) [16].
186 187 188 189	using the Gel-clot method (Pyrotell) was performed for culture supernatants and reagents. The detection limit of the assay was 0.03 EU/ml (0.003 ng /ml) [16].

190 **qRT-PCR assays**

191 RNA was isolated from nasal lavage of the upper respiratory tract with 600 µl of RNA

- 192 lysis buffer using an RNeasy Mini Kit (QIAGEN) according to manufacturer's protocol
- 193 [17]. Complementary DNA was generated using a high-capacity reverse transcription
- 194 kit (Applied Biosystems). Approximately 25 ng of cDNA was then used as a template in
- 195 reactions with forward and reverse primers and SYBR Green (Applied Biosystems)

- according to the manufacturer's protocol. Reactions were performed using the
- 197 StepOnePlus Real-Time PCR system (Applied Biosystems), and quantitative
- 198 comparisons were obtained using the $\Delta\Delta$ CT method. The primers used are as follows:
- 199 GAPDH-F: 5'-TGTGTCCGTCGTGGATCTGA-3'; GAPDH-R:
- 200 5'-CCTGCTTCACCACCTTCTTGAT-3'; CCL2-F:
- 201 5'-AGCTCTCTCTCCTCCACCAC-3'; CCL2-R:
- 202 5'-CGTTAACTGCATCTGGCTGA-3'; IL-17A-F: 5'
- 203 -TCTCATCCAGCAAGAGATCC-3'; and IL-17A-R:
- 204 5'-AGTTTGGGACCCCTTTACAC-3' [6].
- 205

206 Phagocytosis assay

- 207 FITC-bound *S. pneumonia* was made as reported previously. This suspension of *S.*
- 208 *pneumoniae* in PBS was added to 2.5×10^{5} cultured peritoneal macrophages, which
- were pretreated with macrolides for 24 hours (the ratio bacteria : macrophage = 25:1).
- 210 Peritoneal macrophages and pneumococcus were co-cultured for 45 minutes at 37 °C
- under 5% CO₂ in humidified air. Phagocytosis was stopped by putting the plates on ice,
- following adherent bacteria were removed by washing cells with PBS. To quantify
- 213 phagocytosed bacteria, fixed cells were used for FACS analysis.

214

215 Western blotting

216 Cells were washed and lysed for 5 min in RIPA buffer (Sigma-Aldrich Japan, Tokyo,

- 217 Japan) containing protease inhibitor cocktail (Sigma-Aldrich Japan, Tokyo, Japan), and
- the protein concentration was determined using the bicinchoninic acid protein assay kit
- 219 (Thermo, Rockford, IL, USA). For equivalent loading between samples, the same
- amount of each sample was fractionated via 4-12% sodium dodecyl sulfate
- 221 polyacrylamide gel electrophoresis, and transfer, blocking and signal development were
- 222 performed as described previously [18]. For detection of intact and phosphorylated
- 223 (activated) forms of NF- κ B, rabbit primary antibodies against NF- κ B (total NF- κ B,
- ²²⁴ #3034; phospho-NF-κB, #3031) were purchased from Cell Signaling Technology
- 225 (Beverly, MA, USA). Incubation with the primary antibodies was followed by
- incubation with secondary antibodies conjugated to horseradish peroxidase (sc-2030;
- 227 Santa Cruz Biotechnology)
- 228

229 **RNA interference experiments**

- 230 RNA interference technology was used to knock down the expression of TIR
- domain-containing adaptors, such as MyD88 and TRIF, in peritoneal macrophages. The

232	efficiency and specificity were validated by quantitative real-time PCR and western
233	blotting. Peritoneal macrophages obtained from mice were grown in 24-well plates (2 \times
234	10 ⁵ cells/well) and transfected with 50 nM TIR domain-containing adaptor siRNAs
235	according to the manufacturer's instructions (Invitrogen). Transfected cells were
236	incubated for 72 h before being stimulated by macrolides. Pre-designed RNA
237	oligonucleotides for MyD88 and TRIF were obtained from Invitrogen (Life
238	Technologies Corp.).
239	
240	Statistical analyses
241	All data were analyzed by using Prism 5 GraphPad Software and are expressed as the
242	mean \pm SEM. Differences between the treatment group and the control were tested for
243	significance using the Mann–Whitney U test. The significance of differences among
244	more than three groups was examined using ANOVA followed by Dunnett's or
245	Turkey's post-tests. Survival analysis was performed using the log-rank test, and
246	survival rates were calculated via the Kaplan–Meier method. P < 0.05 was considered
247	statistically significant.
248	

Results

200	The effect of EM1900 on pheumococcal hasopharyngear colomzation
251	To examine the importance of immunomodulation in regulating pneumococcal
252	colonization, EM900, a novel 12-membered non-antibiotic macrolide that has an
253	immunomodulatory effect, was administered 7 days prior to S. pneumoniae inoculation
254	and continued throughout the observational period. As shown in Figure $1A$, the density
255	of pneumococcus in the URT was significantly decreased in EM900-treated mice
256	compared to untreated mice 14 days after pneumococcal inoculation. FACS analysis of
257	nasal lavages was performed to measure the number of inflammatory cells recruited to
258	the URT at 7 and 14 days after pneumococcal inoculation (Fig. $1B$, $1C$). The number of
259	macrophages in the URT was significantly higher in EM900-treated mice than in
260	untreated mice 14 days after pneumococcal inoculation. These data indicate that EM900
261	promoted macrophage recruitment to the URT and reduced pneumococcal colonization
262	in a macrophage-dependent manner through its immunomodulatory effects.
263	
264	Effect of macrolides on mRNA expression of Ccl2 and IL-17A in the nasal cavity
265	Previous reports have shown that pneumococcal clearance is dependent on macrophage
266	recruitment mediated by NOD2-CCL2 and TLR2-Th17 lineages [5, 6] . Therefore, we

250 The effect of EM900 on pneumococcal nasopharyngeal colonization

analyzed mRNA expression of *Ccl2* and *IL-17A* in the nasal lavage at day 14 after

268	pneumococcal inoculation with or without EM900 treatment. As shown in Figure 2, the
269	mRNA expression of <i>Ccl2</i> but not <i>IL-17A</i> was markedly increased by administration of
270	EM900. Next, we performed a macrophage depletion assay by intranasal administration
271	of liposome-Cl ₂ MDP before pneumococcal inoculation to determine which cells are
272	responsible for CCL2 production in response to EM900. There were no significant
273	differences in the density of pneumococci (Fig. 3A) and furthermore, the effect of
274	EM900 for facilitating the recruitment of macrophages and the expression of Ccl2
275	mRNA in URT were disappeared in the mice treated by liposome-Cl ₂ MDP at day 14
276	after pneumococcus inoculation (Fig. $3B$ and $3C$). Taken together, these results suggest
277	that EM900 exerts its effects on resident macrophages and elicits CCL2 production and
278	macrophage recruitment, resulting in the promotion of pneumococcal clearance in the
279	URT.
280	
281	Effect of macrolides on the function of murine peritoneal macrophages
282	To investigate the mechanism of macrolide-mediated CCL2 production, we extracted
283	murine peritoneal macrophages and stimulated them with various concentrations of
284	EM900 and two existing macrolides, CAM and AZM. After synthesis of EM900,

extraction with chloroform and purification by using a silica gel column are considered

286	to provide a very low possibility of contamination with LPS. Additionally, the LPS
287	content in the culture supernatants and reagents was undetectable in the Limulus
288	amebocyte lysate test using the Gel-clot method, thus assuring that the observed
289	phenomena did not result from LPS contamination. As shown in Figure 4A, Ccl2
290	mRNA expression in macrolide-stimulated macrophages increased in a
291	concentration-dependent manner. To confirm that CCL2 production from macrophages
292	was in response to macrolides, we stained cells for surface markers and intracellular
293	CCL2 following macrolide stimulation and then analyzed them by flow cytometry.
294	F4/80 ⁺ cells stained positive for intracellular CCL2 following stimulation with EM900,
295	CAM, and AZM (Fig. 4B). Furthermore, when production of numerous cytokines was
296	screened by cytokine array, it was observed that while CCL2 production was clearly
297	present, pro-inflammatory cytokines associated with tissue injury such as TNF- α were
298	not (Supplementary Fig. 1).
299	To determine the effect of macrolides on the phagocytic function of macrophages, we
300	performed a phagocytosis assay in peritoneal macrophages pretreated with macrolides
301	and FITC-bound S. pneumoniae. As shown in Fig. 5A and B, there are significant
302	increase of pneumococcus-phagocytic cells (APC-F4/80 and FITC double positive) in

the macrophages pretreated with macrolides, suggesting that macrolides enhanced the
 phagocytic activity and promoted the clearance of *S.pneumoniae* in URT.

306	Effect of macrolides on intracellular signal transduction pathways that regulate
307	CCL2 production
308	To investigate macrolide-mediated signaling transduction pathways involved in CCL2
309	production, we examined peritoneal macrophages pretreated with specific MAPK
310	inhibitors, i.e., SP600125 (JNK inhibitor), SB203580 (p38 inhibitor), PD98059 (MEK-1
311	inhibitor), and parthenolide (NF- κ B inhibitor), for 30 min and then co-treated with the
312	macrolides for 24 h prior to detection of CCL2 in the supernatant. Only pretreatment
313	with parthenolide inhibited CCL2 production and NF-KB phosphorylation with time
314	after macrolide stimulation (Fig. $6A$ and $6B$), suggesting that NF- κ B was indispensable
315	for macrolide-mediated CCL2 production. To further investigate the ability of
316	macrolides to induce CCL2 production, knockdown of MyD88 and TRIF, one of the
317	TIR domain-containing adaptors existing upstream of NF- κ B, was performed using
318	specific siRNA, and NF-KB phosphorylation and CCL2 production examined. Both
319	NF-κB phosphorylation and CCL2 production were significantly reduced by
320	knockdown of MyD88 or TRIF (Fig. 6C and 6D), indicating that macrolides induce

321 CCL2 production from macrophages through an NF-κB signaling pathway via MyD88322 or TRIF.

323

324	Activation of macrolide-mediated innate immunity protects the host from invasive
325	pneumococcal disease
326	To investigate the role of macrophage recruitment in priming innate immunity, we
327	challenged mice with the P1547 (serotype 6A) and P173 (serotype 2) strains, and
328	treated them with EM900. We found that EM900-treated mice were more resistant to
329	sepsis than untreated mice (Fig. $7A$ and $7B$), which suggests that a reduction in the
330	density of colonization may prevent invasive disease and reduce mortality through
331	activation of innate immune priming by macrolides.
332	
333	Discussion
334	Invasive pneumococcal infection cannot be completely prevented using the existing
335	pneumococcal vaccine that activates humoral immunity, with the capsular
336	polysaccharide acting as the immune antigen. There have been reports on the
337	development of a live attenuated vaccine with higher protective immune effects [19]

and a fusion vaccine that simultaneously activates the innate immune system and the

humoral immune system; however, these vaccines have not yet been put into practical use [20, 21]. In this study, we hypothesized that macrolide antibiotics, which have been reported to possess various immunomodulatory capacities, would activate host innate immunity and inhibit pneumococcal nasopharyngeal colonization without serotype dependency.

344 Our results demonstrated that the extent of bacterial colonization 14 days after bacterial inoculation was significantly decreased compared to that in the control group. 345346 There was also a significant increase in the number of nasopharyngeal macrophages in 347the EM900-administered group. Previous reports have shown that macrophages play an important role in the late clearance of pneumococcal nasopharyngeal colonization. 348Additionally, accumulation of macrophages was promoted in a Nod2-CCL2-dependent 349 manner. This macrophage-dependent defense mechanism is effective against several 350different serotypes of pneumococcus [5, 6, 22]. Notably, Ccl2 mRNA expression was 351352also significantly increased in the EM900-administered group in our study. Furthermore, when nasopharyngeal macrophage loss was chemically induced before pneumococcal 353354colonization, increased Ccl2 mRNA expression, macrophage accumulation in the 355nasopharynx, and inhibition of nasopharyngeal colonization were not observed (data not shown). This finding indicates that EM900 acted on resident macrophages and 356

promoted CCL2 production, resulting in the promotion of macrophage migration into 357 the nasal cavity. Additionally, a similar experiment using an invasive strain with a 358serotype different from that of the bacterial strain used in the colonization experiment 359360 showed that the survival rate was improved significantly in the EM900 pre-administered group compared to the non-administered group. The increase in CCL2 production was 361observed even with frequently used macrolides, e.g., CAM and AZM, suggesting that 362363 macrolides may be able to inhibit pneumococcal colonization by innate immune 364 activation. Therefore, because of their lack of serotype dependency, macrolides may be 365candidate prophylactic agents for pneumococcal colonization and invasive infection. Macrolides have various immunomodulatory effects, including promotion of 366 monocyte differentiation into macrophages [10] and cytokine production [23-25], in 367 addition to the suppression of excessive production of mucin and inflammatory 368 cytokines [26, 27]. Macrolides are also known to improve the phagocytic ability and 369 370 migratory ability of inflammatory cells [9, 28]. In this study, we found that macrolide administration increased host innate immunity by promoting local macrophage 371372induction through increased CCL2 production. An in vitro study by Vrancic et al. 373reported increased CCL2 production without any effect on IL-6 and TNF-a expression after pre-administration of azithromycin in monocytes that had been activated with 374

IFN- γ and LPS [23]. In this study, to evaluate the production of other inflammatory 375376 cytokines, the culture supernatant of macrophages treated with macrolides was profiled using cytokine arrays. CCL2 production was markedly increased; however, increased 377 378 production of inflammatory cytokines associated with tissue damage such as TNF- α was not observed (Supplemental Figure 1). Additionally, when intraperitoneal macrophages 379were stimulated in the same way by ampicillin (a cell wall synthesis inhibitor), 380 381increased CCL2 production was not observed (data not shown). From the above results, we conclude that the promotion of CCL2 production was specific to macrolides and had 382383 a protective effect on the host.

Next, to clarify the mechanism by which CCL2 production was increased by 384macrolide treatment, analysis of several intracellular signal transduction pathways was 385386 performed using RNA interference. We found that EM900, CAM, and AZM induced CCL2 production, dependent on NF-kB, and was shown to act on both MyD88 and 387 388 TRIF, which are adaptor proteins upstream of the NF-KB pathway. Shinkai et al. stimulated NHBE cells with CAM and found that extra-cellular signal-regulated kinase 389 390 (ERK) was suppressed after 30-90 min, whereas ERK activation was observed over 3912-72 h [29]. We believe that the discrepancy between our results and those of Shinkai et al. can be attributed to changes in effects of macrolides based on the influence of 392

various factors such as associated antigens, cells targeted, macrolide concentration andduration of activity, and environmental factors.

There are some limitations to this study. First, experiments using CCR2 (CCL2 395396 receptor) knockout mice were not performed. Such studies are required to determine the true relevance of CCL2-dependent increases in macrophage-induced migration 397 following macrolide administration, particularly in relation to the inhibition of 398 399 pneumococcal nasopharyngeal colonization. Second, an accurate in vivo evaluation of 400 colonization inhibition mediated by the immunomodulatory effects of CAM and AZM 401 was not possible because of the antimicrobial effects of these macrolides against S. pneumoniae. However, suppression of the incidence of pneumonia and COPD 402exacerbation by oral macrolides has been reported clinically [30]; therefore, it is 403 possible that nasopharyngeal colonization is also inhibited. Third, we did not investigate 404 whether the immunomodulatory effect observed in the nasopharynx was also present in 405406 the lower respiratory tract. Typically, most immune cells in the lower respiratory tract are alveolar macrophages. Thus, the host immune responses against S. pneumoniae in 407408 the upper and lower respiratory tracts are different, which should be addressed in future 409 studies.

410 In conclusion, this study has demonstrated that macrolides have the potential to

411	promote the clearance of pneumococcal nasopharyngeal colonies via
412	immunomodulation of macrophages. Macrolide-induced activation of the innate
413	immune system could therefore be a potential candidate for serotype-independent
414	protection against pneumococcal infection. Further investigation is still needed to
415	clarify the effect of macrolides against pneumococcal nasopharyngeal carriage.
416	
417	Notes
418	Financial support. No financial support.
419	Potential conflicts of interest. All authors: No reported conflicts.
420	
421	
422	
423	
424	
425	
426	
427	
428	

429 **References**

- 430 1. Marrie TJ, Durant H, Yates L. Community-acquired pneumonia requiring
- 431 hospitalization: 5-year prospective study. Rev Infect Dis **1989**; 11: 586-99.
- 432 2. Gray BM, Dillon HC Jr. Clinical and epidemiologic studies of pneumococcal
- 433 infection in children. Pediatr Infect Dis **1986**; 5: 201-7.
- 434 3. Bogaert D, R de Groot, Hermans P W M. *Streptococcus pneumoniae* colonization:
- the key to pneumococcal disease. Lancet Infect Dis **2004**; 4: 144–54.
- 436 4. Koppe U, Suttorp N, Opitz B. Recognition of *Streptococcus pneumoniae* by the
- 437 innate immune system. Cell Microbiol **2012**; 14: 460–6.
- 438 5.Zhang Z, Clarke TB, Weiser JN. Cellular effectors mediating Th17-dependent
- 439 clearance of pneumococcal colonization in mice. J Clin Invest **2009**; 119: 1899–909.
- 440 6. Davis KM, Nakamura S, Weiser JN. Nod2 sensing of lysozyme-digested
- 441 peptidoglycan promotes macrophage recruitment and clearance of *S. pneumoniae*
- 442 colonization in mice. J Clin Invest **2011**; 121: 3666–76.
- 443 7. Kaplan SL, Barson WJ, Lin PL, Stovall SH, Bradley JS, Tan TQ, Hoffman JA,
- 444 Givner LB, Mason Jr EO. Serotype 19A is the most common serotype causing invasive
- 445 pneumococcal infections in children. Pediatrics **2010**; 125: 429-36.
- 446 8. Jackson LA, Janoff EN. Pneumococcal vaccination of elderly adults: new paradigms
- 447 for protection. Clin Infect Dis **2008**; 47: 1328-38.
- 448 9. Anderson R. Erythromycin and roxithromycin potentiate human neutrophil

- 449 locomotion in vitro by inhibition of leukoattractant activated superoxide generation and
- 450 autooxidation. J Infect Dis **1989**; 5: 966-72.
- 451 10. Sunazuka T, Oohori M, Otoguro K, Suzuki K, Iwai Y, Akagawa KS, Omura S.
- 452 Effect of 14-membered macrolide compounds on monocyte to macrophage
- 453 differentiation. J Antibiot 2003; 56: 721-4.
- 11. Sugawara A, Sueki A, Hirose T, Nagai K, Gouda H, Hirono S. Novel 12-membered
- 455 non-antibiotic macrolides from erythromycin A; EM900 series as novel leads for
- 456 anti-inflammatory and/or immunomodulatory agents. Bioorg Med Chem Lett **2011**; 21:
- 457 3373-6.
- 458 12. Otsu K, Ishinaga H, Suzuki S, Sugawara A, Sunazuka T, Omura S, Jono H,
- 459 Takeuchi K. Effects of a novel nonantibiotic macrolide, EM900, on cytokine and mucin
- 460 gene expression in a human airway epithelial cell line. Pharmacology **2011**; 88: 327-32.
- 461 13. McCool TL, Cate TR, Moy G, Weiser JN. The immune response to pneumococcal
- 462 proteins during experimental human carriage. J Exp Med 2002; 195: 359-65.
- 463 14. Kim JO, Weiser JN. Association of intrastrain phase variation in quantity of
- 464 capsular polysaccharide and teichoic acid with the virulence of *Streptococcus*
- 465 *pneumoniae*. J Infect Dis **1998**; 177: 368-77.
- 466 15. Nakamura S, Davis KM, Weiser JN. Synergistic stimulation of type I interferons

- 467 during influenza virus coinfection promotes *Streptococcus pneumoniae* colonization in
- 468 mice. J Clin Invest **2011**; 121: 3657-65.
- 16. Paula M. Berguer, Juliana Mundinano, Isabel Piazzon and Fernando A. Goldbaum.
- 470 A Polymeric Bacterial Protein Activates Dendritic Cells via TRR4. J Immunol 2006;
- 471 176: 2366-72.
- 472 17. Beisswenger C, Lysenko ES, Weiser JN. Early bacterial colonization induces
- toll-like receptor-dependent transforming growth factor beta signalling in the epithelium.
- 474 Infect Immun **2009**; 77: 2212-20.
- 18. Tanaka A, Seki M, Yamahira S, Noguchi H, Kosai K, Toba M. Lactobacillus
- 476 *pentosus* strain b240 suppresses pneumonia induced by *Streptococcus pneumoniae* in
- 477 mice. Lett Appl Microbiol **2011**; 53: 35-43.
- 478 19. Roche AM, King SJ, Weiser JN. Live attenuated *Streptococcus pneumonia* strains
- induce serotype-independent mucosal and systemic protection in mice. Infect Immun
- 480 **2007**; 75: 2469-75.
- 481 20. Nguyen CT, Kim SY, Kim MS, Lee SE, Rhee JH. Intranasal immunization with
- 482 recombinant PspA fused with a flagellin enhances cross-protective immunity against
- 483 *Streptococcus pneumoniae* infection in mice. Vaccine **2011**; 29: 5731-9.

484	21. Mann B, Thornton J, Heath R, Wade KR, Tweten RK, Gao G, Kasmi KE, Jordan JB,
485	Mitrea DM, Kriwacki R, Maisonneuve J, Alderson M, Tuomanen EI. Broadly
486	protective protein-based pneumococcal vaccine composed of Pneumolysin
487	Toxoid-CbpA peptide recombinant fusion protein. J Infect Dis 2014; 209: 1116-25
488	22. McCool TL, Weiser JN. Limited role of antibody in clearance of Streptococcus
489	pneumonia in a murine model of colonization. Infect Immun 2004; 72: 5807-13.
490	23. Vrančić M, Banjanac M, Nujić K, Bosnar M, Murati T, Munić V. Azithromycin
491	distinctively modulates classical activation of human monocytes in vitro. Brit J
492	Pharmacol 2012 ; 165: 1348-60.
493	24. Konno S, Adachi M, Asano K, Kawazoe T, Okamoto K, Takahashi T. Influences of
494	roxithromycin on cell-mediated immune responses. Life Sci 1992; 51: PL107-12.
495	25. Gavilanes X, Huaux F, Meyer M, Lebecque P, Marbaix E, Lison D, Scholte B,
496	Wallemacq P, Leal T. Azithromycin fails to reduce increased expression of
497	neutrophil-related cytokines in primary-cultured epithelial cells from cystic fibrosis
498	mice. J Cyst Fibros 2009; 8: 203-10.
499	26. Yanagihara K, Tomono K, Sawai T, Hirakata Y, Kadota J, Koga H, Tashiro T,
500	Kohno S. Effect of clarithromycin on lymphocytes in chronic respiratory <i>Pseudomonas</i>
501	aeruginosa Infection. Am J Respir Crit Care Med 1997; 155: 337-42.

- 502 27. Culi c O, V Erakovi c, MJ Parnham. Anti-inflammatory effects of macrolide
- 503 antibiotics. Eur J Pharmacol **2001**; 429: 209-29.
- 28. Hodge S, G Hodge, H Jersmann, G Matthews, J Ahern, M Holmes, PN Reynolds.
- 505 Azithromycin improves macrophage phagocytic function and expression of mannose
- receptor in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008;
- 507 178: 139-48.
- 508 29. Shinkai M, Foster GH, Rubin BK. Macrolide antibiotics modulate ERK
- 509 phosphorylation and IL-8 and GM-CSF production by human bronchial epithelial cells.
- 510 Am J Physiol Lung Cell Mol Physiol **2006**; 290: L75-83.
- 511 30. Albert RK, Connett J, Bailey WC, Casaburi R, Cooper, JAD, Criner GJ, Curtis JL,
- 512 Dransfield MT, Han MK, Lazarus SC, Make B, Marchetti N, Martinez FJ, Madinger
- 513 NE, McEvoy C, Niewoehner DE, Porsasz J, Price CS, Reilly J, Scanlon PD, Sciurba FC,
- 514 Scharf SM, Washko GR, Woodruff PG, Anthonisen NR, and for the COPD Clinical
- 515 Redearch Network. Azithromycin for prevention of exacerbations of COPD. N Engl J
- 516 Med **2011**; 365: 689-98.
- 517

518 Figure legends

Figure 1. EM900 promoted the clearance of pneumococcal nasopharyngeal colonies via 519macrophage migration to the nasal cavity. (A) Colonization density at 3, 7, and 14 days 520after inoculation with P1121. Horizontal lines indicate mean values. The density of 521pneumococcus in the URT was significantly decreased in EM900-treated mice 14 days 522after inoculation. Number of inflammatory cells recruited to the URT at 7 and 14 days 523524after pneumococcal inoculation (two independent experiments): (B) Ly6G⁺CD45⁺ neutrophils and (*C*) $F4/80^+$ macrophages. Data represent the mean \pm SEM of four 525526experiments each with 5 mice. Higher levels of macrophage accumulation were detected in the EM900-treated group 14 days after inoculation. *, P < 0.05; **, P < 0.01 versus 527control; NS, not significant. 528529Figure 2. *Ccl2* mRNA expression in the nasal cavity was significantly higher by 530531administration of EM900 irrespective of pneumococcal inoculation. These figures show (A) Ccl2 mRNA expression and (B) IL-17A mRNA expression 14 days after 532pneumococcal inoculation. Data represent the mean \pm SEM (*n*=5, two independent 533534experiments). Expression of mRNA was normalized to the constitutive expression of GAPDH mRNA. Significant differences are designated by using ANOVA, followed by 535

Turkey's post-tests. *, P < 0.05 *versus* PBS control; #, P < 0.05 *versus* infected mice
without EM900 treatment.

538

539	Figure 3. The effect of reducing pneumococcal colonization by EM900 was dependent
540	on the accumulation of macrophages in nasal cavity via CCL2 expression. These figures
541	show (A) Colonization density, (B) F4/80 ⁺ macrophages and (C) Ccl2 mRNA expression
542	of the nasal cavity at 14 days after inoculation with P1121, with or without intranasal
543	administration of liposome-Cl ₂ MDP (C.L.) Expression of mRNA was normalized to the
544	constitutive expression of GAPDH mRNA. Data represent the mean \pm SEM of three
545	experiments each with at least 5 mice; NS, not significant.
546	
547	Figure 4. Macrolides induce concentration-dependent CCL2 production from
548	macrophages. These representative results show (A) $Ccl2$ mRNA expression and (B)
549	intracellular CCL2 production of macrophages pretreated with the 100 μM of
550	macrolides. (A) White bar represents the macrolide-treated group whereas the black bar
551	represents the control group. Expression of mRNA was normalized to the constitutive
552	expression of GAPDH mRNA. Data represent the mean \pm SEM of at least three
553	independent experiments. *, $P < 0.05$ versus control; **, $P < 0.01$ versus control. (B)

554	Lines indicate CCL2 fluorescence intensity on the x axis (FL-2 signal) for duplicate cell
555	samples (at least three independent experiments). Filled peaks denote binding by CCL2
556	isotype control antibodies.
557	
558	Figure 5. Macrolides enhance the phagocytic ability of the macrophages. These
559	representative results show (A) FACS analysis of phagocytic reaction and (B) %FITC
560	positive cells of F4/80 pretreated with macrolides. FACS plots are gated on F4/80 cells.
561	Values are arithmetic means (\pm SEM) (<i>n</i> =4, two independent experiments).
562	
563	Figure 6. Macrolide-mediated CCL2 production is required for phosphorylation of
564	NF- κ B (pretreated with the 100 μ M of macrolides), whereas MAPKs, i.e., MEK-1, p38,
565	and JNKm are not essential. (A) Levels of macrolide-mediated CCL2 production from
566	peritoneal macrophages pretreated with inhibitors of NF-KB, MEK-1, p38, and JNK
567	were measured by ELISA. Data represent the mean \pm SEM of three experiments. *, P <
568	0.05 versus macrolide-pretreated macrophages without a transduction inhibitor. (B)
569	Representative results of western blot analysis show phosphorylation of NF-KB p65 in
570	macrophages with time after macrolide stimulation. Both NF- κ B phosphorylation (C)
571	and CCL2 production (D) were significantly reduced by knockdown of MyD88 (i) or

572	TRIF (ii), suggesting that macrolide-mediated CCL2 production from macrophages
573	occurs via a MyD88- or TRIF-mediated pathway that activates NF- κ B signaling (two
574	independent experiments). *, $P < 0.05$ versus macrolide-pretreated macrophages without
575	RNA interference of MyD88 and TRIF.
576	
577	Figure 7. Kaplan–Meier survival curves of mice infected with (A) P1547 or (B) P173
578	and pretreated with (triangle) or without (square) macrolides for 21 days before
579	infection. The log-rank test indicated EM900 treatment improved the survival rate
580	significantly. ($n = 15-18$, two independent experiments). ***, P<0.001 versus control; *,
581	P<0.05 versus control.
582	
583	Supplementary Figure 1. The mouse cytokine array assay detects multiple analytes in
584	cell culture supernatants of peritoneal macrophages pretreated with the 100 μM of
585	macrolides for 12 h ((i) untreated, (ii) EM900, (iii) CAM, (iv) AZM). Optical density
586	was adjusted based on positive controls (the spots of upper and lower left and upper
587	right) among each sample. (a) CCL2 was up-regulated by all macrolides, while
588	cytokines known to induce tissue damage, such as (b) TNF- α and (c) IL-6, were not.
589	The other spots represent the (d) IL-1 γ , and (e) MIP-2. Similar results were obtained in

590 two separate experiments.

FIGURE 1.

FIGURE 2.

FIGURE 3.

*

NS

+

+

_

*

+

FIGURE 4.

FIGURE 5.

А

**

FIGURE 6.

FIGURE 6.

FIGURE 7.

Supplementary Figure 1.

