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Effect of macroscopic grooves on bone formation and osteoblastic differentiation 
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ABSTRACT (183 words) 

Objectives: The aim of this study is to investigate the effect of macroscopic grooves on bone formation in 

vivo and differentiation of human mesenchymal stem cells (hMSCs) in vitro.  

Materials and methods:  The effects of macroscopic grooves on titanium alloy implants and disks were 

tested in rabbit tibiae and cultured hMSCs. The bone-to-implant contact (BIC) and bone area were 

evaluated in rabbit tibiae at 6 and 24 weeks after implant insertion. Osteoblastic differentiation was 

assessed by alkaline phosphatase (ALP) activity and real-time reverse-transcription polymerase chain 

reaction (RT-PCR) on Days 7, 14 and 21. All values were statically analyzed. 

Results:  BIC and bone area inside the grooves were significantly higher than those of control implants 

(P < 0.05). ALP activity was significantly higher for titanium disks with macroscopic grooves than without 

grooves on Day 14 (P < 0.05). Real-time RT-PCR showed that the expression of osteogenic genes was 

significantly higher for disks with grooves on Day 7 (P < 0.01).  

Conclusions:  Macroscopic grooves accelerate osteoblastic differentiation in vitro and stimulate direct 

bone growth and deposition within the grooves in vivo. 
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Implant design is one of the crucial factors to achieve and maintain osseointegration1. The screw shape 

implant design is clinically dominated since it is easy to install into the bone bed and achieve primary 

fixation. It has been reported that axial or rotational mobility at implant placement leads to a significantly 

reduced amount of bone around the implants or a higher failure rate2, 3. Thus, it is generally accepted that 

good stability at the implant placement is highly desirable. Screw shape design and/or tapered configuration 

of the implant can be readily-stabilized and easily-controlled by clock wise tightening. 

 

Implant design also contribute to obtaining secondary stability. Since osseointegrated implants transfer the 

chewing forces to the bone tissue, implant design plays an important role for the load distribution or 

concentration. It is well known that the bone adapts to the mechanical loading. The proper load can 

stimulate the bone tissue, resulting in a changed bone structure and volume4. On the other hand, when bone 

tissue is subjected to unphysiologically high stress, fracture or bone resorption may occur5. Finite element 

analysis has revealed the highest stress at the coronal portion of the bone and implant interface6. Since, 

such a load concentration may result in implant marginal bone resorption, MicrothreadTM design, which is 

suitable for screw shaped implants, can distribute the stress evenly and maintain marginal bone level, has 

been applied to the implant neck7. Indeed, in a 3-year prospective clinical study, two types of screw 

implants with and without MicrothreadTM of 220 µm width were installed adjacent to each other within the 

same partially edentulous site. The marginal bone level has been well maintained on the implant with 

MicrothreadTM configuration8. Therefore, not only loading conditions but also the surface macro 

architectures can enhance bone apposition around implant neck region. Furthermore, viewed in the stress 

distribution and screw shaped implant design, thread or groove configurations are optimal surface macro 

architectures of implant. 

 

From the studies of bone substitutes, the pore size influence on the vascularization and bone apposition 

into the pores. The average pore size of 210 to 280 µm showed the migration of mesenchymal stem cells 

into the pores in conjunction with vascular invasion, then followed by intramembranous ossification9, 10. 

Hall et al11 has also focused on 50 to 200 µm range of implant surface structure, which are between the 

sizes of typical thread geometries and surface topographies. Such structure have often been investigated on 
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threaded dental implant and the grooves in these range were defined as macroscopic groove11. The grooves 

with either 110 µm width / 70 µm depth or 200 µm width / 70 µm depth at a thread frank of screw shaped 

implant have been installed in the rabbit tibiae. Nevertheless, both groove showed significantly higher 

histomorphometric results than control implants, the biomechanical testing revealed significantly higher 

resistance to removal torque for the 110 µm groove but not for the 200 µm groove. It is speculated that the 

depth of the groove (70 µm) was relatively shallow to provide an enough interlocking force for 200 µm 

groove. It can be curious rather deeper groove may enhance bone apposition and blood capillary invasion 

into the groove. Taken together, it is hypothesized that bone formation and vascularization with migration 

of mesenchymal stem cells are enhanced and bone remodeling are maintained in macroscopic grooves with 

200 µm in width and depth. However, little is known about the effect of the macroscopic groove on bone 

formation and cell differentiation. 

 

The aim of the current study is to confirm the enhanced bone formation within the macroscopic grooves 

than conventional flat area in vivo, subsequently to investigate the effect of macroscopic grooves on 

differentiation of human mesenchymal stem cells (hMSCs). 

 

MATERIALS AND METHODS 

 

Implant preparation 

In this study, we used 28 screw-shaped commercially available Grade 5 titanium alloy (Ti-6Al-4V) 

implants. Implants were 6 mm in length and 3.7 mm in diameter. All implant surfaces were sandblasted 

with aluminium oxide powder and subjected to anodic oxidation in phosphoric acid solution. Fourteen 

implants were used as controls and 14 implants with grooves 200 µm wide and 200 µm deep on the collar 

of the implant surface were used as experimental implants (Fig. 1a, e). 

 

Animal experiments 

Fourteen adult female Japanese white rabbits (average body weight: 4 kg; age: 7–9 months) were used for 

the animal experiments. Animal care and experimental procedures were performed in accordance with the 
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guidelines for animal experimentation of Nagasaki University, Nagasaki, Japan, with the approval of the 

Ethics Review Committee for Animal Experimentation of Nagasaki University. Prior to the surgery, 

animals were anaesthetized with intramuscular injections of ketamine (0.5 mg/kg) and xylazine (0.25 

mg/kg) and locally anaesthetized with lidocaine. The skin and fascial–periosteal layers were opened 

separately. Rotary drill speeds did not exceed 2,000 rpm and saline cooling was used during all surgical 

drilling sequences. Each rabbit received a control and experimental implant unicortically in the right and 

left proximal tibial metaphyses. Both types of implant were evenly distributed in the left and right tibiae. 

After 6 and 24 weeks of healing, 7 rabbits per healing period were sacrificed by intravenous injection of 

pentobarbital. Implants were removed en bloc and immersed in a fixative and increasing grades of ethanol. 

Finally, bone blocks were embedded in methyl methacrylate resin and one central section per implant was 

prepared. Sections were ground to a final thickness of approximately 20 µm and stained with toluidine blue. 

The percentage BIC was calculated for the collar portion of the implant (Fig. 1b, f). The percentage bone 

area was calculated for the rectangular area 200 µm from the implant surface (Fig. 1c, g).  

 

Titanium disks 

Titanium disks were manufactured from commercially available Grade 5 titanium alloy (Ti-6Al-4V). The 

disks (Fig. 1d), 1 mm in thickness and 20 mm in diameter, with and without macroscopic grooves in order 

to fit the wells of a 12-well cell-culture plate (Iwaki Co., Ltd., Tokyo, Japan). Macroscopic grooves were 

200 µm in width and 200 µm in depth (Fig. 1h). All titanium disk surfaces were sandblasted and subjected 

to anodic oxidation under the same conditions as used for implant preparation. The average surface 

roughness (Ra) of each disk was 1.46 µm. After surface treatment, all disks were ultrasonically cleaned in 

acetone and ethanol and sterilized using ethylene dioxide gas. 

 

Cell culture 

Early-passage populations of human mesenchymal stem cells (hMSCs) were obtained from commercial 

sources (118529; Lonza Group, Basel, Switzerland). Cells were allowed to grow in α-minimum essential 

medium (α-MEM) supplemented with 15% (v/v) foetal bovine serum (FBS) and 1% antibiotic–antimycotic 

solution (all culture media were purchased from Sigma-Aldrich Corporation, St. Louis, MO, USA). Cells 
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were maintained under standard culture conditions (37°C in a 5% CO2 humidified atmosphere). Culture 

medium was changed every 2 days until confluence was achieved. Cells were seeded at a density of 1 × 

105 cells/mL into 12-well plates containing titanium disks with or without macroscopic grooves. After 3 h, 

unattached cells were removed with phosphate-buffered saline and α-MEM with 15% FBS, 10−7 M 

dexamethasone, 1 M β-glycerophosphate and 5 mg/mL ascorbic acid were added for osteoblastic 

differentiation. 

 

Alkaline phosphatase (ALP) activity 

Cells were seeded onto titanium disks with or without grooves at 5 × 104 cells/well in osteoblastic medium. 

ALP activity was measured after incubation at 7 and 14 days and quantified using TRACP and ALP assay 

kits (Takara Bio., Inc., Shiga, Japan). Absorbance was measured at 405 nm using a microplate reader and 

enzyme activity was expressed as µU/µL.  

 

RNA extraction, cDNA synthesis and quantitative real-time polymerase chain reaction (PCR) 

After incubation for 7, 14 and 21 days, total RNA was extracted from cultured cells using the SV total RNA 

isolation system (Promega Corporation, Madison, WI, USA) according to the manufacturer’s instructions. 

RNA purity and integrity were determined using a NanoDrop ND-1000 spectrophotometer (NanoDrop 

Technologies, Inc., Wilmington, DE, USA). Furthermore, gel electrophoresis was performed to verify 

whether RNA was intact. cDNA was synthesized from 2 μg of GoScriptTM Reverse Transcription System 

(Promega Corporation). For the quantitative analysis of gene expression, mRNA levels were measured 

using quantitative real-time reverse-transcription PCR (RT-PCR). The primers (Hoffmann-La Roche AG, 

Basel, Switzerland) used for this assay are listed in Table 1. Quantitative RT-PCR was performed on an 

ABI PRISM® 7900HT (Applied Biosystems, Foster City, CA, USA) sequence detection system using 

SYBR® green incorporation (SYBR® Green PCR Master Mix; Applied Biosystems) in duplicates for at 

least three independent experiments. Fluorescence intensities were quantified with StepOne™ Software 

(Applied Biosystems). The relative quantities of target genes were normalized against the expression of the 

housekeeping gene ACT1 and analyzed using the comparative ΔΔCt method while considering 

amplification efficiency12. 
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Statistical analysis 

The statistical analysis of ALP activity and gene expression with or without grooves was performed with 

the Student’s t-test (P = 0.05) using IBM SPSS Statistics 22.1 (IBM Corporation, Armonk, NY, USA). The 

statistical analyses of BIC and bone area in control and experimental implants were performed using the 

Bonferroni multiple comparison test (P = 0.05) also using IBM SPSS Statistics 22.1. To clarify whether 

there was a significant enhancement in bone formation within the grooves, the analysis of experimental 

implants was divided into flat area and grooves. 

 

RESULTS 

 

Histomorphometric analysis 

Light microscopy demonstrated that woven bone formation after 6 weeks of healing was sufficient to fill 

the collar portion of the implant (Fig. 2a, b). Newly formed bone was observed extending into the groove 

structures (Fig. 2b). At 6 weeks, the mean and standard deviation (SD) of the percentage BIC was 43.3 ± 

12.1% for control implants, 35.6 ± 9.3% for the flat areas of experimental implants and 49.5 ± 11.1% for 

the grooves of experimental implants (Fig. 3). BIC was significantly higher in the grooves than in the flat 

areas of experimental implants (P < 0.05). The mean and SD of the percentage bone area was 60.7 ± 11.8% 

for control implants, 65.9 ± 10.7% for the flat areas of experimental implants and 76.9 ± 5.4% for the 

grooves of experimental implants (Fig. 4). The bone area was significantly higher in the grooves of 

experimental implants than control implants (P < 0.05). At 24 weeks, all implants were well integrated and 

had established intimate contact with lamellar bone (Fig. 2c, d). The percentage BIC was 51.2 ± 9.9% for 

control implants, 40.4 ± 7.1% for the flat areas of experimental implants and 63.1 ± 8.8% for the grooves 

of experimental implants (Fig. 3). BIC was significantly higher for the grooves of experimental implants 

than control implants or the flat areas of experimental implants (P < 0.05). The percentage bone area was 

58 ± 6.9% for control implants, 54.7 ± 11.4% for the flat areas of experimental implants and 67.3 ± 7.3% 

for the grooves of experimental implants (Fig. 4). The bone area was significantly higher for the grooves 

of experimental implants than control implants and the flat areas of experimental implants (P < 0.05). 
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Mature bone formation and remodelling were evident within the grooves and living bone was filled within 

the almost grooves (Fig. 2d). 

 

Analysis of differentiation ability 

To evaluate the effect of macroscopic grooves on osteoblastic differentiation, real-time RT-PCR and ALP 

assays were performed for each group. Results of ALP activity are presented in Fig. 5. ALP activity on Day 

14 was significantly higher for titanium disks with macroscopic grooves than that without grooves (P < 

0.05).  

 

Real-time RT-PCR results are presented in Fig. 6. On Day 7, the expression of osteopontin (OPN), 

osteocalcin (OCN), type 1 collagen (Col1) and ALP for titanium disks with macroscopic grooves was 

significantly higher than that without grooves (P < 0.01; OPN, 1.76-fold; OCN, 3.08-fold; Col1, 2.29-fold; 

and ALP, 3.40-fold). On Day 14, no statistically significant differences were evident for all genes assessed. 

On Day 21, the expression of OCN, Col1 and ALP for titanium disks with macroscopic grooves was 

significantly higher than that without grooves (P < 0.01 for OCN, 1.61-fold; P < 0.05 for Col1, 1.54-fold; 

P < 0.05 for ALP, 1.58-fold). 

 

DISCUSSION 

 

Osseointegration is a wound healing process involving numerous cellular and extracellular events13, which 

reflects the structural and functional connection between living bone and the implant surface. In this study, 

we investigated the effects of macroscopic grooves on bone formation around titanium implants in vivo 

and on hMSCs cultured on titanium disks in vitro. 

 

To clarify the effects of macroscopic grooves on bone formation in vivo, we performed animal 

experiments. We evaluated BIC and bone area in rabbits based on a previous study14. BIC, the 

parameter evaluated most often in in vivo studies15, and bone area were measured at 6 and 24 

weeks after implant insertion. According to an earlier study16, a 6-week healing period in rabbits 
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is insufficient for mature bone formation, whereas a 24-week healing period is sufficient for 

mature bone formation and acquiring secondary fixation between bone and implant. At implant 

insertion, macroscopic grooves were filled with blood clots not with bone, because experimental 

implants were screwed into bone bed which was same as implant body size. At 6 weeks, greater 

new bone formation and extension were evident within the macroscopic grooves than in the flat 

area of the implant surface. These observations were enhanced at 24 weeks, BIC and bone area 

were significantly increased within the macroscopic grooves. These results demonstrated that the 

wide and deep macroscopic grooves could promote new bone formation and maintain bone 

remodelling with the vascularization. Growth of the bone matrix into the grooves enables 

implants to interlock mechanically with the surrounding bone formation. Therefore, the use of 

macroscopic grooves could promote rapid bone formation around implant and contribute firm 

osseointegration. . 

 

Cell culture studies allow the detailed evaluation of cell and matrix interactions with artificial material 

surfaces17. hMSCs can self-renew and differentiate into precursors cells, including osteoprogenitors18. 

Osteoprogenitors play a central role in the osseointegration process, including bone remodelling and repair. 

Contact between osteoprogenitor cells and the implant surface is the first step of bone formation and the 

basis for subsequent events, which include the deposition of an organized extracellular matrix and its 

mineralization. Properties of the implant surface, including wettability, texture, chemical composition, 

surface topography and roughness, directly influence cell proliferation and differentiation, extracellular 

matrix synthesis and the local production of factors19-24. Therefore, to clarify the direct effects of 

macroscopic grooves on osteoblastic differentiation of hMSCs in vitro, we also performed cell culture 

experiment.  

 

ALP, an early marker of osteogenic differentiation, is found in high levels in cells that mineralize their 

extracellular matrix25, and osteoblasts produce ALP activity enriched extracellular matrix vesicles during 

maturation. OCN, a late differentiation marker, is synthesized by osteoblasts and is an indicator of the 

formation and maturation of mineralized tissue. OPN and Col1, osteoblastic differentiation markers, 
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encode bone matrix proteins. In this study, the expression of osteoblastic differentiation marker genes was 

significantly increased on Day 7 in cells cultured on titanium disks with macroscopic grooves. ALP activity 

increased on Day 14 in cells cultured on titanium disks with macroscopic grooves compared with those 

without grooves. However, on Day 14, there was no difference in the expression of the genes assessed in 

this study between cells cultured on titanium disks with and without grooves, suggesting that gene 

expression in cells cultured on disks without grooves had ‘caught up’ with that in cells cultured on disks 

with grooves. On Day 21, the expression of the genes assessed in this study was slightly increased in cells 

cultured on disks with grooves and remained higher than in cells cultured on disks without grooves. These 

results imply that macroscopic grooves may activate cell–cell communication by providing hMSCs with a 

three-dimensional scaffold, increasing the density of hMSC secretions and accelerating the expression of 

osteoblastic differentiation marker genes11, 26. This could allow hMSCs cultured on titanium disks with 

macroscopic grooves to differentiate into osteoblast and mineralize their extracellular matrix rapidly. 

Therefore, a surface design featuring macroscopic grooves is suitable for osteoblastic differentiation of 

hMSCs and may contribute to rapid bone formation.  

 

CONCLUSION 

 

Macroscopic grooves accelerate osteoblastic differentiation in vitro and stimulate directed bone growth and 

deposition within grooves in vivo. These results suggest that macroscopic grooves provide an excellent 

environment for cell differentiation, bone formation and remodelling. This study has some limitations; only 

osteoblastic differentiation was evaluated and the rabbit tibia is not an entirely relevant model for dental 

implants in terms of clinical function. However, this study provides insight into simple features of implant 

design that may optimize implant stability and improve long-term prognosis. 
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LEGENDS 

Fig. 1. Titanium implants and disks without (a and d) and with (e and h) macroscopic grooves used in this 

study. The percentage bone-to-implant contact was calculated for the collar (red line) of the implant (b and 

f). The percentage of bone area was calculated for the rectangular area and inside the grooves (blue area) 

of the implant (c and g). 

Fig. 2. Histological images of control (a and c) and experimental (b and d) implants stained with toluidine 

blue. New bone formation was observed at 6 weeks (a and b) and bone around the implant was matured at 

24 weeks (c and d). Bone extension was observed within the grooves at 6weeks (b) and it is maintained 

entirely at 24 weeks (d). 

Fig. 3. Bone-to-implant contact of control and experimental implants in rabbit tibiae (*: P < 0.05). 

Fig. 4. Bone area of control and test implants in rabbit tibiae (*: P < 0.05). 

Fig. 5. Alkaline phosphatase activity of titanium disks with or without macroscopic grooves (*: P < 0.05) 

Fig. 6. Gene expression of human mesenchymal stem cells cultured on titanium disks with or without 

macroscopic grooves (*: P < 0.05, **: P < 0.01). OPN: Osteopontin, OCN: Osteocalcin, Col1: Type 1 

Collagen, ALP: alkaline phosphatase. 

Table 1. Oligonucleotide sequences of forward (F) and reverse (R) primers used in real-time reverse-

transcription polymerase chain reaction for target and housekeeping genes 
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Table 1. Oligonucleotide sequences of forward (F) and reverse (R) primers used in real-time reverse-

transcription polymerase chain reaction for target and housekeeping genes. Alkaline phosphatase (ALP), 

an early marker of osteogenic differentiation, is found in high levels in cells that mineralize their 

extracellular matrix. Osteocalcin (OCN), a late differentiation marker, is synthesized by osteoblasts and is 

an indicator of mineralized tissue. Osteopontin (OPN) and type 1 collagen (Col1), osteoblastic 

differentiation markers, encode bone matrix proteins. 

 















Tables 

Table 1. Oligonucleotide sequences of forward (F) and reverse (R) primers used in real-time reverse-

transcription polymerase chain reaction for target and housekeeping genes 

 

 

 

Gene  Primer sequence (5′ to 3′) Tm Amplicon (°C) 

Alkaline phosphatase F ACGTGGCTAAGAATGTCATC 57.6 

Alkaline phosphatase R CTGGTAGGCGATGTCCTTA 58.7 

Collagen 1 F TGACGAGACCAAGAACTG 55.4 

Collagen 1 R CCATCCAAACCACTGAAACC 62.5 

Osteocalcin F CATGAGAGCCCTCACA 54.2 

Osteocalcin R AGAGCGACACCCTAGAC 53.1 

Osteopontin F AGCCAGGACTCCATTGACTCGAAC 69.1 

Osteopontin R GTTTCAGCACTCTGGTCATCCAGC 68.7 

beta-ACTIN F AGCCATGTACGTTGCTA 53.2 

beta-ACTIN R AGTCCGCCTAGAAGCA 55.1 
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