1	Increased levels of cell-free miR-517a and decreased levels of cell-free miR-518b in
2	maternal plasma samples from placenta previa pregnancies at 32 weeks gestation
3	
4	Yuri Hasegawa M.D. ¹ , Kiyonori Miura M.D., Ph.D. ^{1,*} , Ai Higashijima M.D., Ph.D. ¹ ,
5	Shuhei Abe M.D., Ph.D. ¹ , Shoko Miura M.D., Ph.D. ¹ , Koh-ichiro Yoshiura M.D., Ph.D.
6	² , Hideaki Masuzaki M.D., Ph.D. ¹
7	
8	¹ Department of Obstetrics and Gynecology, Nagasaki University Graduate School of
9	Biomedical Sciences, Nagasaki, Japan
10	² Department of Human Genetics, Nagasaki University Graduate School of Biomedical
11	Sciences, Nagasaki, Japan
12	
13	*Address correspondence to: Kiyonori Miura
14	Department of Obstetrics and Gynecology, Nagasaki University Graduate School of
15	Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
16	Tel: +81-95-819-7363; fax: +81-95-819-7365; e-mail: kiyonori@nagasaki-u.ac.jp
17	
18	Running head: Placenta-specific microRNAs and placenta previa

19	Abbreviated Sł	nort Title:	Plasma	concentrations	of	placer	nta-specific
20	microRNAs in p	olacenta prev	via pregna	ncies			
21							
22	Manuscript word,	table/figure co	ounts; Word	ls: 3,441, Tables: 3,	Figur	res: 2	
23							
24	Grant/funding S	Support: K.N	И., S.M.,	and H.M. were	sup	ported	by JSPS
25	KAKENHI (g	rant numb	pers 264	62495, 247917	12,	and	25462563,
26	respectively).						
27							
28	Conflict of intere	st: None of th	e authors ha	ave any conflict of i	nteres	st.	

29

30 Abstract

Objective: The aim of this study was to clarify the association between placenta previa
 and circulating levels of cell-free pregnancy-associated placenta-specific miRNAs in
 maternal plasma.

34**Method:** Twenty singleton pregnancies with placenta previa (placenta previa group) 35and 26 uncomplicated pregnancies (control group) were recruited. Blood sampling was performed at 32 weeks gestation and cesarean delivery in all cases of placenta previa 36 37was performed at a mean gestational age of 37 weeks. The maternal plasma 38concentrations of cell-free pregnancy-associated placenta-specific miRNAs (miR-517a 39 and miR-518b) were measured by absolute quantitative real-time RT-PCR. 40 **Results:** Plasma concentrations of cell-free miR-517a in the placenta previa group were 41 significantly higher than that in the control group (P=0.011), while the plasma 42concentration of cell-free miR-518b in the placenta previa group was significantly lower 43than that in the control group (P=0.004). Plasma concentrations of cell-free miR-517a in 44placenta previa were significantly higher in placenta previa with alert bleeding later group than those in placenta previa without alert bleeding group or control group (P =45

46	0.030 or 0.047, respectively), and correlated with the volume of hemorrhage at delivery
47	(R and P-value: 0.512 and 0.025).
48	Conclusion: Plasma concentrations of cell-free miR-517a and miR-518b at 32 weeks
49	gestation were altered in pregnant women with placenta previa, and the circulating level
50	of cell-free miR-517a in placenta previa may be a predictive marker for the risks of alert
51	bleeding later and massive hemorrhage at delivery.
52	
53	Keywords: pregnancy-associated microRNA, maternal plasma, placenta previa, alert

54 bleeding, hemorrhage

55 Introduction

56	Placenta previa shows the abnormal location of the placenta, and women with
57	placenta previa should be delivered by cesarean section. Although the prevalence of
58	placenta previa has been approximately 0.5% of all pregnancies, placenta previa has the
59	risks of emergency cesarean section following alert bleeding and massive hemorrhage at
60	cesarean section ¹ . Therefore, placenta previa is one of major causes of maternal
61	morbidity and mortality. However, alert bleeding during pregnancy and massive
62	hemorrhage at cesarean section are not observed in all women with placenta previa. The
63	ability to predict alert bleeding during pregnancy and massive hemorrhage at cesarean
64	delivery is critical in the management of placenta previa prenatally, because prenatal
65	diagnosis allows for a planned approach under a more controlled condition with a
66	possible treatment.
67	Risk factors for placenta previa include prior cesarean delivery, pregnancy

68 termination, intrauterine surgery, smoking, multifetal gestation, increasing parity, and 69 maternal age¹. Placenta previa also has a high risk of placenta accreta, which is defined 70 as an abnormal adherence of the placenta to the uterine wall¹. Although placenta accreta

71	has the risk of massive hemorrhage, this condition is usually found at the time of
72	delivery and its final diagnosis was confirmed by pathological examination after the
73	surgery. Therefore, placenta previa is screened by transvaginal ultrasonography
74	prenatally, and anterior placentation is a risk factor for massive hemorrhage during
75	cesarean section in patients with placenta previa ² . Although the prediction of the risks
76	of alert bleeding and massive hemorrhage prenatally seems to be made by
77	ultrasonography and magnetic resonance imaging (MRI), which are readily available in
78	most centers ³⁻⁵ , the diagnostic accuracies of ultrasonography and MRI are still
79	unsatisfactory. Information regarding prediction of hemorrhage in placenta previa at
80	delivery is limited. Therefore, advent of a noninvasive prenatal diagnostic procedure to
81	estimate the risks of alert bleeding during pregnancy and massive hemorrhage during
82	cesarean section in patients with placenta previa is undoubtedly a great advance for
83	clinical management of placenta previa.

Recently, pregnancy-associated placenta-specific miRNAs circulating in maternal plasma have been reported^{6,7}, and we identified pregnancy-associated placenta-specific miRNAs (miR-515-3p, miR-517a, miR-517c, miR-518b and

87	miR-526b) in the plasma of pregnant women ⁸ . A major source of cell-free placental
88	miRNAs in maternal plasma is the villous trophoblast, which is able to release
89	exosomes containing miRNAs into the maternal circulation ^{9,10} . To date, several
90	placental miRNAs on chromosome 19 miRNA cluster (C19MC) region are involved in,
91	or associated with, preeclampsia that is caused by abnormalities in the development of
92	placental vessels in early pregnancy ¹¹ . Therefore, miRNAs predominantly expressed in
93	the placenta are probably involved in placental differentiation and in the maintenance of
94	pregnancy ¹² . Because the placenta is a source of supply for cell-free
95	pregnancy-associated placenta-specific miRNAs ⁶⁻⁸ , the measurement of cell-free
96	pregnancy-associated placenta-specific miRNAs in maternal plasma may have the
97	potential to become novel biomarkers to predict the condition of placenta previa.
98	However, circulating levels of cell-free pregnancy-associated placenta-specific miRNAs
99	in plasma samples with placenta previa remains unknown.
100	Here, to get the knowledge of association between placenta previa and

101 cell-free pregnancy-associated placenta-specific miRNAs, we measured the circulating
102 levels of cell-free pregnancy-associated placenta-specific miRNAs (miR-517a and

103	miR-518b) and cell-free pregnancy-associated but not placenta-specific miRNA
104	(miR-323-3p) in maternal plasma with placenta previa at 32 weeks gestation ⁸ .
105	
106	Materials and Methods
107	
108	Sample Collection
109	All pregnant women recruited for this study attended Nagasaki University
110	Hospital. All samples were obtained after receiving written informed consent, and the
111	Institutional Review Board for Ethical, Legal and Social Issues of Nagasaki University
112	approved the study protocol.
113	Women with multiple gestations, preterm labor, infection, fetal anomalies or
114	aneuploidy, fetal growth restriction, or preeclampsia, or who were current smokers were
115	excluded. From April, 2013 to January, 2014, we obtained blood samples (7 mL) from
116	20 singleton pregnancies with placenta previa (placenta previa group) and 26
117	uncomplicated pregnancies (control group) at 32 weeks gestation. Gestational age was
118	calculated from the date of their last menstrual period, and then confirmed by

119	ultrasonographic examination, which the crown rump length (CRL) of fetus at 8-10
120	week gestation was measured. Cesarean delivery was performed in all cases of placenta
121	previa at a mean gestational age of 37 weeks. The volume of hemorrhage of each case
122	was defined as the volume of bleeding at cesarean delivery. However, Case 11
123	underwent cesarean hysterectomy and was excluded from the analysis (Table 1). In this
124	case, the placenta was located anterior to the uterine wall with a history of previous
125	cesarean section and was diagnosed as placenta previa-increta by pathological
126	examination of the placenta and uterus. There were no significant differences in clinical
127	variables, including maternal age (years), gestational age (weeks), number of prior
128	cesarean deliveries, artificial abortion, parity, placental weight (g), and birth-weight of
129	the newborn (g) between the two groups (Table 2). At the time of blood sampling, the
130	women showed no signs of labor and no history of vaginal bleeding (alert bleeding).
131	Blood samples were collected in tubes containing EDTA. Cell-free plasma samples
132	were prepared from maternal blood by a double centrifugation method as described
133	previously ^{6,8,14} . After the first centrifugation at 3,000 \times g for 10 min, the plasma samples
134	were frozen at -80 °C for a median 3 months (ranging from 1 month to 9 months).

135	When the quantification analysis was performed, 1.6 mL of each plasma sample was
136	centrifuged at 16,000 ×g for 10 min to remove blood cells. Total RNA containing small
137	RNA molecules was extracted from 1.2 mL of maternal plasma using a <i>mir</i> Vana miRNA
138	Isolation Kit (Ambion, Austin, TX, USA) according to the manufacturer's instructions.
139	The concentration of extracted RNA was determined measuring the absorbance at 260
140	nm on a spectrophotometer (NanoDrop ND-2000; NanoDrop Technologies,
141	Wilmington, DE, USA) and expressed as nanograms per milliliter of plasma.
142	Paal time aPT PCP analysis of miPNAs
140	Keul-ume qK1-1 CK unulysis of mtK1vAs
144	As pregnancy-associated placenta-specific miRNAs, miR-517a and miR-518b,
145	which locates on chromosome 19 miRNA cluster region (C19MC), were used for this
146	study, because these two miRNAs were also reported as placental miRNA in maternal
147	plasma in three other studies ^{8,10,15-18} . Furthermore, by public database search of the

expression patterns of miR-517a and miR-518b, these two miRNAs show a

148

- 149 placenta-specific expression pattern (www.microRNA.org). Our previous study also
- 150 identified the miR-323-3p as pregnancy-associated miRNA in maternal plasma⁷.

151	However, the expression pattern of miR-323-3p, which is located on chromosome 14
152	miRNA cluster region (C14MC), is expressed in embryonic and placental tissues, and in
153	adults, it is restricted to the brain ¹⁷ . Therefore, we measured the plasma concentration of
154	cell-free miR-323-3p as the pregnancy-associated but not placenta-specific miRNA ¹⁷ .
155	All specific primers and TaqMan probes were purchased from TaqMan MicroRNA
156	Assays (Applied Biosystems, Foster City, CA, USA). Real-time quantitative RT-PCR
157	(qRT-PCR) of miRNAs in plasma samples was performed as described previously ^{6,8,19,20} .
158	For each miRNA assay, 2.5 ng of total RNA samples were analyzed for qRT-PCR. We
159	prepared a calibration curve by 10-fold serial dilution of single-stranded cDNA
160	oligonucleotides corresponding to each miRNA sequence from 1.0×10^2 to 1.0×10^8
161	copies/mL. The concentrations of each single-stranded cDNA oligonucleotides were
162	decided by QX100 droplet digital PCR (BioRad, Hercules, CA, USA). Each sample and
163	each calibration dilution was analyzed in triplicate. Each assay could detect down to
164	356 RNA copies/mL ^{8,19,20} . Every batch of amplifications included three water blanks as
165	negative controls for each of the reverse transcription and PCR steps. All data were
166	collected and analyzed using a LightCycler® 480 Real-Time PCR System (Roche,

167	Pleasanton, CA, USA). The intra-assay coefficients of variation (CV), which were the
168	ratios of the SD to the mean for the probes (miR-517a, miR-518b and miR-323-3p) in
169	the absolute qRT-PCR, were 7.2, 8.1 and 6.7%, respectively. There are no universally
170	accepted internal controls in either placental tissue or maternal circulation for miRNA
171	analysis, because snoRNAs and snRNAs, including RNU48 and RNU6B, have been
172	suggested as reference RNAs, but exhibit high variability ^{21,22} . Additionally, it was
173	recommended that the quantitative mRNA measurements in plasma were to be
174	expressed as an absolute concentration ²³ . Therefore, we considered that the quantitative
175	miRNA measurements might be the same as quantitative mRNA measurements in
176	plasma. Here, absolute real-time qRT-PCR analysis was performed.
177	

178 Ultrasonographic examination of placenta previa

The prenatal prediction of placenta accreta in the placenta previa group was estimated by ultrasonographic findings, which were suggestive of placenta accreta, including: (1) irregularly shaped placental lacunae within the placenta; (2) thinning of the myometrium overlying the placenta; (3) loss of retroplacental clear space; and (4)

183	increased vascularity of the uterine serosa-bladder interface ²⁴ . When the cases of
184	placenta previa fulfilled two or more of four ultrasonografic features, these cases were
185	managed as suspected placenta previa-accreta and MRI test was performed to attempt to
186	further define the diagnosis.
187	
188	Statistical analysis
189	Patients' backgrounds were compared by Student's t-test and chi-square test
190	for continuous and discrete variables, respectively, in the placenta previa and control
191	groups. Circulating levels of cell-free plasma concentrations of pregnancy-associated
192	placenta-specific miRNAs in both groups were converted into multiples of the median
193	(MOM) in the control group and adjusted for gestational age. Differences between the
194	two groups were evaluated with the Mann-Whitney U test. Differences between the
195	three groups were evaluated using the Kruskal-Wallis test, and then differences between
196	the two groups were evaluated using Bonferroni correction for post hoc analysis of
197	multiple comparisons. Pearson product-moment correlation coefficients between
198	circulating levels of pregnancy-associated placenta-specific miRNAs in maternal

199	plasma and the volume of hemorrhage at delivery were analyzed. Statistical analyses
200	were performed with SPSS version 19 (IBM Corporation, Armonk, NY, USA).
201	Significances were defined as P<0.05.
202	
203	Results
204	Circulating levels of plasma cell-free pregnancy-associated placenta-specific miRNAs
205	in the placenta previa and control groups
206	Table 1 summarizes cell-free miR-517a levels, cell-free miR-518b levels,
207	volumes of hemorrhage at cesarean delivery, and ultrasonographic features in cases of
208	placenta previa pregnancies. Cases 3, 9, 10, 11, 15 and 17 were managed as suspicion of
209	placenta previa-accreta and high risk of massive hemorrhage at delivery, because these
210	cases fulfilled two or more of four ultrasonografic features, which were suggestive of
211	placenta previa-accreta. In these six cases of suspected placenta previa-accreta, MRI test
212	was performed to further define the diagnosis. However, five cases except for Case 10
213	were diagnosed as suspicion of placenta previa-accreta by MRI test. Case 11 was
214	excluded from this study, because placenta removal was impossible at delivery and

215	cesarean hysterectomy was performed in this case. Case 11 was diagnosed as placenta
216	previa-increta by histological examination of placenta-uterus. Cases 9, 10, and 15
217	showed 2,000ml or more hemorrhage at delivery. However, 2,000ml or more
218	hemorrhage was also seen in Cases 4, 5, 12, 19, and 20, which were managed as low
219	risk of massive hemorrhage because these cases fulfilled one or none of four
220	ultrasonografic features, which were suggestive of placenta accreta.
221	Median (minimum-maximum) MoM values of plasma cell-free
222	pregnancy-associated placenta-specific miRNAs in the control (n=26) and placenta
223	previa (n=19) groups were 1.00 (0.11-37.58) and 5.15 (0.47-24.09) for miR-517a, 1.00
224	(0.46-6.89) and 0.12 (0.01-9.86) for miR-518b, respectively (Figure 1). Circulating
225	levels of plasma cell-free miR-517a levels in the placenta previa group were
226	significantly higher than that in the control group (Mann-Whitney U test, P=0.011),
227	while circulating levels of plasma cell-free miR-518b levels in the placenta previa group
228	were significantly lower than that in the control group (Mann–Whitney U test, P=0.004)
229	(Figure 1).

230 Tentatively, although sample numbers were small (Cases 3, 9, 10, 11, 15 and 17), to

231	evaluate the potential value of plasma pregnancy-associated placenta specific miRNAs
232	in cases of suspected placenta previa-accreta, median (minimum-maximum) MoM
233	values of plasma cell-free pregnancy-associated placenta-specific miRNAs in the
234	control (n=26) and placenta previa (n=19) groups were 1.00 (0.11-37.58) and 14.09
235	(0.85–265.12) for miR-517a, 1.00 (0.46–6.89) and 31.3 (0.01–17.45) for miR-518b,
236	respectively (Figure 1). Circulating levels of plasma cell-free miR-517a levels were
237	significantly higher in six cases of suspected placenta previa-accreta than in the control
238	group (Mann-Whitney U test, P=0.022), while there was no significant difference in
239	circulating levels of plasma cell-free miR-518b in both the cases of suspected placenta
240	previa-accreta and the control group (P>0.05).
241	
242	Circulating levels of plasma cell-free pregnancy-associated placenta-specific miRNAs
243	in placenta previa with alert bleeding group, placenta previa without alert bleeding
244	group, and control group
245	In 19 cases of placenta previa, seven cases had alert bleeding later, and

246 remaining 12 cases had no alert bleeding during pregnancy. Median (minimum-

247	maximum) MoM values of plasma cell-free pregnancy-associated placenta-specific
248	miRNAs in placenta previa with alert bleeding group (n=7), placenta previa without
249	alert bleeding group (n=12), and uncomplicated pregnancies as control group (n=26)
250	were 10.66 (5.15–24.09), 2.20 (0.47–7.72) and 1.00 (0.11–37.58) for miR-517a, 1.48
251	(0.01-9.86), 0.064 (0.01-7.35) and 1.00 (0.46-6.89) for miR-518b, respectively (Table
252	3). Plasma concentrations of cell-free pregnancy-associated miRNAs (miR-517a and
253	miR-518b) were confirmed to have significantly different plasma concentrations in
254	women with the placenta previa with alert bleeding, placenta previa without alert
255	bleeding or control groups (Kruskal-Wallis test; Table 3). Plasma concentrations of
256	cell-free miR-517a were significantly higher in the placenta previa with alert bleeding
257	group than in placenta previa without alert bleeding group or control group ($P = 0.030$
258	or 0.047, respectively; Table 3). However, there was no significantly difference of
259	plasma cell-free miR-517a levels between the placenta previa without alert bleeding and
260	control groups (Table 3). There was no significantly difference of plasma cell-free
261	miR-518b levels between the placenta previa with and without alert bleeding groups,
262	between the placenta previa with alert bleeding and control groups, or between the

263	placenta	previa	without	alert b	leeding	and control	groups.	(Table 3).	
-----	----------	--------	---------	---------	---------	-------------	---------	------------	--

264

- 265 Circulating levels of plasma cell-free pregnancy-associated but not placenta-specific
- 266 miRNA in the placenta previa and control groups
- As pregnancy-associated but not placenta-specific miRNA, median (minimummaximum) MoM values of plasma cell-free miR-323-3p in the control and placenta previa groups were 1.000 (0.24–13.76) and 0.747 (0.04–3.52), respectively. There was no significant difference in circulating levels of plasma cell-free miR-323-3p in both the placenta previa and the control groups (P>0.05).
- 272
- 273

274 Association between the volume of hemorrhage in placenta previa at cesarean 275 delivery and plasma concentrations of cell-free pregnancy-associated 276 placenta-specific miRNAs

We investigated the association between the volume of hemorrhage in placenta previa at cesarean delivery and plasma concentrations of cell-free

279	pregnancy-associated placenta-specific miRNAs (miR-517a or miR-518b). Median
280	(minimum-maximum) circulating levels of plasma cell-free pregnancy-associated
281	placenta-specific miRNAs in the placenta previa group were 19,600 (1,830-93,600)
282	copies/mL for miR-517a, and 6,210 (626-452,000) copies/mL for miR-518b,
283	respectively (Figure 2a, b). Median (minimum-maximum) volume of hemorrhage in the
284	placenta previa group at cesarean delivery was 1,650 (778-5,400) mL (Figure 2a, b).
285	The circulating levels of cell-free miR-517a and miR-518b in maternal plasma were
286	significantly associated with the volume of hemorrhage in placenta previa at cesarean
287	delivery (R and P-values: 0.512 and 0.025 for 517a, and 0.472 and 0.041 for 518b,
288	respectively) (Figure 2a, b). Median (minimum-maximum) circulating levels of of
289	plasma cell-free pregnancy-associated placenta-specific miRNAs in the placenta previa
290	group were 19,600 (1,830-93,600) copies/mL for miR-517a, and 6,210 (626-452,000)
291	copies/mL for miR-518b, respectively (Table 1, Figure 2a, b). Median (minimum-
292	maximum) volume of hemorrhage in the placenta previa group at cesarean delivery was
293	1,650 (778–5,400) mL (Table 1, Figure 2). The circulating levels of cell-free miR-517a
294	in maternal plasma were significantly associated with the volume of hemorrhage in

295	placenta previa at cesarean delivery (R and P-values: 0.512 and 0.025) (Figure 2a).
296	While, the correlation between the plasma concentrationss of cell-free miR-518b and
297	the volume of hemorrhage in placenta previa at cesarean delivery was weak (R and
298	P-values: 0.472 and 0.041) (Figure 2b).
299	
300	Discussion
301	This is the first study to investigate maternal plasma concentrations of
302	cell-free pregnancy-associated placenta-specific miRNAs in placenta previa.
303	Increased levels of cell-free miR-517a and decreased levels of cell-free
304	miR-518b in maternal plasma at 32 weeks gestation were detected in the placenta previa
305	group. On the other hand, the plasma concentration of cell-free pregnancy-associated
306	but not placenta- specific miRNA, miR-323-3p on C14MC, which is expressed in the
307	placenta, embryo and mother, showed no significant difference between the control and
308	the placenta previa groups. Increased levels of placental miRNAs on C19MC have been
309	reported in cases of preeclampsia, because apoptotic changes in the placenta lead to
310	release of syncytiotrophoblast microparticles (STBM) and exosomes including

311	fetal/placental DNAs/RNAs into maternal circulation ²⁵ . Our previous study showed that
312	the increased level of cell-free placental mRNA (human placental lactogen and human
313	chorionic gonadotropin) in placenta accreta might be explained by possible
314	direct-connection between the placenta and maternal circulation ²⁴ . Here, although a case
315	of placenta previa-increta was excluded, cases of potential placenta accreta may be
316	included, because placenta previa is the risk factor of placenta accreta. Therefore, as
317	with the association of circulating levels of placental mRNAs and placenta previa, we
318	expected that circulating levels of miR-517a and miR-518b would be increased in the
319	placenta previa group compared with the control group. However, our result was
320	contrary to our expectation. In another study, the discrepancy of expression pattern of
321	placenta-specific miRNAs (increased expression of miR-519a and decreased expression
322	of miR-518b) was also seen in placentas with fetal growth restriction (FGR), compared
323	with placentas that were large or adequate for gestational age ²⁶ . At present, although we
324	have no explanation regarding this discrepancy of cell-free miRNAs levels on the
325	C19MC region, the increased level of miR-517a and decreased level of miR-518b in
326	placenta previa may account for the discrepant concentration of these molecules in

327	maternal plasma. Therefore, the altered circulating levels of cell-free miR-517a and
328	miR-518b on C19MC seem to be associated with the pathogenesis of placenta previa
329	pregnancy. And, the measurement of cell-free miRNAs on the C19MC region in
330	maternal plasma may reflect the functional status of placenta previa.
331	Plasma concentrations of cell-free miR-517a in the placenta previa with alert
332	bleeding later group were significantly higher than those in placenta previa without alert
333	bleeding group or uncomplicated pregnancy group. While, there was no significantly
334	difference of plasma cell-free miR-518b levels between the placenta previa with and
335	without alert bleeding later groups, between the placenta previa with alert bleeding later
336	and uncomplicated pregnancy groups, or between the placenta previa without alert
337	bleeding later and uncomplicated pregnancy groups. Therefore, the measurement of
338	plasma cell-free miR-517a level may predict the risk of alert bleeding later in cases of
339	placenta previa.
340	Also, cell-free miR-517a level in maternal plasma collected at around 32 weeks
341	correlated with the volume of hemorrhage in placenta previa pregnancies at delivery.

342 While, the correlation between the plasma concentrations of cell-free miR-518b and the

343	volume of hemorrhage in placenta previa at cesarean delivery was weak. A recent study
344	could not confirm the diagnostic benefit of cell-free fetal DNA to predict invasive
345	placentation in placenta previa ²⁷ , while other studies continue to suggest that the
346	placental mRNAs may be a marker for prediction of invasive placenta among women
347	with placenta previa ^{24,28} . Our results of placenta-specific miRNAs would be clinically
348	more useful if the profile/levels of placenta-specific miRNAs could be correlated to
349	invasive placenta disorders (e.g., previa-increta or previa-percreta). The prenatal
350	prediction of placenta previa-accreta is estimated by ultrasonographic findings.
351	However, ultrasonographic assessment for the risk of massive hemorrhage in cases of
352	placenta previa at delivery was difficult (Table 1). Furthermore, ultrasonographic
353	assessment for the placenta locating the posterior wall of uterus is more difficult,
354	compared with that for the placenta locating the anterior wall of uterus ¹ . In this study,
355	six cases (Cases 3, 9, 10, 11, 15 and 17) were managed as suspected placenta
356	previa-accreta, because these cases had two or more of four ultrasonographic features,
357	which were suggestive of placenta previa-accreta. In six cases of suspected placenta
358	accreta, MRI tests were performed to further define the diagnosis. However, five of six

359	cases were diagnosed as suspicion of placenta accrete, suggesting that MRI test seems
360	to give no additional information for the predictions of placenta previa-accreta or
361	massive hemorrhage, compared with ultrasonografic examination ¹ . It might have been
362	more useful to evaluate the potential value of plasma pregnancy-associated placenta
363	specific miRNAs in cases of suspected placenta accreta, but numbers are small in this
364	study and further examination should be necessary. Therefore, plasma concentrations of
365	cell-free placental RNAs (placental mRNA and miR-517a) combined with an
366	ultrasonographic examination may be used as a noninvasive obstetrical examination for
367	prenatal prediction of the risk of massive hemorrhage in pregnant women with placenta
368	previa at delivery. In turn, this may allow a reduction in perinatal maternal mortality
369	from not only placenta previa but also other placental abnormalities.
370	In conclusion, our data showed increased levels of cell-free miR-517a and
371	decreased levels of cell-free miR-518b in maternal plasma samples from placenta previa
372	pregnancies, compared with plasma samples from uncomplicated pregnancies.
373	Therefore, measurement of cell-free miR-517a and miR-518b concentrations in
374	maternal plasma at 32 weeks gestation has the potential to reflect the placental status of

375	placenta previa pregnancy. Subsequently, plasma concentration of cell-free miR-517a at
376	32 weeks gestation was significantly higher in placenta previa with alert bleeding later
377	group than in placenta previa without alert bleeding or uncomplicated pregnancy groups
378	and correlated with the volume of hemorrhage in placenta previa at delivery, suggesting
379	that plasma concentration of cell-free miR-517a in placenta previa may predict the risks
380	of alert bleeding later and massive hemorrhage at cesarean delivery. As this pilot study
381	was limited by its small sample size, further large-scaled study is necessary to our
382	hypothesis.
383	
384	Acknowledgements
385	We would like to thank Ayako Ueyama, Shizuka Yoshii, Hiroko Sakakida, and Yasuko
386	Noguchi for their technical assistance. K.M., A.H., S.A., S.M., and H.M. were
387	supported by JSPS KAKENHI (grant numbers 26462495, 26000000,
388	25861498, 24791712, and 25462563, respectively).

389 **References**

- 390 1. Oyelese Y, Smulian JC. Placenta previa, placenta accreta, and vasa previa. Obstet
- 391 Gynecol 2006; 107:927–41.
- 392 2. Baba Y, Matsubara S, Ohkuchi A, et al. Anterior placentation as a risk factor for
- 393 massive hemorrhage during cesarean section in patients with placenta previa. J
- 394 Obstet Gynaecol Res 2014; 40:1243–8.
- 395 3. Hasegawa J, Nakamura M, Hamada S, et al. Prediction of hemorrhage in placenta
- 396 previa. Taiwan J Obstet Gynecol 2012; 51:3–6.
- 397 4. Ghourab S. Third-trimester transvaginal ultrasonography in placenta previa: does
- the shape of the lower placental edge predict clinical outcome? Ultrasound Obstet
- 399 Gynecol 2001; 18:103–8.
- 400 5. Zaitoun MM, El Behery MM, Abd El, et al. Does cervical length and the lower
- 401 placental edge thickness measurement correlates with clinical outcome in cases of
- 402 complete placenta previa? Arch Gynecol Obstet 2011; 284:867–73.
- 403 6. Chim SS, Shing TK, Hung EC, et al. Detection and characterization of placental
- 404 microRNAs in maternal plasma. Clin Chem. 2008; 54:482–90.

405	7.	Chiu RW, Lo YM. Pregnancy-associated microRNAs in maternal plasma: a channel

- 406 for fetal-maternal communication? Clin Chem 2010; 56:1656–7.
- 407 8. Miura K, Miura S, Yamasaki K, et al. Identification of pregnancy-associated
- 408 microRNAs in maternal plasma. Clin Chem 2010; 56:1767–71.
- 409 9. Donker RB, Mouillet JF, Chu T, et al. The expression profile of C19MC
- 410 microRNAs in primary human trophoblast cells and exosomes. Mol Hum Reprod
- 411 2012; 18:417–24.
- 412 10. Luo SS, Ishibashi O, Ishikawa G, et al. Human villous trophoblasts express and
- 413 secrete placenta-specific microRNAs into maternal circulation via exosomes. Biol
- 414 Reprod 2009; 81:717–29.
- 415 11. Hromadnikova I, Kotlabova K, Ondrackova M, et al. Circulating C19MC
- 416 microRNAs in preeclampsia, gestational hypertension, and fetal growth restriction.
- 417 Mediators Inflamm 2013; 2013:186041.
- 418 12. Mouillet JF, Chu T, Sadovsky Y. Expression patterns of placental microRNAs. Birth
- 419 Defects Res A Clin Mol Teratol. 2011; 91:737–743.
- 420 13. Chiu RW, Poon LL, Lau TK et al. Effects of blood-processing protocols on fetal

421	and total DNA quantification in maternal plasma. Clin Chem. 2001;47:1607–13.
422	14. Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and
423	nonconserved human microRNAs. Nat Genet 2005; 37:766–70.
424	15. Liang Y, Ridzon D, Wong L, Chen C. Characterization of microRNA expression
425	profiles in normal human tissues. BMC Genomics 2007; 8:166.
426	16. Bortolin-Cavaillé ML, Dance M, Weber M, Cavaillé J. C19MC microRNAs are
427	processed from introns of large Pol-II, non-protein-coding transcripts. Nucleic Acids
428	Res 2009; 37:3464–73.
429	17. Morales-Prieto DM, Ospina-Prieto S, Chaiwangyen W et al.
430	Pregnancy-associated miRNA-clusters. J. Reprod. Immunol. 2013; 97:
431	51–61.
432	18. Morales Prieto DM, Markert UR. MicroRNAs in pregnancy. J Reprod Immunol
433	2011; 88:106–11.
434	19. Higashijima A, Miura K, Mishima H, et al. Characterization of placenta-specific

- 435 microRNAs in fetal growth restriction pregnancy. Prenat Diagn 2013; 33:214–22.
- 436 20. Hasegawa Y, Miura K, Furuya K, et al. Identification of complete hydatidiform

437	mole pregnancy-associated microRNAs in plasma. Clin Chem 2013; 59:1410-2.
438	21. Mouillet JF, Chu T, Sadovsky Y. Expression patterns of placental microRNAs. Birth
439	Defects Res A Clin Mol Teratol 2011; 91:737–43.
440	22. Zhao Z, Moley KH, Gronowski AM. Diagnostic potential for miRNAs as
441	biomarkers for pregnancy-specific diseases. Clin Biochem 2013; 46:953-60.
442	23. Ng EK, Tsui NB, Lam NY, et al. Presence of filterable and nonfilterable mRNA in
443	the plasma of cancer patients and healthy individuals. Clin Chem 2002; 48:1212-7.
444	24. Miura K, Miura S, Yamasaki K, et al. Increased level of cell-free placental mRNA
445	in a subgroup of placenta previa that needs hysterectomy. Prenat Diagn.
446	2008;28:805–9.
447	25. Knight M, Redman CW, Linton EA, et al. Shedding of syncytiotrophoblast
448	microvilli into the maternal circulation in pre-eclamptic pregnancies. Br J Obstet
449	Gynaecol 1998; 105:632–40.
450	26. Wang D, Na Q, Song WW, et al. Altered expression of miR-518b and miR-519a in
451	the placenta is associated with low fetal birth weight. Am J Perinatol. 2014;31:729-
452	34.

453	27. Samuel A, Bonanno C, Oliphant A, et al. Fraction of cell-free fetal DNA in the
454	maternal serum as a predictor of abnormal placental invasion: a pilot study. Prenat
455	Diagn 2013; 33:1050–3.
456	28. Kawashima A, Sekizawa A, Ventura W, et al. Increased levels of cell-free human
457	placental lactogen mRNA at 28-32 gestational weeks in plasma of pregnant women
458	with placenta previa and invasive placenta. Reprod Sci 2014; 21:215–20.
459	

460 **Figure Legends**

- 461 Figure 1. Circulating levels of plasma cell-free miR-517a and miR-518b at 32
- 462 weeks gestation in placenta previa and control groups.
- 463 **a.** miR-517a, and **b.** miR-518b.
- 464 Circulating levels were expressed as multiple of median (MoM) values. Gray bars
- indicate the data from the placenta previa group, and white bars indicate the data from
- the control group. Circulating levels of miRNAs in maternal plasma are expressed as
- 467 copies/mL. * indicated P=0.011, ** indicated P=0.004 (Mann–Whitney U test).
- 468
- 469 Figure 2. Graph showing relationship between plasma concentration of cell-free
- 470 pregnancy-associated placenta-specific miRNAs at 32 weeks gestation and the
- 471 volume of hemorrhage in placenta previa at cesarean delivery.
- 472 The correlation coefficient between the volume of hemorrhage at cesarean delivery and
- 473 cell-free pregnancy-associated placenta-specific miRNAs levels for a. miR-517a is
- 474 0.512 (P=0.025), and for **b.** miR-518b is 0.472 (P=0.041).

Table 1. Cell-free miRNA levels, volumes of hemorrhage at delivery andultrasonographic features in cases of placenta previa pregnancies.

"O" indicated a case with the feature, while "X" a case without the feature. * Histological examination of placenta-uterus confirmed a case of placenta previa-increta.

Cases	Cell-free placenta-specific		Ultrasonographic features				MRI	Volumes of
	miRNA levels	5						hemorrhage
	(copies/mL)							(mL)
	517a 518b		Irregularly	egularly Thinning of the Loss of the Increased		Suspected		
			shaped	myometrium	retroplacental	vascularity of	Placenta	
			placental	overlying the	clear space	the uterine	accrete	
			lacunae	placenta		serosa-bladder		
						interface		
1	9890	3590	Х	Х	Х	Х	-	1650
2	9640	1720	Х	Х	Х	Х	-	1200
3	22400	67300	0	О	О	Х	Suspected	1700
4	57300	2260	0	Х	Х	Х	-	2550
5	5050	2280	0	Х	Х	Х	-	3500
6	7470	6780	Х	Х	Х	Х	-	1500
7	12600	13100	Х	Х	Х	Х	-	820
8	1830	626	Х	Х	Х	Х	-	1050
9	93600	452000	0	О	О	О	Suspected	5400
10	20000	649	0	Х	О	Х	Undefined	2100
11*	1030000	800000	0	0	О	О	Suspected	8250
12	6870	747	Х	Х	Х	Х	-	3100
13	23400	5640	Х	Х	Х	Х	-	1158
14	30000	337000	0	х	Х	Х	-	1200
15	87100	114000	0	О	О	Х	Suspected	2250
16	27000	78200	Х	Х	Х	Х	-	778
17	3300	950	0	0	Х	Х	Suspected	980
18	41400	37500	Х	Х	Х	Х	-	1600
19	21000	13300	Х	Х	Х	Х	-	2250

20 6230 1630 X X X X - 25

Table 2. Clinical characteristics of the pregnant women included in this study.

All parameters of the control group and placenta previa group are indicated as the mean and (standard deviation [SD]). Significant differences between groups were analyzed by Student's t-test or chi-square test. A P-value of <0.05 was considered significant. NS, not significant; a, mean (SD)

Characteristics	Control group	Placenta previa	P-value	
	(n=26)	group (n=19)		
Maternal age (years)	33.11 (5.38)	33.42 (8.79)	NS ^a	
Gestational age at	32.69 (0.47)	32.32 (0.94)	NS ^a	
sampling (weeks)				
Gestational age at delivery	38.31 (1.67)	36.89 (1.33)	0.004 ^a	
(weeks)				
Alert bleeding during	0	7	<0.001 ^b	
pregnancy				
Parity			NS ^b	
Primiparous	14	13		
Multiparous	12	6		
Placental weight (g)	565.50 (95.87)	577.53 (106.85)	NS ^a	
Fetal birth weight (g)	3031.31 (531.65)	2755.16 (351.39)	NS ^a	
Previous history of	7	5	NS ^b	
cesarean section				
Previous history of	9	2	NS ^b	
artificial abortion				

^a t-test

^b chi-square test

Table 3. Circulating levels of plasma cell-free pregnancy-associatedplacenta-specific miRNAs in placenta previa with alert bleeding group, placenta

previa without alert bleeding group, and control group

Plasma cell-free microRNA levels are indicated as median (minimum-maximum) MoM. Significant differences between groups were analyzed by Kruskal-Wallis test or Bonferroni correction for post hoc analysis of multiple comparisons. A P-value < 0.05 was considered significant. NS: not significant.

pregnancy-	A group	B group	C group	P-values			
associated	Uncomplicated	placenta	placenta previa	Kruskal-	A vs B	A vs C	B vs C
placenta-sp	pregnancy	previa with	without alert	Wallis			
ecific	(n = 26)	alert bleeding	bleeding	test			
miRNAs		(n = 7)	(n = 12)				
miR-517a	1.00	10.66	2.20	0.002	0.047 ^a	NS ^a	0.030 ^a
(MoM)	(0.11–37.58)	(5.15–24.09)	(0.47–7.72)				
miR-518b	1.00	1.48	0.064	0.001	NS ^a	NS ^a	NS ^a
(MoM)	(0.46–6.89)	(0.01–9.86)	(0.01–7.35)				

^aBonferroni correction

Figure 1

а

b

Figure 2