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Abstract: Submarine slope instability may be triggered by earthquakes and tsunamis. Methane
hydrate sediments (MHS) are commonly buried under submarine slopes. Submarine slides would
probably be triggered once the MHS are damaged under cyclic loading conditions. For this reason,
it is essential to research the mechanical response of MHSs under dynamic loading conditions.
In this study, a series of drained cyclic biaxial compressive tests with constant stress amplitudes
were numerically carried out with the distinct element method (DEM). The cyclic loading number
decreased as the hydrate saturation (Sh) increased when the MHS were damaged. The failure mode
of the MHS was shown to be dependent on the dynamic stress amplitude and hydrate saturation.
The microstructure of MHS during the cyclic loading shear process was also analyzed. The results
can help us to understand the mechanical behavior of MHS during the cyclic loading process and
develop micromechanical-based constitutive models.

Keywords: methane hydrate sediments (MHS); distinct element method (DEM); mechanical behavior;
cyclic loading

1. Introduction

Methane hydrate is ice-like solid energy, which is generally founded in the subpermafrost and
deep seabed where the pressure is high and the temperature is low. In order to extract methane gas
from the methane hydrate sediment, the methane hydrate needs to be dissociated first. Methane
hydrates are very sensitive to the occurrence environment and can be dissociated when the pressure
decreases and/or the temperature increases. There are three main production techniques including
thermal injection, chemical injection, and depressurization. Due to the environmental sensitivity of
methane hydrates, the extraction of methane hydrates from seabed sediments may create a geohazard.
In order to mine methane hydrates safely, the mechanical properties of methane hydrate-bearing
sediments (MHS) should be studied.

The mechanical properties of MHS have been researched by using various methods, including in
situ tests, synthetic sediment tests, and simulated tests. The in situ tests can reveal the mechanical
properties of MHS precisely. In previous decades, there were several methane hydrate gas production
tests of methane hydrates conducted around the world. The Messoyakha gas hydrate deposit was
discovered in 1967. The production of methane gas production began in December 1969 [1]. Japan,
Canada, and the United States conducted pressure drawdown tests using Schlumberger’s Modular
Formation Dynamics Tester (MDT) in the Millik methane hydrate reservoirs in 2002, and in the Mount
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Elbert methane hydrate reservoirs in 2007 [2]. In 2013, offshore methane hydrate gas production was
first conducted in the Eastern Nankai Trough, Japan [3]. From April to June 2017, Japan conducted the
second extraction test of methane hydrates in the Eastern Nankai Trough [4]. From May to July 2017,
China tested the production of methane hydrate gas from MHS in the South China Sea [5]. In May
2017, China investigated the extraction of methane hydrates using the solid fluidization method [6].
Based on these extraction tests, a series of in situ mechanical property tests were conducted on MHS.
Winters et al. [7] conducted triaxial shear tests of field sediments drilled from the Mackenzie Delta.
Priest et al. [8] tested the mechanical properties of MHS drilled in the Eastern Nankai Trough using the
PCATS Triaxial. The properties discovered included a small strain stiffness, stress–strain properties
(triaxial shear tests), and permeability. Yoneda et al. [9,10] conducted undrained/drained compression
tests and isotropic loading and unloading tests to test the in situ mechanical properties of MHS in the
Eastern Nankai Trough. Priest et al. [11] conducted undrained triaxial shear tests using in situ sediment
from the Indian National Gas Hydrate Program (NGHP). They found that the sediments have low
shear strength, and hydrate is the main factor contributing to the improved strength of sediments.
In the aforementioned in situ tests of the mechanical properties of MHS, the shear strength of MHS
increased as the methane hydrate saturation (Sh) increased. Methane hydrate saturation refers to the
volume percentage of methane hydrates in the spaces among soil particles.

Because the in-situ tests of MHS are costly and advanced techniques are needed, most of the
mechanical property tests of MHS were conducted in the laboratory by using synthetic sediments.
In previous research, the mechanical properties of MHS were tested by using direct shear tests, triaxial
compressive tests, and bending tests. Masui et al. [12], Miyazaki et al. [13,14], and Hyodo [15–19]
tested the triaxial compressive properties of synthetic methane hydrate sediments. In their studies,
the shear strength and stiffness of MHS increased with an increasing Sh. Miyazaki et al. [20] also
tested the strain rate effect on the strength of MHS. In their research, the strength of MHS increased
as the strain rate increased. The strain rate dependence of MHS is as strong as that of frozen sand.
Li et al. [21] conducted a series of triaxial tests to investigate the mechanical properties of MHS under
different mining methods. In their research, the stability of MHS decreased under depressurization and
heating conditions. Liu et al. [22] proposed an efficient method to evaluate the mechanical properties
of MHS. Their test results indicated that hydrate strengthens specimens by cementing silt grains.
Kajiyama et al. [23,24] tested the effects of particle characteristics on the mechanical response of MHS
using compressive tests. Gong [25] tested the mechanical properties of MHS in the laboratory using a
multiple failure test method. The mechanical properties of MHS were studied from different aspects
in the above tests using various test apparatuses and methods. The test results indicate that the
mechanical properties of MHS significantly depend on the hydrate saturation.

In general, most of the research on the mechanical properties of MHS has focused on statics
analysis. In reality, MHS would be subject to the effects of dynamic loading, including seismic loading
and wave loading. One of the largest known submarine slides is the Storegga Slide, as shown in
Figure 1 [26]. The triggering mechanism is a combination of different effects; e.g., methane hydrate
dissociation and earthquakes [27,28]. For this reason, it is essential to research the mechanical response
of MHS under dynamic loading conditions. The Aitape earthquake in Papua New Guinea resulted in
one of the largest submarine slope failures caused by a large earthquake, and a large tsunami [29,30].
The Kocaeli earthquake in Turkey triggered slope instability and movement [31]. The slope sliding
triggered by the Aitape and Kocaeli earthquakes illustrates the close association between earthquakes,
tsunamis, and slope failures. If slope instability is associated with a tsunami and/or an earthquake,
it is possible that the MHS discovered in the slope are more easily damaged under dynamic loading
conditions. Clayton et al. [32] tested the effects of the existence of methane hydrate on the shear
modulus, bulk modulus, and the damping of MHS by using a modified Stoke-resonant column
apparatus. Priest et al. [33] studied the effect of methane hydrate’s existence on the compressional
wave and shear wave velocities using remote seismic methods. Kingston et al. [34] investigated the
dynamic characteristics of MHS, such as the compressional wave velocity, shear wave velocity, and
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their respective attenuation characteristics, considering the particle sizes and shapes. Lee et al. [35]
studied the effects of particle types such as sand, silts, and clay, with and without hydrate, on the
compressional waves and shear velocities. Zhang et al. [36] conducted a series of dynamic triaxial
tests on artificial MHS. In their studies, the number of cycles to failure was significantly affected by the
dynamic loading amplitude; and the dynamic strength increased as the confining pressure decreased,
and decreased as the temperature increased. The dynamic response of MHS has been studied, but the
mechanism responsible for the response is not clear.
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Figure 1. High-resolution seismic reflection profile of Storegga Slide [26].

In recent years, soil fabric has been broadly used to describe arrangements of particles, contacts,
and other anisotropic parameters during the cyclic loading process. However, only the macroscopic
behaviors of specimens can be captured with conventional laboratory techniques. It is very
time-consuming and technically difficult to measure the soil fabric and monitor its evolution when
the specimen is loading. Alternatively, fabric evolution can be numerically simulated by the distinct
element method (DEM) [37]. The DEM has been broadly used to investigate the mechanical responses
of soils and rocks, which include the cyclic behaviors of soils. Previous studies have confirmed that the
cyclic behaviors of soil can be successfully evaluated by the DEM.

The main purpose of the present work is to obtain a better understanding of the microstructure
evolution of MHS under cyclic loading and to aid in the development of micromechanical-based
constitutive models. To achieve this aim, a series of drained cyclic biaxial compressive tests with
constant stress amplitudes were numerically carried out with DEM considering the cementing of
hydrate particles and the rolling resistance among particles.

2. Numerical MHS Models with Different Levels of Hydrate Saturation

2.1. Particle Flow Code (PFC)

Cundall and Strack [37] proposed the particle flow code (PFC) theory in 1979. This theory is
based on the DEM. The material particles are assumed to be disks of unit thickness (PFC2D) or balls
(PFC3D) which are considered rigid and have normal and tangential stiffness. Among the disks or
balls, contact models are activated. In this work, the numerical MHS was simulated by using disks,
the rolling resistance model (RRM), and the parallel bond contact model (PBM) (Itasca consult group
Inc. 2014). The RRM (Figure 2a) has rolling resistance friction and sliding resistance friction to resist
the particle rotation or slide. The PBM (Figure 2b) can resist such particle movements, since PBM acts
like a beam that resists the bending moment occurring within the bonded area [38]. The bond stiffness
will lose its effect when the bond is broken. In this study, the PBM was assembled between the soil
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particles and hydrate particles, while the RRM was assembled among the soil particles. The default
contact model among the particles was set to the RRM when the PBM was broken.Energies 2019, 12, x FOR PEER REVIEW 4 of 20 
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Figure 2. Cohesive model and its micromechanical behavior schematic diagram: (a) parallel bond
model; (b) rolling resistance model [38].

2.2. Parameter Checking and the Verification of MHS

The microscopic mechanical parameters of the particles and the contact model parameters must
be set prior to running numerical simulation tests using the PFC. However, these parameters cannot
directly be acquired from laboratory tests. Therefore, the microscopic parameters of particles and
contact models must be selected and verified before the numerical simulations. When selecting
the parameters, a large number of numerical simulation tests were first conducted under similar
test conditions to the laboratory tests or in situ tests. Then, the numerical simulation results were
compared with the results of experimental tests or field tests. The microscopic mechanical parameters
were adjusted repeatedly by the “trial and error” method [39] until they met the required simulation
conditions. The “trial and error” method used to check the PFC simulation process (version 5.0) is
shown in Figure 3.
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PFC3D can simulate the experimental triaxial testing of specimens. When the specimen is of
cylindrical shape, the confining pressure is a constant value. Hence, the shear tests can be simulated
by using PFC2D. Many researchers have used PFC2D to calculate the mechanical properties of
geomaterials [40,41]. In this work, the initial size of the test specimens was set to 5 mm by 2.5 mm
in height and in width, respectively. According to the particle-size distribution of soil used in the
experimental tests (see Figure 4) [42], 3500 balls with diameters ranging from 0.1 mm to 0.4 mm were
generated in a rectangular region with rigid, frictionless walls. The initial porosity was set to 0.1, and
the inter-friction value was set to 0.5. After the numerical specimen was generated, the specimen was
compressed by a numerical servo-control mechanism until the specimen reached the desired isotropic
stress state (0.5 MPa).
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Figure 4. The particle size distribution of soil grains in the simulation and experimental test.

Considering the deep-submarine generation of MHS, it is assumed that hydrates are formed after
initial geostatic stresses to the soil skeleton. During the whole experimental test process, the specimen
was conducted in a low-temperature environment. To prepare the test specimen, Toyuora sand and ice
powder (the diameter is less than 250 µm) were mixed, with a target sand ratio (the percent of sand
mass in the total mass of sand and ice, SMR). The mixture of sand and ice powder was consolidated
to be a cylindrical shape measuring 50 mm in diameter and 200 mm in height, and the mixture was
transferred into the pressure room of the test apparatus. Methane gas was injected into the mixture after
the ice powder was melted into water. When the pressure of methane gas is maintained at a constant,
methane hydrate has been generated in the pores among soil particles [25]. In the numerical simulation,
first, the positions of walls and soil particles were fixed, and the diameters of soil particles were shrunk
to one-tenth of their original values. Methane hydrate particles were randomly generated in the pore
among soil particles, following which, soil particles were freed and expanded to their original diameter.
In order to simulate the cementation of methane hydrate, the parallel-bond contact model was set onto
the contact point in which a hydrate particle existed. Considering the rolling of particles, the rolling
resistance model was applied to determine soil–soil contacts and broken parallel-bonded contacts.
Finally, the specimen was consolidated to the desired stress state to finish the numerical specimen
preparation. As shown in Figure 5, there is an example numerical specimen, and the hydrate saturation
is of 65% in the example specimen. The total number of soil particles (represented by gray circles) and
hydrate particles (represented by red circles) is 13,932.
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The densities of soil particles and methane hydrate particles used in the numerical simulation
were obtained from the specimen of Nankai Trough [43]. The parameters of particles and contacts
were obtained by using our “trial and error” method. The parameters of particles and contacts were
adjusted many times until the stress–strain curve of the simulation appropriately coincided with the
stress–strain curve of the experimental test. The particle parameters and the contact parameters used
in the simulations are listed in Tables 1 and 2, respectively. To simulate the soft boundary condition of
confining pressure, the stiffness of the lateral wall was set to one-tenth of the mean particle stiffness
(Knw = 104 N/m, Ksw = 0 N/m, and µw = 0).

Table 1. Mechanical parameters of particles in the simulation.

Property Soil Methane Hydrate

Density (kg/m3) 2500 320
Particle sizes, D (mm) 0.01–0.4 0.006

Normal stiffness kn (N/m) 1 × 108 1 × 105

Shear stiffness ks (N/m) 1 × 108 1 × 105

Inter-particle friction µ 0.7 0.75

Table 2. Mechanical parameters of contacts in the simulation.

Property Soil–Hydrate Soil–Soil Hydrate–Hydrate

Friction µ 0.15 0.5 0.15
Normal stiffness kn (N/m) 1 × 105 3 × 108 1 × 105

Shear stiffness ks (N/m) 1 × 104 3 × 107 1 × 104

Tension strength (N) 3 × 106 3 × 106

Cohesion (N) 5 × 106 5 × 106

Friction angle 10 10
Rolling resistance coefficient (µr) 0.6

Contrasting the stress–strain curves of simulations and experimental tests (Figure 6), the mechanical
response of them is very similar in terms of the following aspects: (1) the strain-softening was enhanced
with increased Sh; (2) the elastic modulus increased with increased Sh; (3) the peak shear strength
increased with increased Sh; (4) the axial strain corresponding to the peak shear strength is about 2–4%
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both in simulations and experimental tests. Therefore, the DEM simulation presented in this research
can quantitatively explain the laboratory experiment.Energies 2019, 12, x FOR PEER REVIEW 7 of 20 
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saturation (Sh) levels in laboratory tests and the simulation [42].

3. Numerical Simulation Results’ Analyses

In this work, cyclic loading was simulated by changing the vertical load while the confining
pressure was kept constant at 1 MPa. In general, the seismic wave is a random wave, and the random
wave can be described by its amplitude, cycle, and phase. Although the random waveform can be
computer simulated, it is very complex to explain the dynamic response mechanism using this process.
In order to simplify the problem, De alba et al. [44] proposed that the complex earthquake wave could
be described by an equivalent cyclic load. According to previous studies, to research the dynamic
strength of MHS subjected to seismic loads, the seismic waveform, which is a random wave, can be
simplified into an equivalent harmonic [45]. In this paper, a series of biaxial cycle tests of constant
dynamic stress amplitude were conducted using the waveform shown in Figure 7. In addition to
the cyclic loading tests, the mechanical properties of the numerical MHS under monotonic loading
were investigated to determine the micromechanical parameters of the balls and contacts, and the
dynamic stress amplitude in the cyclic loading process. The information about the cyclic loading tests
is exhibited in Table 3. The upper strength ratios (Sup) were set to 20%, 40%, and 80% of the peak
strength of MHS, respectively, while the lower strength ratio (Slow) was set to 1% of the peak strength
of MHS. The stress amplitudes were 19%, 39%, and 79% of the peak strength of MHS. According to the
numerical simulation results, the microscopic mechanical response of MHS during the cyclic loading
process was analyzed.

Table 3. Simulation conditions of each group.

Hydrate Saturation (%) 30 40 50 65

Peak strength (MPa) 3.16 4.93 5.91 7.52

Upper strength ratio (%)
20
40
80

20
40
80

20
40
80

20
40
80

Lower strength ratio (%) 1
Frequency (Hz) 2
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Figure 7. Loading waveform schematic.

3.1. Macro-Mechanical Results

3.1.1. The Relationship between Dynamic Stress and Strain

According to the suggestion of Shajarati et al. [46], there are three main failure modes of soil
under cyclic loading conditions. The main failure modes are progressive failure, stabilization, and
shakedown, as shown in Figure 8. The models of the progessive failure and stabilization modes
show that the soil specimens will reach failure in the two failure modes. In the progressive failure
mode, the strain increment increases with the increasing number of cycles, while the strain increment
decreases in the stabilization mode. In the shakedown mode, the strain increment decreases until the
shear strain reaches a stable value, and the soil specimen will not reach failure.
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Figure 8. Failure modes of granular soils due to cyclic loading. Modified from Shajarati et al. (2012) [46].

Figure 9 shows the relationship between the deviatoric stress and the axial strain rate of MHS
with different levels of hydrate saturation under various stress amplitude conditions. When the axial
strain rate is more than 15%, the MHS can be considered to be damaged. As shown in Figure 9a,
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the hydrate saturation was 30%, and the peak strength was 3.16 MPa under monotonic loading
conditions. The dynamic stress amplitudes were 0.6, 1.23, and 2.5 MPa, respectively. When the
dynamic stress amplitude was 0.6 MPa, the axial strain rate was about 0.2% after 300 loading cycles.
The axial strain rate was about 1.2% under a dynamic stress amplitude of 1.23 MPa. The axial strain
rate increased as the hydrate saturation increased under the same upper strength ratio and the same
loading cycle number. When Sh was 40% (see Figure 9 b), the final axial strain rates were 0.4% and 6.5%
after 300 load–unload cycles when the dynamic stress amplitudes were 0.95 and 1.92 MPa, respectively.
The hysteretic loop became less and less obvious, as the Sh increased when the upper strength ratio
was less than 40%. When Sh values were equal to 50% and 65% and Sup was equal to 40%, as shown in
Figure 9c,d, the specimens were damaged when the cycle number was less than 300. Moreover, when
Sup was 80%, the specimens were more easily damaged as the hydrate saturation increased.
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Figure 9. Dynamic stress–strain curves for MHS under different dynamic stress amplitudes and various
Sh conditions. (a) Sh = 30%; (b) Sh = 40%; (c) Sh = 50%; (d) Sh = 65%.

In this work, owing to the computational limitations, the biggest load–unload cyclic number
was set to 300. Figure 10 shows the relationship between the cyclic number and the dynamic stress
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amplitude. The cyclic number decreased as the dynamic stress amplitude increased. The cyclic number
decreased as the hydrate saturation increased. When the hydrate saturation was small, the rolling
friction and sliding friction mainly controlled the shear strength of MHS. The specimens were not
damaged unless the shear force was more than the friction force among particles and the cementation
force of hydrate particles. As the hydrate content increased, the cementation force of the hydrates
exceeded the shear stress of MHS. Plastic deformation developed gradually once the bonds among
hydrates began to be destroyed. Thus, the specimens with higher hydrate saturations were damaged
under fewer load–unload cycle numbers.
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Figure 10. The relationship between the upper strength ratio and the cyclic number.

3.1.2. The Relationship of Strain versus Cyclic Time

In the present work, the volumetric strain εv is defined as dv/v0, where dv is the change of the
specimen in volume and v0 is its initial volume before MHS shearing. In the biaxial simulation process,
εv = εx + εy, where εx and εy are the lateral strain and vertical strain, respectively. The deviatoric strain
εd is defined as εy − εx.

Figure 11 shows the effects of the hydrate saturations and dynamic stress amplitudes on the
evolutions of deviatoric strain, volumetric strain, and lateral strain. It shows that a larger dynamic
stress amplitude led to a larger strain and less contractive behavior. By comparing Figure 11 with the
main features of the failure modes (Figure 8), it is clear that the failure modes for the cases depended
on the hydrate saturations and dynamic stress. When Sh = 30%, the failure mode was the shakedown
mode, if the upper strength ratio was less than 40%, while the failure mode was the stabilization mode
if the upper strength ratio increased to 80%. The failure mode changed as the hydrate saturation
increased. The shakedown mode was present when Sh = 40% and Sup = 20%, while the failure mode
changed to the progressive failure mode when the Sup = 40% or 80%, as shown in Figure 11b. In the
cases where the Sh was 50% or 65%, the failure mode was the stabilization mode when Sup = 20%,
while the failure mode developed into the progressive failure mode when Sup > 40%.
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Figure 11. The effect of the dynamic stress amplitude on the strain of the MHS with different Sh values.
(a) Sh = 30%; (b) Sh = 40%; (c) Sh = 50%; (d) Sh = 65%.

The specimen was relatively loose when the hydrate saturation was low. The particles were occlusal
with each other after the specimen was compressed densely, and the force was transferred mainly by
the soil particle skeleton under small dynamic amplitude conditions. The hydrate cementation was
damaged when larger dynamic stress amplitude was present. The main movement pattern of particles
was changed to slide, and the progressive failure mode dominated the failure process of MHS.

3.2. Micro-Mechanical Results

The microstructure of soils can be described by the coordination number and the arrangement of
particles, contacts, etc. This work focused on the coordination number and the distribution of contacts
and forces acting among particles.

3.2.1. Coordination Number Evolution

The coordination number describes the average number of contacts per particle. The microstructures
of soil specimens can be represented quantitatively throughout the whole shear processing of specimens.
Figure 12 exhibits the evolution of the coordination number in MHS containing different hydrate
contents under various dynamic stress amplitude conditions.
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Figure 12. The evolution of the coordination number under different dynamic amplitude conditions
for the MHS with different Sh values. (a) Sh = 30%; (b) Sh = 40%; (c) Sh = 50%; (d) Sh = 65%.

The MHS with various hydrate saturations showed similar trends: the coordination number
reduced rapidly during the early stage of shearing and then approached a stable value when Sup =

20%. The initial coordination number increased from 3.1 to 3.8 as the hydrate saturation increased
from 30% to 65%. However, in the upper strength level of the 40% condition, the variation in the
coordination number between MHS with different levels of hydrate saturation was significantly
different. The coordination number showed more and more fluctuations as the hydrate saturation
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increased, when Sup = 40%. This cumulative increase in the coordination number corresponded to
the accumulation of compressive volumetric strain, as shown in Figure 11. The evolution of the
coordination number was different for different failure modes. The fluctuation in the coordination
number became more and more evident as the hydrate saturation increased from 30% to 65%, and
the failure mode correspondingly changed from shakedown mode to progressive failure mode.
This cumulative decrease in the coordination number corresponded to the dilatency of volumetric
strain, as shown in Figure 11.

3.2.2. Contact Normal Fabric Evolution

In previous research, various fabric evolution approaches to constitutive modeling have been
proposed for granular soils under cyclic loading, which can be divided into strain methods and stress
methods. The fabric evolution can be evoluted by a plastic strain function [47]. In the following
section, the fabric evolution of specimens under strain increments is calculated under cyclic loading
conditions. Satake [48] and Oda [49] proposed a second-order fabric tensor to quantify the contact
normal distribution between particles, and the fabric tensor was defined as follows:

Fi j =

∫
Ω

E(Ω)nin jdΩ (1)

where ni is the contact normal unit in the i-direction, and E(Ω) is the distribution probability function
of the unit sphere Ω, expressed by a second-order Fourier expansion:

E(Ω) =
1

4π
[1 + ac

i jnin j ] (2)

where ac
i j is the second-order anisotropic tensor and can be derived from Equation (1) as follows:

ac
i j =

15
2

Ri j =
15
2
(Fi j −

1
3
δi j) (3)

where Rij is the deviatoric part of the fabric tensor Fij and δi j is the Kronecker delta.
To quantify the degree of fabric anisotropy, a scalar parameter ac was used as follows:

ac = ac
11 − ac

33 (4)

The evolution of ac with time is illustrated in Figure 13. The fabric anisotropy of specimens showed
different characteristics during the loading and unloading processes. The contact was disrupted in the
horizontal direction while more contacts formed in the vertical direction, and the fabric anisotropy
reached the highest value at the end of loading. During unloading, the value of ac gradually decreased.
This means that the fabric was anisotropic with the contact normal concentrating in the vertical
direction, though the stress was in an isotropic state. This result is similar to the result of O’Sullivan
and Cui [50]. When Sh = 30%, the value of ac first increased as the simulating time increased and then
fluctuated around a stable value. When Sh = 40%, 50%, or 60%, the value of ac gradually increased as
the simulating time increased under the condition of Sup = 20%, while the value of ac first increased,
and then, decreased as the simulating time increased, when Sup = 40% or 80%. Thus, there may
be a threshold value for the fabric anisotropy under cyclic loading. The fabric structure of the test
specimen will change to unstable if the threshold is reached. During cyclic loading, the test specimens
remain stable, and the fabric evolution between the cyclic loading condition and the monotonic loading
conditon is much more complicated.
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Figure 13. The evolution of contact normal fabric anisotropy under different dynamic amplitude
conditions for MHS with different Sh values. (a) Sh = 30%; (b) Sh = 40%; (c) Sh = 50%; (d) Sh = 65%.
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3.2.3. Stress–Force–Fabric Relationship

The geometrical anisotropy which describes the distribution of the contact normal orientations
is commonly described using the fabric anisotropy. The mechanical anisotropy that describes the
distribution of the contact force’s direction is also anisotropic [51]. The mechanical anisotropy can be
split into normal force anisotropy and tangential force anisotropy. The fabric tensors of the contact
force in the normal direction and tangential direction can be respectively defined as follows:

σi j =
NC
V

∫ 2π
0 fi(θ)l j(θ)E(θ)dθ

=
NC
V

∫ 2π
0 ( fn(θ)ni + ft(θ)ti)ln(θ)niE(θ)dθ

(5)

where E(θ) represents the probability density function of the contact orientation for any angle θ; fn(θ)
and ft(θ) respectively represent the average normal and tangential force; ln(θ) is the average length
of branch vectors. The second-order Fourier series expressions can be described in a polar coordinate
system. The probability density functions are the following:

E(θ) =
1

2π
[1 + ac cos 2(θ− θc)] (6)

fn(θ) = f0[1 + an cos 2(θ− θ f n)] (7)

ft(θ)= − f0at cos 2(θ− θ f t) (8)

ln(θ) = l0[1 + al cos 2(θ− θl)] (9)

where ac, an, at, and al represent the anisotropy coefficient of the contact normal, the magnitude
coefficient of the normal contact force, the magnitude coefficient of the tangential contact force, and the
magnitude of anisotropy for the branch vector; the angles θc, θfn, θft, and θl represent the corresponding
privileged directions following the principal stress direction in a sheared state; f 0 is the average normal
contact force for different values of θ; and l0 is the average length of the normal contact vector when
θf0 and l0 are different from the average normal force and the average length of the normal contact
vector’s overall contact [52].

Figure 14 presents the distribution of the normal contact force of the MHS under various dynamic
stress amplitudes conditions. When Sup = 20%, the anisotropic was not evident, and the distribution of
the normal contact force was in an elliptical shape. As the upper strength ratio increased, the distribution
of normal contact force changed to a “peanut shape.” In all cases, the main direction of the normal
contact force was consistent with the loading direction (θfn = 90◦). Figure 15 presents the distribution
of the shear contact force of the MHS. The distribution of the shear contact force under cyclic loading
shear tests was evenly distributed in the directions of 45◦, 135◦, 225◦, and 315◦ as a “flower shape”.
The MHS consist of soil particles and hydrate particles, and hydrate particles mainly bond to soil
particles. Therefore, the normal contact force mainly transfers through the soil particle’s skeleton.
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Figure 14. The evolution of the normal contact force between the particles under different dynamic
amplitude conditions for MHS with different Sh values. (a) Sh = 30%; (b) Sh = 40%; (c) Sh = 50%;
(d) Sh = 65%.



Energies 2019, 12, 3694 17 of 20

Energies 2019, 12, x FOR PEER REVIEW 16 of 20 

 
Figure 14. The evolution of the normal contact force between the particles under different dynamic 
amplitude conditions for MHS with different Sh values. (a) Sh = 30%; (b) Sh = 40%; (c) Sh = 50%; (d) Sh = 
65%. 

 

 

 

 

0

30

60
90

120

150

180

210

240
270

300

330

0.5

1.0

1.5

2.0

0

30

60
90

120

150

180

210

240
270

300

330

0.5

1.0

1.5

2.0

0

30

60
90

120

150

180

210

240
270

300

330

0.5

1.0

1.5

2.0
S

h
=65%

Sup=20%
Slow=1%

S
h
=65%

Sup=40%
Slow=1%

(d) S
h
=65%

Sup=80%
Slow=1%

0

30

60
90

120

150

180

210

240
270

300

330

0.5
1.0
1.5
2.0
2.5

0

30

60
90

120

150

180

210

240
270

300

330

0.5
1.0
1.5
2.0
2.5

0

30

60
90

120

150

180

210

240
270

300

330

0.5
1.0
1.5
2.0
2.5

(a) S
h
=30%

Sup=20%
Slow=1%

S
h
=30%

Sup=40%
Slow=1%

S
h
=30%

Sup=80%
Slow=1%

0

30

60
90

120

150

180

210

240
270

300

330

0.5
1.0
1.5
2.0
2.5

0

30

60
90

120

150

180

210

240
270

300

330

1
2
3
4
5

0

30

60
90

120

150

180

210

240
270

300

330

0.5
1.0
1.5
2.0
2.5

S
h
=40%

Sup=20%
Slow=1%

S
h
=40%

Sup=40%
Slow=1%

(b) S
h
=40%

Sup=80%
Slow=1%

0

30

60
90

120

150

180

210

240
270

300

330

0.5
1.0
1.5
2.0
2.5

0

30

60
90

120

150

180

210

240
270

300

330

0.5
1.0
1.5
2.0
2.5

0

30

60
90

120

150

180

210

240
270

300

330

0.5
1.0
1.5
2.0
2.5

S
h
=50%

Sup=20%
Slow=1%

S
h
=50%

Sup=40%
Slow=1%

(c) S
h
=50%

Sup=80%
Slow=1%

0

30

60
90

120

150

180

210

240
270

300

330

0.5
1.0
1.5
2.0
2.5

0

30

60
90

120

150

180

210

240
270

300

330

0.5
1.0
1.5
2.0
2.5

0

30

60
90

120

150

180

210

240
270

300

330

0.5
1.0
1.5
2.0
2.5

S
h
=65%

Sup=20%
Slow=1%

(d) S
h
=65%

Sup=40%
Slow=1%

S
h
=65%

Sup=80%
Slow=1%

Figure 15. The evolution of the shear contact force between the particles under different dynamic
amplitude conditions for the MHS with different Sh values. (a) Sh = 30%; (b) Sh = 40%; (c) Sh = 50%;
(d) Sh = 65%.

4. Conclusions

The main purpose of the present work was to obtain a better understanding of the
microstructural evolution of MHS under cyclic loading conditions and to aid in the development of
micromechanical-based constitutive models. To achieve this aim, a series of drained, cyclic biaxial
compressive tests under constant stress amplitudes were numerically carried out with the DEM, and
the cementing of hydrate particles and the rolling resistance among particles were considered.

The cyclic loading number decreased as the hydrate saturation increased, when the MHS were
damaged. The failure mode of the MHS was found to depend on the dynamic stress amplitude and the
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hydrate saturation. The microstructures of the MHS during the cyclic loading shear process were also
analyzed. When Sh = 30%, the value of ac first increased as the simulation time increased, and then
fluctuated around a stable value. When Sh = 40%, 50%, and 60%, the value of ac gradually increased as
the simulation time increased under the condition of Sup = 20%, while the value of ac first increased
and then decreased as the simulation time increased, when Sup = 40% and 80%. Therefore, it seems
that a threshold value exists for the fabric anisotropy under cyclic loading, and once the threshold is
reached, the fabric structure of the specimen tends to be unstable. In all cases, the main direction of the
normal contact force was consistent with the loading direction. The MHS consists of soil particles and
hydrate particles, and hydrate particles mainly bond to soil particles. Therefore, the normal contact
force mainly transfers through the soil particle skeleton.
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